Articles | Volume 11, issue 1
https://doi.org/10.5194/gmd-11-305-2018
https://doi.org/10.5194/gmd-11-305-2018
Development and technical paper
 | 
23 Jan 2018
Development and technical paper |  | 23 Jan 2018

Errors and improvements in the use of archived meteorological data for chemical transport modeling: an analysis using GEOS-Chem v11-01 driven by GEOS-5 meteorology

Karen Yu, Christoph A. Keller, Daniel J. Jacob, Andrea M. Molod, Sebastian D. Eastham, and Michael S. Long

Related authors

Glyoxal yield from isoprene oxidation and relation to formaldehyde: chemical mechanism, constraints from SENEX aircraft observations, and interpretation of OMI satellite data
Christopher Chan Miller, Daniel J. Jacob, Eloise A. Marais, Karen Yu, Katherine R. Travis, Patrick S. Kim, Jenny A. Fisher, Lei Zhu, Glenn M. Wolfe, Thomas F. Hanisco, Frank N. Keutsch, Jennifer Kaiser, Kyung-Eun Min, Steven S. Brown, Rebecca A. Washenfelder, Gonzalo González Abad, and Kelly Chance
Atmos. Chem. Phys., 17, 8725–8738, https://doi.org/10.5194/acp-17-8725-2017,https://doi.org/10.5194/acp-17-8725-2017, 2017
Short summary
Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions
Karen Yu, Daniel J. Jacob, Jenny A. Fisher, Patrick S. Kim, Eloise A. Marais, Christopher C. Miller, Katherine R. Travis, Lei Zhu, Robert M. Yantosca, Melissa P. Sulprizio, Ron C. Cohen, Jack E. Dibb, Alan Fried, Tomas Mikoviny, Thomas B. Ryerson, Paul O. Wennberg, and Armin Wisthaler
Atmos. Chem. Phys., 16, 4369–4378, https://doi.org/10.5194/acp-16-4369-2016,https://doi.org/10.5194/acp-16-4369-2016, 2016
Short summary

Related subject area

Atmospheric sciences
MEXPLORER 1.0.0 – a mechanism explorer for analysis and visualization of chemical reaction pathways based on graph theory
Rolf Sander
Geosci. Model Dev., 17, 2419–2425, https://doi.org/10.5194/gmd-17-2419-2024,https://doi.org/10.5194/gmd-17-2419-2024, 2024
Short summary
Advances and prospects of deep learning for medium-range extreme weather forecasting
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 2347–2358, https://doi.org/10.5194/gmd-17-2347-2024,https://doi.org/10.5194/gmd-17-2347-2024, 2024
Short summary
An overview of the Western United States Dynamically Downscaled Dataset (WUS-D3)
Stefan Rahimi, Lei Huang, Jesse Norris, Alex Hall, Naomi Goldenson, Will Krantz, Benjamin Bass, Chad Thackeray, Henry Lin, Di Chen, Eli Dennis, Ethan Collins, Zachary J. Lebo, Emily Slinskey, Sara Graves, Surabhi Biyani, Bowen Wang, Stephen Cropper, and the UCLA Center for Climate Science Team
Geosci. Model Dev., 17, 2265–2286, https://doi.org/10.5194/gmd-17-2265-2024,https://doi.org/10.5194/gmd-17-2265-2024, 2024
Short summary
cloudbandPy 1.0: an automated algorithm for the detection of tropical–extratropical cloud bands
Romain Pilon and Daniela I. V. Domeisen
Geosci. Model Dev., 17, 2247–2264, https://doi.org/10.5194/gmd-17-2247-2024,https://doi.org/10.5194/gmd-17-2247-2024, 2024
Short summary
PyRTlib: an educational Python-based library for non-scattering atmospheric microwave radiative transfer computations
Salvatore Larosa, Domenico Cimini, Donatello Gallucci, Saverio Teodosio Nilo, and Filomena Romano
Geosci. Model Dev., 17, 2053–2076, https://doi.org/10.5194/gmd-17-2053-2024,https://doi.org/10.5194/gmd-17-2053-2024, 2024
Short summary

Cited articles

Allen, D. J., Rood, R. B., Thompson, A. M., and Hudson, R. D.: Three-dimensional radon 222 calculations using assimilated meteorological data and a convective mixing algorithm, J. Geophys. Res., 101, 6871–6881, 1996. a, b
Bacmeister, J. T. and Stephens, G.: Spatial statistics of likely convective clouds in CloudSat data, J. Geophys. Res.-Atmos., 116, D04104, https://doi.org/10.1029/2010JD014444, 2011. a
Bacmeister, J. T., Suarez, M. J., and Robertson, F. R.: Rain reevaporation, boundary layer-convection interactions, and Pacific rainfall patterns in an AGCM, J. Atmos. Sci., 63, 3383–3403, 2006. a
Balkanski, Y. J., Jacob, D. J., Gardner, G. M., Graustein, W. C., and Turekian, K. K.: Transport and residence times of tropospheric aerosols inferred from a global three-dimensional simulation of 210Pb, J. Geophys. Res.-Atmos., 98, 20573–20586, 1993. a, b, c
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095, 2001. a, b
Download
Short summary
Global simulations of atmospheric chemistry are generally conducted with off-line chemical transport models (CTMs) driven by archived meteorological data from general circulation models (GCMs). The off-line approach has the advantages of simplicity and expediency, but it is unable to reproduce the GCM transport exactly. We investigate the cascade of errors associated with the off-line approach using the GEOS-5 GCM and GEOS-Chem CTM and discuss improvements in the use of archived meteorology.