Articles | Volume 11, issue 7
Geosci. Model Dev., 11, 2941–2953, 2018
https://doi.org/10.5194/gmd-11-2941-2018
Geosci. Model Dev., 11, 2941–2953, 2018
https://doi.org/10.5194/gmd-11-2941-2018

Model description paper 24 Jul 2018

Model description paper | 24 Jul 2018

GEOS-Chem High Performance (GCHP v11-02c): a next-generation implementation of the GEOS-Chem chemical transport model for massively parallel applications

Sebastian D. Eastham et al.

Related authors

Harmonized Emissions Component (HEMCO) 3.0 as a versatile emissions component for atmospheric models: application in the GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-Aerosol, and NOAA UFS models
Haipeng Lin, Daniel J. Jacob, Elizabeth W. Lundgren, Melissa P. Sulprizio, Christoph A. Keller, Thibaud M. Fritz, Sebastian D. Eastham, Louisa K. Emmons, Patrick C. Campbell, Barry Baker, Rick D. Saylor, and Raffaele Montuoro
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-130,https://doi.org/10.5194/gmd-2021-130, 2021
Preprint under review for GMD
Short summary
Impacts of multi-layer overlap on contrail radiative forcing
Inés Sanz-Morère, Sebastian D. Eastham, Florian Allroggen, Raymond L. Speth, and Steven R. H. Barrett
Atmos. Chem. Phys., 21, 1649–1681, https://doi.org/10.5194/acp-21-1649-2021,https://doi.org/10.5194/acp-21-1649-2021, 2021
Short summary
Grid-Stretching Capability for the GEOS-Chem 13.0.0 Atmospheric Chemistry Model
Liam Bindle, Randall V. Martin, Matthew J. Cooper, Elizabeth W. Lundgren, Sebastian D. Eastham, Benjamin M. Auer, Thomas L. Clune, Hongjian Weng, Jintai Lin, Lee T. Murray, Jun Meng, Christoph A. Keller, Steven Pawson, and Daniel J. Jacob
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-398,https://doi.org/10.5194/gmd-2020-398, 2020
Preprint under review for GMD
Short summary
Development of the global atmospheric chemistry general circulation model BCC-GEOS-Chem v1.0: model description and evaluation
Xiao Lu, Lin Zhang, Tongwen Wu, Michael S. Long, Jun Wang, Daniel J. Jacob, Fang Zhang, Jie Zhang, Sebastian D. Eastham, Lu Hu, Lei Zhu, Xiong Liu, and Min Wei
Geosci. Model Dev., 13, 3817–3838, https://doi.org/10.5194/gmd-13-3817-2020,https://doi.org/10.5194/gmd-13-3817-2020, 2020
Short summary
WRF-GC (v1.0): online coupling of WRF (v3.9.1.1) and GEOS-Chem (v12.2.1) for regional atmospheric chemistry modeling – Part 1: Description of the one-way model
Haipeng Lin, Xu Feng, Tzung-May Fu, Heng Tian, Yaping Ma, Lijuan Zhang, Daniel J. Jacob, Robert M. Yantosca, Melissa P. Sulprizio, Elizabeth W. Lundgren, Jiawei Zhuang, Qiang Zhang, Xiao Lu, Lin Zhang, Lu Shen, Jianping Guo, Sebastian D. Eastham, and Christoph A. Keller
Geosci. Model Dev., 13, 3241–3265, https://doi.org/10.5194/gmd-13-3241-2020,https://doi.org/10.5194/gmd-13-3241-2020, 2020
Short summary

Related subject area

Atmospheric sciences
Comparison of three aerosol representations of NHM-Chem (v1.0) for the simulations of air quality and climate-relevant variables
Mizuo Kajino, Makoto Deushi, Tsuyoshi Thomas Sekiyama, Naga Oshima, Keiya Yumimoto, Taichu Yasumichi Tanaka, Joseph Ching, Akihiro Hashimoto, Tetsuya Yamamoto, Masaaki Ikegami, Akane Kamada, Makoto Miyashita, Yayoi Inomata, Shin-ichiro Shima, Pradeep Khatri, Atsushi Shimizu, Hitoshi Irie, Kouji Adachi, Yuji Zaizen, Yasuhito Igarashi, Hiromasa Ueda, Takashi Maki, and Masao Mikami
Geosci. Model Dev., 14, 2235–2264, https://doi.org/10.5194/gmd-14-2235-2021,https://doi.org/10.5194/gmd-14-2235-2021, 2021
Short summary
JlBox v1.1: a Julia-based multi-phase atmospheric chemistry box model
Langwen Huang and David Topping
Geosci. Model Dev., 14, 2187–2203, https://doi.org/10.5194/gmd-14-2187-2021,https://doi.org/10.5194/gmd-14-2187-2021, 2021
Short summary
A new Lagrangian in-time particle simulation module (Itpas v1) for atmospheric particle dispersion
Matthias Faust, Ralf Wolke, Steffen Münch, Roger Funk, and Kerstin Schepanski
Geosci. Model Dev., 14, 2205–2220, https://doi.org/10.5194/gmd-14-2205-2021,https://doi.org/10.5194/gmd-14-2205-2021, 2021
Short summary
Effects of black carbon morphology on brown carbon absorption estimation: from numerical aspects
Jie Luo, Yongming Zhang, and Qixing Zhang
Geosci. Model Dev., 14, 2113–2126, https://doi.org/10.5194/gmd-14-2113-2021,https://doi.org/10.5194/gmd-14-2113-2021, 2021
Short summary
Simulation of the evolution of biomass burning organic aerosol with different volatility basis set schemes in PMCAMx-SRv1.0
Georgia N. Theodoritsi, Giancarlo Ciarelli, and Spyros N. Pandis
Geosci. Model Dev., 14, 2041–2055, https://doi.org/10.5194/gmd-14-2041-2021,https://doi.org/10.5194/gmd-14-2041-2021, 2021
Short summary

Cited articles

Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. a., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106, 23073, https://doi.org/10.1029/2001JD000807, 2001. 
Brasseur, G. P. and Jacob, D. K.: Modeling of Atmospheric Chemistry, Cambridge University Press, https://doi.org/10.1017/9781316544754, 2017. 
Eastham, S. D. and Jacob, D. J.: Limits on the ability of global Eulerian models to resolve intercontinental transport of chemical plumes, Atmos. Chem. Phys., 17, 2543–2553, https://doi.org/10.5194/acp-17-2543-2017, 2017. 
Eastham, S. D., Weisenstein, D. K., and Barrett, S. R. H.: Development and evaluation of the unified tropospheric–stratospheric chemistry extension (UCX) for the global chemistry-transport model GEOS-Chem, Atmos. Environ., 89, 52–63, 2014. 
Eastham, S. D., Long, M. S., Keller, C. A., Lundgren, E.h, Yantosca, R. M., Zhuang, J., and Jacob, D. J.: sdeastham/GCHP_v11-02c_Paper: GCHP v11-02c (Version v11-02c), Zenodo, https://doi.org/10.5281/zenodo.1290835, last access: 19 July 2018. 
Download
Short summary
Global atmospheric chemical transport models are crucial tools in atmospheric science, used to address problems ranging from climate change to acid rain. GEOS-Chem High Performance (GCHP) is a new implementation of the widely used GEOS-Chem model, designed for massively parallel architectures. GCHP v11-02c is shown to be highly scalable from 6 to over 500 cores, enabling the routine simulation of global atmospheric chemistry from the surface to the stratopause at resolutions of ~50 km or finer.