Articles | Volume 11, issue 7
https://doi.org/10.5194/gmd-11-2941-2018
https://doi.org/10.5194/gmd-11-2941-2018
Model description paper
 | 
24 Jul 2018
Model description paper |  | 24 Jul 2018

GEOS-Chem High Performance (GCHP v11-02c): a next-generation implementation of the GEOS-Chem chemical transport model for massively parallel applications

Sebastian D. Eastham, Michael S. Long, Christoph A. Keller, Elizabeth Lundgren, Robert M. Yantosca, Jiawei Zhuang, Chi Li, Colin J. Lee, Matthew Yannetti, Benjamin M. Auer, Thomas L. Clune, Jules Kouatchou, William M. Putman, Matthew A. Thompson, Atanas L. Trayanov, Andrea M. Molod, Randall V. Martin, and Daniel J. Jacob

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Sebastian Eastham on behalf of the Authors (28 Jun 2018)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (03 Jul 2018) by Gerd A. Folberth
RR by Anonymous Referee #1 (11 Jul 2018)
ED: Publish as is (11 Jul 2018) by Gerd A. Folberth
AR by Sebastian Eastham on behalf of the Authors (13 Jul 2018)  Manuscript 
Download
Short summary
Global atmospheric chemical transport models are crucial tools in atmospheric science, used to address problems ranging from climate change to acid rain. GEOS-Chem High Performance (GCHP) is a new implementation of the widely used GEOS-Chem model, designed for massively parallel architectures. GCHP v11-02c is shown to be highly scalable from 6 to over 500 cores, enabling the routine simulation of global atmospheric chemistry from the surface to the stratopause at resolutions of ~50 km or finer.