Articles | Volume 11, issue 5
Geosci. Model Dev., 11, 1887–1908, 2018
https://doi.org/10.5194/gmd-11-1887-2018
Geosci. Model Dev., 11, 1887–1908, 2018
https://doi.org/10.5194/gmd-11-1887-2018
Model description paper
25 May 2018
Model description paper | 25 May 2018

The Bern Simple Climate Model (BernSCM) v1.0: an extensible and fully documented open-source re-implementation of the Bern reduced-form model for global carbon cycle–climate simulations

Kuno M. Strassmann and Fortunat Joos

Related authors

Observation-constrained estimates of the global ocean carbon sink from Earth system models
Jens Terhaar, Thomas L. Frölicher, and Fortunat Joos
Biogeosciences, 19, 4431–4457, https://doi.org/10.5194/bg-19-4431-2022,https://doi.org/10.5194/bg-19-4431-2022, 2022
Short summary
The effects of varying drought-heat signatures on terrestrial carbon dynamics and vegetation composition
Elisabeth Tschumi, Sebastian Lienert, Karin van der Wiel, Fortunat Joos, and Jakob Zscheischler
Biogeosciences, 19, 1979–1993, https://doi.org/10.5194/bg-19-1979-2022,https://doi.org/10.5194/bg-19-1979-2022, 2022
Short summary
CH4 and N2O fluctuations during the penultimate deglaciation
Loïc Schmidely, Christoph Nehrbass-Ahles, Jochen Schmitt, Juhyeong Han, Lucas Silva, Jinwha Shin, Fortunat Joos, Jérôme Chappellaz, Hubertus Fischer, and Thomas F. Stocker
Clim. Past, 17, 1627–1643, https://doi.org/10.5194/cp-17-1627-2021,https://doi.org/10.5194/cp-17-1627-2021, 2021
Short summary
Committed and projected future changes in global peatlands – continued transient model simulations since the Last Glacial Maximum
Jurek Müller and Fortunat Joos
Biogeosciences, 18, 3657–3687, https://doi.org/10.5194/bg-18-3657-2021,https://doi.org/10.5194/bg-18-3657-2021, 2021
Short summary
Lower oceanic δ13C during the last interglacial period compared to the Holocene
Shannon A. Bengtson, Laurie C. Menviel, Katrin J. Meissner, Lise Missiaen, Carlye D. Peterson, Lorraine E. Lisiecki, and Fortunat Joos
Clim. Past, 17, 507–528, https://doi.org/10.5194/cp-17-507-2021,https://doi.org/10.5194/cp-17-507-2021, 2021
Short summary

Related subject area

Climate and Earth system modeling
Further improvement and evaluation of nudging in the E3SM Atmosphere Model version 1 (EAMv1): simulations of the mean climate, weather events, and anthropogenic aerosol effects
Shixuan Zhang, Kai Zhang, Hui Wan, and Jian Sun
Geosci. Model Dev., 15, 6787–6816, https://doi.org/10.5194/gmd-15-6787-2022,https://doi.org/10.5194/gmd-15-6787-2022, 2022
Short summary
HORAYZON v1.2: an efficient and flexible ray-tracing algorithm to compute horizon and sky view factor
Christian R. Steger, Benjamin Steger, and Christoph Schär
Geosci. Model Dev., 15, 6817–6840, https://doi.org/10.5194/gmd-15-6817-2022,https://doi.org/10.5194/gmd-15-6817-2022, 2022
Short summary
LPJ-GUESS/LSMv1.0: a next-generation land surface model with high ecological realism
David Martín Belda, Peter Anthoni, David Wårlind, Stefan Olin, Guy Schurgers, Jing Tang, Benjamin Smith, and Almut Arneth
Geosci. Model Dev., 15, 6709–6745, https://doi.org/10.5194/gmd-15-6709-2022,https://doi.org/10.5194/gmd-15-6709-2022, 2022
Short summary
Downscaling multi-model climate projection ensembles with deep learning (DeepESD): contribution to CORDEX EUR-44
Jorge Baño-Medina, Rodrigo Manzanas, Ezequiel Cimadevilla, Jesús Fernández, Jose González-Abad, Antonio S. Cofiño, and José Manuel Gutiérrez
Geosci. Model Dev., 15, 6747–6758, https://doi.org/10.5194/gmd-15-6747-2022,https://doi.org/10.5194/gmd-15-6747-2022, 2022
Short summary
Intercomparison of four algorithms for detecting tropical cyclones using ERA5
Stella Bourdin, Sébastien Fromang, William Dulac, Julien Cattiaux, and Fabrice Chauvin
Geosci. Model Dev., 15, 6759–6786, https://doi.org/10.5194/gmd-15-6759-2022,https://doi.org/10.5194/gmd-15-6759-2022, 2022
Short summary

Cited articles

Archer, D., Kheshgi, H., and Maier-Reimer, E.: Dynamics of fossil fuel CO2 neutralization by marine CaCO3., Global Biogeochem. Cy., 12, 259–276, 1999. a, b
Boucher, O. and Reddy, M.: Climate trade-off between black carbon and carbon dioxide emissions, Energ. Policy, 36, 193–200, 2008. a
Bruckner, T., Hooss, G., Füssel, H.-M., and Hasselmann, K.: Climate System Modeling in the Framework of the Tolerable Windows Approach: The ICLIPS Climate Model, Climatic Change, 56, 119–137, 2003. a
Budyko, M.: The effect of solar radiation variations on the climate of the earth, Tellus, 21, 611–619, https://doi.org/10.1111/j.2153-3490.1969.tb00466.x/abstract, 1969. a
Deser, C., Knutti, R., Solomon, S., and Phillips, A. S.: Communication of the role of natural variability in future North American climate, Nat. Clim. Change, 2, 775–779, 2012. a
Download
Short summary
The Bern Simple Climate Model (BernSCM) is a free open-source re-implementation of a reduced-form carbon cycle–climate model widely used in science and IPCC assessments. BernSCM supports up to decadal time steps with high accuracy and is suitable for studies with high computational load, e.g., integrated assessment models (IAMs). Further applications include climate risk assessment in a business, public, or educational context and the estimation of benefits of emission mitigation options.