Articles | Volume 11, issue 5
https://doi.org/10.5194/gmd-11-1799-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-11-1799-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Crossing the chasm: how to develop weather and climate models for next generation computers?
Bryan N. Lawrence
CORRESPONDING AUTHOR
Department of Meteorology, University of Reading, Reading, UK
National Centre of Atmospheric Science, Reading, UK
STFC Rutherford Appleton Laboratory, Didcot, UK
Michael Rezny
Monash University, Melbourne, Australia
Reinhard Budich
Max Planck Institute for Meteorology, Hamburg, Germany
Peter Bauer
ECMWF, Reading, UK
Jörg Behrens
DKRZ, Hamburg, Germany
Mick Carter
Met Office, Exeter, UK
Willem Deconinck
ECMWF, Reading, UK
Rupert Ford
STFC Hartree Centre, Daresbury Laboratory, Daresbury, UK
Christopher Maynard
Met Office, Exeter, UK
Steven Mullerworth
Met Office, Exeter, UK
Carlos Osuna
ETH, Zurich, Switzerland
Andrew Porter
STFC Hartree Centre, Daresbury Laboratory, Daresbury, UK
Kim Serradell
Barcelona Supercomputing Center, Barcelona, Spain
Sophie Valcke
Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, Toulouse, France
Nils Wedi
ECMWF, Reading, UK
Simon Wilson
Department of Meteorology, University of Reading, Reading, UK
National Centre of Atmospheric Science, Reading, UK
Met Office, Exeter, UK
Related authors
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
This article is included in the Encyclopedia of Geosciences
Ezequiel Cimadevilla, Bryan Lawrence, and Antonio Santiago Cofiño
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-120, https://doi.org/10.5194/gmd-2024-120, 2024
Revised manuscript not accepted
Short summary
Short summary
The Earth System Grid Federation (ESGF) stores an enormous amount of climate data spread across millions of files in data centers all over the world. Accessing and working with this scientific information is quite complex. This work presents ESGF Virtual Aggregation, an approach that combines data from different sources into a format that is ready for analysis straight away.
This article is included in the Encyclopedia of Geosciences
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
This article is included in the Encyclopedia of Geosciences
Mario C. Acosta, Sergi Palomas, Stella V. Paronuzzi Ticco, Gladys Utrera, Joachim Biercamp, Pierre-Antoine Bretonniere, Reinhard Budich, Miguel Castrillo, Arnaud Caubel, Francisco Doblas-Reyes, Italo Epicoco, Uwe Fladrich, Sylvie Joussaume, Alok Kumar Gupta, Bryan Lawrence, Philippe Le Sager, Grenville Lister, Marie-Pierre Moine, Jean-Christophe Rioual, Sophie Valcke, Niki Zadeh, and Venkatramani Balaji
Geosci. Model Dev., 17, 3081–3098, https://doi.org/10.5194/gmd-17-3081-2024, https://doi.org/10.5194/gmd-17-3081-2024, 2024
Short summary
Short summary
We present a collection of performance metrics gathered during the Coupled Model Intercomparison Project Phase 6 (CMIP6), a worldwide initiative to study climate change. We analyse the metrics that resulted from collaboration efforts among many partners and models and describe our findings to demonstrate the utility of our study for the scientific community. The research contributes to understanding climate modelling performance on the current high-performance computing (HPC) architectures.
This article is included in the Encyclopedia of Geosciences
Thibault Hallouin, Richard J. Ellis, Douglas B. Clark, Simon J. Dadson, Andrew G. Hughes, Bryan N. Lawrence, Grenville M. S. Lister, and Jan Polcher
Geosci. Model Dev., 15, 9177–9196, https://doi.org/10.5194/gmd-15-9177-2022, https://doi.org/10.5194/gmd-15-9177-2022, 2022
Short summary
Short summary
A new framework for modelling the water cycle in the land system has been implemented. It considers the hydrological cycle as three interconnected components, bringing flexibility in the choice of the physical processes and their spatio-temporal resolutions. It is designed to foster collaborations between land surface, hydrological, and groundwater modelling communities to develop the next-generation of land system models for integration in Earth system models.
This article is included in the Encyclopedia of Geosciences
Charlotte Pascoe, Bryan N. Lawrence, Eric Guilyardi, Martin Juckes, and Karl E. Taylor
Geosci. Model Dev., 13, 2149–2167, https://doi.org/10.5194/gmd-13-2149-2020, https://doi.org/10.5194/gmd-13-2149-2020, 2020
Short summary
Short summary
We present a methodology for documenting numerical experiments in the context of an information sharing ecosystem which allows the weather, climate, and earth system modelling community to accurately document and share information about their modelling workflow. We describe how through iteration with a range of stakeholders, we rationalized multiple sources of information and improved the clarity of experimental definitions for the Coupled Model Intercomparison Project Phase 6 (CMIP6).
This article is included in the Encyclopedia of Geosciences
Martin Juckes, Karl E. Taylor, Paul J. Durack, Bryan Lawrence, Matthew S. Mizielinski, Alison Pamment, Jean-Yves Peterschmitt, Michel Rixen, and Stéphane Sénési
Geosci. Model Dev., 13, 201–224, https://doi.org/10.5194/gmd-13-201-2020, https://doi.org/10.5194/gmd-13-201-2020, 2020
Short summary
Short summary
The data request of the Coupled Model Intercomparison Project Phase 6 (CMIP6) defines all the quantities
from CMIP6 simulations that should be archived. The building blocks and structure of the CMIP6 Data Request, which has been constructed to meet these challenges, are described in this paper.
This article is included in the Encyclopedia of Geosciences
Venkatramani Balaji, Karl E. Taylor, Martin Juckes, Bryan N. Lawrence, Paul J. Durack, Michael Lautenschlager, Chris Blanton, Luca Cinquini, Sébastien Denvil, Mark Elkington, Francesca Guglielmo, Eric Guilyardi, David Hassell, Slava Kharin, Stefan Kindermann, Sergey Nikonov, Aparna Radhakrishnan, Martina Stockhause, Tobias Weigel, and Dean Williams
Geosci. Model Dev., 11, 3659–3680, https://doi.org/10.5194/gmd-11-3659-2018, https://doi.org/10.5194/gmd-11-3659-2018, 2018
Short summary
Short summary
We present recommendations for the global data infrastructure needed to support CMIP scientific design and its future growth and evolution. We follow a dataset-centric design less prone to systemic failure. Scientific publication in the digital age is evolving to make data a primary scientific output, alongside articles. We design toward that future scientific data ecosystem, informed by the need for reproducibility, data provenance, future data technologies, and measures of costs and benefits.
This article is included in the Encyclopedia of Geosciences
David Hassell, Jonathan Gregory, Jon Blower, Bryan N. Lawrence, and Karl E. Taylor
Geosci. Model Dev., 10, 4619–4646, https://doi.org/10.5194/gmd-10-4619-2017, https://doi.org/10.5194/gmd-10-4619-2017, 2017
Short summary
Short summary
We present a formal data model for version 1.6 of the CF (Climate and Forecast) metadata conventions that provide a description of the physical meaning of geoscientific data and their spatial and temporal properties. We describe the CF conventions and how they lead to our CF data model, and compare it other data models for storing data and metadata. We present cf-python version 2.1: a software implementation of the CF data model capable of manipulating any CF-compliant dataset.
This article is included in the Encyclopedia of Geosciences
Venkatramani Balaji, Eric Maisonnave, Niki Zadeh, Bryan N. Lawrence, Joachim Biercamp, Uwe Fladrich, Giovanni Aloisio, Rusty Benson, Arnaud Caubel, Jeffrey Durachta, Marie-Alice Foujols, Grenville Lister, Silvia Mocavero, Seth Underwood, and Garrett Wright
Geosci. Model Dev., 10, 19–34, https://doi.org/10.5194/gmd-10-19-2017, https://doi.org/10.5194/gmd-10-19-2017, 2017
Short summary
Short summary
Climate models are among the most computationally expensive scientific applications in the world. We present a set of measures of computational performance that can be used to compare models that are independent of underlying hardware and the model formulation. They are easy to collect and reflect performance actually achieved in practice. We are preparing a systematic effort to collect these metrics for the world's climate models during CMIP6, the next Climate Model Intercomparison Project.
This article is included in the Encyclopedia of Geosciences
Veronika Eyring, Peter J. Gleckler, Christoph Heinze, Ronald J. Stouffer, Karl E. Taylor, V. Balaji, Eric Guilyardi, Sylvie Joussaume, Stephan Kindermann, Bryan N. Lawrence, Gerald A. Meehl, Mattia Righi, and Dean N. Williams
Earth Syst. Dynam., 7, 813–830, https://doi.org/10.5194/esd-7-813-2016, https://doi.org/10.5194/esd-7-813-2016, 2016
Short summary
Short summary
We argue that the CMIP community has reached a critical juncture at which many baseline aspects of model evaluation need to be performed much more efficiently to enable a systematic and rapid performance assessment of the large number of models participating in CMIP, and we announce our intention to implement such a system for CMIP6. At the same time, continuous scientific research is required to develop innovative metrics and diagnostics that help narrowing the spread in climate projections.
This article is included in the Encyclopedia of Geosciences
Duncan Watson-Parris, Nick Schutgens, Nicholas Cook, Zak Kipling, Philip Kershaw, Edward Gryspeerdt, Bryan Lawrence, and Philip Stier
Geosci. Model Dev., 9, 3093–3110, https://doi.org/10.5194/gmd-9-3093-2016, https://doi.org/10.5194/gmd-9-3093-2016, 2016
Short summary
Short summary
In this paper we describe CIS, a new command line tool for the easy visualization, analysis and comparison of a wide variety of gridded and ungridded data sets used in Earth sciences. Users can now use a single tool to not only view plots of satellite, aircraft, station or model data, but also bring them onto the same spatio-temporal sampling. This allows robust, quantitative comparisons to be made easily. CIS is an open-source project and welcomes input from the community.
This article is included in the Encyclopedia of Geosciences
M. S. Mizielinski, M. J. Roberts, P. L. Vidale, R. Schiemann, M.-E. Demory, J. Strachan, T. Edwards, A. Stephens, B. N. Lawrence, M. Pritchard, P. Chiu, A. Iwi, J. Churchill, C. del Cano Novales, J. Kettleborough, W. Roseblade, P. Selwood, M. Foster, M. Glover, and A. Malcolm
Geosci. Model Dev., 7, 1629–1640, https://doi.org/10.5194/gmd-7-1629-2014, https://doi.org/10.5194/gmd-7-1629-2014, 2014
M.-P. Moine, S. Valcke, B. N. Lawrence, C. Pascoe, R. W. Ford, A. Alias, V. Balaji, P. Bentley, G. Devine, S. A. Callaghan, and E. Guilyardi
Geosci. Model Dev., 7, 479–493, https://doi.org/10.5194/gmd-7-479-2014, https://doi.org/10.5194/gmd-7-479-2014, 2014
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
This article is included in the Encyclopedia of Geosciences
Andrew Porter and Patrick Heimbach
State Planet Discuss., https://doi.org/10.5194/sp-2024-32, https://doi.org/10.5194/sp-2024-32, 2024
Revised manuscript under review for SP
Short summary
Short summary
Numerical ocean forecasting is a key part of accurate models of the earth system. However, they require powerful computing resources and the architectures of the necessary computers are evolving rapidly. Unfortunately, this is a disruptive change – an ocean model must be modified to enable it to make use of this new computing hardware. This paper reviews what has been done in this area and identifies solutions to enable operational ocean forecasts to make use of the new computing hardware.
This article is included in the Encyclopedia of Geosciences
Ezequiel Cimadevilla, Bryan Lawrence, and Antonio Santiago Cofiño
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-120, https://doi.org/10.5194/gmd-2024-120, 2024
Revised manuscript not accepted
Short summary
Short summary
The Earth System Grid Federation (ESGF) stores an enormous amount of climate data spread across millions of files in data centers all over the world. Accessing and working with this scientific information is quite complex. This work presents ESGF Virtual Aggregation, an approach that combines data from different sources into a format that is ready for analysis straight away.
This article is included in the Encyclopedia of Geosciences
R. Phani Murali Krishna, Siddharth Kumar, Athippatta Gopinathan Prajeesh, Peter Bechtold, Nils Wedi, Kumar Roy, Malay Ganai, B. Revanth Reddy, Snehlata Tirkey, Tanmoy Goswami, Radhika Kanase, and Parthasarathi Mukhopadhyay
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-89, https://doi.org/10.5194/gmd-2024-89, 2024
Preprint under review for GMD
Short summary
Short summary
The newly developed HGFM is an advanced iteration of the operational GFS model. The HGFM can produce forecasts at a spatial scale (~6 km in tropics). It demonstrates improved accuracy in short to medium-range weather prediction over Indian summer monsoon regions, as well as notable success in predicting extreme rainfall events. Following validation and testing, the model will be entrusted to operational forecasting agencies. Forecasts from this model could significantly affect billions of lives.
This article is included in the Encyclopedia of Geosciences
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
This article is included in the Encyclopedia of Geosciences
Mario C. Acosta, Sergi Palomas, Stella V. Paronuzzi Ticco, Gladys Utrera, Joachim Biercamp, Pierre-Antoine Bretonniere, Reinhard Budich, Miguel Castrillo, Arnaud Caubel, Francisco Doblas-Reyes, Italo Epicoco, Uwe Fladrich, Sylvie Joussaume, Alok Kumar Gupta, Bryan Lawrence, Philippe Le Sager, Grenville Lister, Marie-Pierre Moine, Jean-Christophe Rioual, Sophie Valcke, Niki Zadeh, and Venkatramani Balaji
Geosci. Model Dev., 17, 3081–3098, https://doi.org/10.5194/gmd-17-3081-2024, https://doi.org/10.5194/gmd-17-3081-2024, 2024
Short summary
Short summary
We present a collection of performance metrics gathered during the Coupled Model Intercomparison Project Phase 6 (CMIP6), a worldwide initiative to study climate change. We analyse the metrics that resulted from collaboration efforts among many partners and models and describe our findings to demonstrate the utility of our study for the scientific community. The research contributes to understanding climate modelling performance on the current high-performance computing (HPC) architectures.
This article is included in the Encyclopedia of Geosciences
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Alexei Koldunov, Tobias Kölling, Josh Kousal, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Domokos Sármány, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
EGUsphere, https://doi.org/10.5194/egusphere-2024-913, https://doi.org/10.5194/egusphere-2024-913, 2024
Short summary
Short summary
Detailed global climate model simulations have been created based on a numerical weather prediction model, offering more accurate spatial detail down to the scale of individual cities ("kilometre-scale"), and a better understanding of climate phenomena such as atmospheric storms, whirls in the ocean, and cracks in sea ice. The new model aims to provide globally consistent information on local climate change with greater precision, benefiting environmental planning and local impact modelling.
This article is included in the Encyclopedia of Geosciences
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Thibault Hallouin, Richard J. Ellis, Douglas B. Clark, Simon J. Dadson, Andrew G. Hughes, Bryan N. Lawrence, Grenville M. S. Lister, and Jan Polcher
Geosci. Model Dev., 15, 9177–9196, https://doi.org/10.5194/gmd-15-9177-2022, https://doi.org/10.5194/gmd-15-9177-2022, 2022
Short summary
Short summary
A new framework for modelling the water cycle in the land system has been implemented. It considers the hydrological cycle as three interconnected components, bringing flexibility in the choice of the physical processes and their spatio-temporal resolutions. It is designed to foster collaborations between land surface, hydrological, and groundwater modelling communities to develop the next-generation of land system models for integration in Earth system models.
This article is included in the Encyclopedia of Geosciences
Beatriz M. Monge-Sanz, Alessio Bozzo, Nicholas Byrne, Martyn P. Chipperfield, Michail Diamantakis, Johannes Flemming, Lesley J. Gray, Robin J. Hogan, Luke Jones, Linus Magnusson, Inna Polichtchouk, Theodore G. Shepherd, Nils Wedi, and Antje Weisheimer
Atmos. Chem. Phys., 22, 4277–4302, https://doi.org/10.5194/acp-22-4277-2022, https://doi.org/10.5194/acp-22-4277-2022, 2022
Short summary
Short summary
The stratosphere is emerging as one of the keys to improve tropospheric weather and climate predictions. This study provides evidence of the role the stratospheric ozone layer plays in improving weather predictions at different timescales. Using a new ozone modelling approach suitable for high-resolution global models that provide operational forecasts from days to seasons, we find significant improvements in stratospheric meteorological fields and stratosphere–troposphere coupling.
This article is included in the Encyclopedia of Geosciences
Mohammad Reza Heidari, Zhaoyang Song, Enrico Degregori, Jörg Behrens, and Hendryk Bockelmann
Geosci. Model Dev., 14, 7439–7457, https://doi.org/10.5194/gmd-14-7439-2021, https://doi.org/10.5194/gmd-14-7439-2021, 2021
Short summary
Short summary
To improve our understanding of climate system dynamics and their variability, the numerical atmospheric model ECHAM6 is used to simulate a complete glacial cycle over the past 120 000 years. However, performing such simulations takes a long time even on state-of-the-art supercomputers. To accelerate the model simulation, we propose calculating radiative transfer processes in parallel with adiabatic processes in the atmosphere, which reduces the simulation time by nearly half.
This article is included in the Encyclopedia of Geosciences
Christian Zeman, Nils P. Wedi, Peter D. Dueben, Nikolina Ban, and Christoph Schär
Geosci. Model Dev., 14, 4617–4639, https://doi.org/10.5194/gmd-14-4617-2021, https://doi.org/10.5194/gmd-14-4617-2021, 2021
Short summary
Short summary
Kilometer-scale atmospheric models allow us to partially resolve thunderstorms and thus improve their representation. We present an intercomparison between two distinct atmospheric models for 2 summer days with heavy thunderstorms over Europe. We show the dependence of precipitation and vertical wind speed on spatial and temporal resolution and also discuss the possible influence of the system of equations, numerical methods, and diffusion in the models.
This article is included in the Encyclopedia of Geosciences
Olivier Marti, Sébastien Nguyen, Pascale Braconnot, Sophie Valcke, Florian Lemarié, and Eric Blayo
Geosci. Model Dev., 14, 2959–2975, https://doi.org/10.5194/gmd-14-2959-2021, https://doi.org/10.5194/gmd-14-2959-2021, 2021
Short summary
Short summary
State-of-the-art Earth system models, like the ones used in CMIP6, suffer from temporal inconsistencies at the ocean–atmosphere interface. In this study, a mathematically consistent iterative Schwarz method is used as a reference. Its tremendous computational cost makes it unusable for production runs, but it allows us to evaluate the error made when using legacy coupling schemes. The impact on the climate at longer timescales of days to decades is not evaluated.
This article is included in the Encyclopedia of Geosciences
Jun-Ichi Yano and Nils P. Wedi
Atmos. Chem. Phys., 21, 4759–4778, https://doi.org/10.5194/acp-21-4759-2021, https://doi.org/10.5194/acp-21-4759-2021, 2021
Short summary
Short summary
Sensitivities of forecasts of the Madden–Julian oscillation (MJO) to various different configurations of the physics are examined with the global model of ECMWF's Integrated Forecasting System (IFS). The motivation for the study was to simulate the MJO as a nonlinear free wave. To emulate free dynamics in the IFS,
various momentum dissipation terms (
This article is included in the Encyclopedia of Geosciences
friction) as well as diabatic heating were selectively turned off over the tropics for the range of the latitudes from 20° S to 20° N.
Martine G. de Vos, Wilco Hazeleger, Driss Bari, Jörg Behrens, Sofiane Bendoukha, Irene Garcia-Marti, Ronald van Haren, Sue Ellen Haupt, Rolf Hut, Fredrik Jansson, Andreas Mueller, Peter Neilley, Gijs van den Oord, Inti Pelupessy, Paolo Ruti, Martin G. Schultz, and Jeremy Walton
Geosci. Commun., 3, 191–201, https://doi.org/10.5194/gc-3-191-2020, https://doi.org/10.5194/gc-3-191-2020, 2020
Short summary
Short summary
At the 14th IEEE International eScience Conference domain specialists and data and computer scientists discussed the road towards open weather and climate science. Open science offers manifold opportunities but goes beyond sharing code and data. Besides domain-specific technical challenges, we observed that the main challenges are non-technical and impact the system of science as a whole.
This article is included in the Encyclopedia of Geosciences
Charlotte Pascoe, Bryan N. Lawrence, Eric Guilyardi, Martin Juckes, and Karl E. Taylor
Geosci. Model Dev., 13, 2149–2167, https://doi.org/10.5194/gmd-13-2149-2020, https://doi.org/10.5194/gmd-13-2149-2020, 2020
Short summary
Short summary
We present a methodology for documenting numerical experiments in the context of an information sharing ecosystem which allows the weather, climate, and earth system modelling community to accurately document and share information about their modelling workflow. We describe how through iteration with a range of stakeholders, we rationalized multiple sources of information and improved the clarity of experimental definitions for the Coupled Model Intercomparison Project Phase 6 (CMIP6).
This article is included in the Encyclopedia of Geosciences
Martin Juckes, Karl E. Taylor, Paul J. Durack, Bryan Lawrence, Matthew S. Mizielinski, Alison Pamment, Jean-Yves Peterschmitt, Michel Rixen, and Stéphane Sénési
Geosci. Model Dev., 13, 201–224, https://doi.org/10.5194/gmd-13-201-2020, https://doi.org/10.5194/gmd-13-201-2020, 2020
Short summary
Short summary
The data request of the Coupled Model Intercomparison Project Phase 6 (CMIP6) defines all the quantities
from CMIP6 simulations that should be archived. The building blocks and structure of the CMIP6 Data Request, which has been constructed to meet these challenges, are described in this paper.
This article is included in the Encyclopedia of Geosciences
Andreas Müller, Willem Deconinck, Christian Kühnlein, Gianmarco Mengaldo, Michael Lange, Nils Wedi, Peter Bauer, Piotr K. Smolarkiewicz, Michail Diamantakis, Sarah-Jane Lock, Mats Hamrud, Sami Saarinen, George Mozdzynski, Daniel Thiemert, Michael Glinton, Pierre Bénard, Fabrice Voitus, Charles Colavolpe, Philippe Marguinaud, Yongjun Zheng, Joris Van Bever, Daan Degrauwe, Geert Smet, Piet Termonia, Kristian P. Nielsen, Bent H. Sass, Jacob W. Poulsen, Per Berg, Carlos Osuna, Oliver Fuhrer, Valentin Clement, Michael Baldauf, Mike Gillard, Joanna Szmelter, Enda O'Brien, Alastair McKinstry, Oisín Robinson, Parijat Shukla, Michael Lysaght, Michał Kulczewski, Milosz Ciznicki, Wojciech Piątek, Sebastian Ciesielski, Marek Błażewicz, Krzysztof Kurowski, Marcin Procyk, Pawel Spychala, Bartosz Bosak, Zbigniew P. Piotrowski, Andrzej Wyszogrodzki, Erwan Raffin, Cyril Mazauric, David Guibert, Louis Douriez, Xavier Vigouroux, Alan Gray, Peter Messmer, Alexander J. Macfaden, and Nick New
Geosci. Model Dev., 12, 4425–4441, https://doi.org/10.5194/gmd-12-4425-2019, https://doi.org/10.5194/gmd-12-4425-2019, 2019
Short summary
Short summary
This paper presents an overview of the ESCAPE project. Dwarfs (key patterns in terms of computation and communication) are identified in weather prediction models. They are optimised for different hardware architectures. New algorithms are developed that are specifically designed for better energy efficiency and improved portability through domain-specific languages. Different numerical techniques are compared in terms of energy efficiency and performance for a variety of computing technologies.
This article is included in the Encyclopedia of Geosciences
Margarita Choulga, Ekaterina Kourzeneva, Gianpaolo Balsamo, Souhail Boussetta, and Nils Wedi
Hydrol. Earth Syst. Sci., 23, 4051–4076, https://doi.org/10.5194/hess-23-4051-2019, https://doi.org/10.5194/hess-23-4051-2019, 2019
Short summary
Short summary
Lakes influence weather and climate of regions, especially if several of them are located close by. Just by using upgraded lake depths, based on new or more recent measurements and geological methods of depth estimation, errors of lake surface water forecasts produced by the European Centre for Medium-Range Weather Forecasts became 12–20 % lower compared with observations for 27 lakes collected by the Finnish Environment Institute. For ice-off date forecasts errors changed insignificantly.
This article is included in the Encyclopedia of Geosciences
Dietmar Dommenget, Kerry Nice, Tobias Bayr, Dieter Kasang, Christian Stassen, and Michael Rezny
Geosci. Model Dev., 12, 2155–2179, https://doi.org/10.5194/gmd-12-2155-2019, https://doi.org/10.5194/gmd-12-2155-2019, 2019
Short summary
Short summary
This study describes the scientific basis for a public web page that gives access to a large set of climate model simulations. This web page is called the Monash Simple Climate Model. It provides access to more than 1300 experiments and has an interactive interface for fast analysis of the experiments and open access to the data. The study gives a short overview of the simulation experiments and discusses some of the results.
This article is included in the Encyclopedia of Geosciences
Christian Kühnlein, Willem Deconinck, Rupert Klein, Sylvie Malardel, Zbigniew P. Piotrowski, Piotr K. Smolarkiewicz, Joanna Szmelter, and Nils P. Wedi
Geosci. Model Dev., 12, 651–676, https://doi.org/10.5194/gmd-12-651-2019, https://doi.org/10.5194/gmd-12-651-2019, 2019
Short summary
Short summary
We present a novel finite-volume dynamical core formulation considered for future numerical weather prediction at ECMWF. We demonstrate that this formulation can be competitive in terms of solution quality and computational efficiency to the proven spectral-transform dynamical core formulation currently operational at ECMWF, while providing a local, more scalable discretization, conservative and monotone advective transport, and flexible meshes.
This article is included in the Encyclopedia of Geosciences
Venkatramani Balaji, Karl E. Taylor, Martin Juckes, Bryan N. Lawrence, Paul J. Durack, Michael Lautenschlager, Chris Blanton, Luca Cinquini, Sébastien Denvil, Mark Elkington, Francesca Guglielmo, Eric Guilyardi, David Hassell, Slava Kharin, Stefan Kindermann, Sergey Nikonov, Aparna Radhakrishnan, Martina Stockhause, Tobias Weigel, and Dean Williams
Geosci. Model Dev., 11, 3659–3680, https://doi.org/10.5194/gmd-11-3659-2018, https://doi.org/10.5194/gmd-11-3659-2018, 2018
Short summary
Short summary
We present recommendations for the global data infrastructure needed to support CMIP scientific design and its future growth and evolution. We follow a dataset-centric design less prone to systemic failure. Scientific publication in the digital age is evolving to make data a primary scientific output, alongside articles. We design toward that future scientific data ecosystem, informed by the need for reproducibility, data provenance, future data technologies, and measures of costs and benefits.
This article is included in the Encyclopedia of Geosciences
Andrew R. Porter, Jeremy Appleyard, Mike Ashworth, Rupert W. Ford, Jason Holt, Hedong Liu, and Graham D. Riley
Geosci. Model Dev., 11, 3447–3464, https://doi.org/10.5194/gmd-11-3447-2018, https://doi.org/10.5194/gmd-11-3447-2018, 2018
Short summary
Short summary
Developing computer models in the earth-system domain is a complex and expensive process that can have a duration measured in years. The supercomputers required to run these models, however, are evolving fast with a proliferation of technologies and associated programming models. As a result there is a need that models be "performance portable" between different supercomputers. This paper investigates a way of doing this through a separation of the concerns of performance and natural science.
This article is included in the Encyclopedia of Geosciences
Alexander J. Roberts, Margaret J. Woodage, John H. Marsham, Ellie J. Highwood, Claire L. Ryder, Willie McGinty, Simon Wilson, and Julia Crook
Atmos. Chem. Phys., 18, 9025–9048, https://doi.org/10.5194/acp-18-9025-2018, https://doi.org/10.5194/acp-18-9025-2018, 2018
Short summary
Short summary
The summer Saharan dust hotspot is seasonally tied to the occurrence of convective storms. Global weather and climate models parameterise convection and so are unable to represent their associated dust uplift (haboobs). However, this work shows that even when simulations represent convection explicitly: (1) dust fields are not strongly affected, (2) convective storms are too small, (3) haboobs are too weak and (4) the land surface (bare soil and soil moisture) is dominant in controlling dust.
This article is included in the Encyclopedia of Geosciences
David Hassell, Jonathan Gregory, Jon Blower, Bryan N. Lawrence, and Karl E. Taylor
Geosci. Model Dev., 10, 4619–4646, https://doi.org/10.5194/gmd-10-4619-2017, https://doi.org/10.5194/gmd-10-4619-2017, 2017
Short summary
Short summary
We present a formal data model for version 1.6 of the CF (Climate and Forecast) metadata conventions that provide a description of the physical meaning of geoscientific data and their spatial and temporal properties. We describe the CF conventions and how they lead to our CF data model, and compare it other data models for storing data and metadata. We present cf-python version 2.1: a software implementation of the CF data model capable of manipulating any CF-compliant dataset.
This article is included in the Encyclopedia of Geosciences
Aurore Voldoire, Bertrand Decharme, Joris Pianezze, Cindy Lebeaupin Brossier, Florence Sevault, Léo Seyfried, Valérie Garnier, Soline Bielli, Sophie Valcke, Antoinette Alias, Mickael Accensi, Fabrice Ardhuin, Marie-Noëlle Bouin, Véronique Ducrocq, Stéphanie Faroux, Hervé Giordani, Fabien Léger, Patrick Marsaleix, Romain Rainaud, Jean-Luc Redelsperger, Evelyne Richard, and Sébastien Riette
Geosci. Model Dev., 10, 4207–4227, https://doi.org/10.5194/gmd-10-4207-2017, https://doi.org/10.5194/gmd-10-4207-2017, 2017
Short summary
Short summary
This study presents the principles of the new coupling interface based on the SURFEX multi-surface model and the OASIS3-MCT coupler. As SURFEX can be plugged into several atmospheric models, it can be used in a wide range of applications. The objective of this development is to build and share a common structure for the atmosphere–surface coupling of all these applications, involving on the one hand atmospheric models and on the other hand ocean, ice, hydrology, and wave models.
This article is included in the Encyclopedia of Geosciences
Anthony Craig, Sophie Valcke, and Laure Coquart
Geosci. Model Dev., 10, 3297–3308, https://doi.org/10.5194/gmd-10-3297-2017, https://doi.org/10.5194/gmd-10-3297-2017, 2017
Short summary
Short summary
The OASIS software package provides capabilities that allow different models to be coupled together to carry out new scientific investigation. This is particularly useful in climate model simulations where atmosphere, ocean, sea ice, hydrology, land, ocean wave, chemistry, and other types of Earth system models are often coupled together. The OASIS software package is used by several groups around the world, and this paper describes features of the latest implementation.
This article is included in the Encyclopedia of Geosciences
Jason Holt, Patrick Hyder, Mike Ashworth, James Harle, Helene T. Hewitt, Hedong Liu, Adrian L. New, Stephen Pickles, Andrew Porter, Ekaterina Popova, J. Icarus Allen, John Siddorn, and Richard Wood
Geosci. Model Dev., 10, 499–523, https://doi.org/10.5194/gmd-10-499-2017, https://doi.org/10.5194/gmd-10-499-2017, 2017
Short summary
Short summary
Accurately representing coastal and shelf seas in global ocean models is one of the grand challenges of Earth system science. Here, we explore what the options are for improving this by exploring what the important physical processes are that need to be represented. We use a simple scale analysis to investigate how large the resulting models would need to be. We then compare this with how computer power is increasing to provide estimates of when this might be feasible in the future.
This article is included in the Encyclopedia of Geosciences
Venkatramani Balaji, Eric Maisonnave, Niki Zadeh, Bryan N. Lawrence, Joachim Biercamp, Uwe Fladrich, Giovanni Aloisio, Rusty Benson, Arnaud Caubel, Jeffrey Durachta, Marie-Alice Foujols, Grenville Lister, Silvia Mocavero, Seth Underwood, and Garrett Wright
Geosci. Model Dev., 10, 19–34, https://doi.org/10.5194/gmd-10-19-2017, https://doi.org/10.5194/gmd-10-19-2017, 2017
Short summary
Short summary
Climate models are among the most computationally expensive scientific applications in the world. We present a set of measures of computational performance that can be used to compare models that are independent of underlying hardware and the model formulation. They are easy to collect and reflect performance actually achieved in practice. We are preparing a systematic effort to collect these metrics for the world's climate models during CMIP6, the next Climate Model Intercomparison Project.
This article is included in the Encyclopedia of Geosciences
Veronika Eyring, Peter J. Gleckler, Christoph Heinze, Ronald J. Stouffer, Karl E. Taylor, V. Balaji, Eric Guilyardi, Sylvie Joussaume, Stephan Kindermann, Bryan N. Lawrence, Gerald A. Meehl, Mattia Righi, and Dean N. Williams
Earth Syst. Dynam., 7, 813–830, https://doi.org/10.5194/esd-7-813-2016, https://doi.org/10.5194/esd-7-813-2016, 2016
Short summary
Short summary
We argue that the CMIP community has reached a critical juncture at which many baseline aspects of model evaluation need to be performed much more efficiently to enable a systematic and rapid performance assessment of the large number of models participating in CMIP, and we announce our intention to implement such a system for CMIP6. At the same time, continuous scientific research is required to develop innovative metrics and diagnostics that help narrowing the spread in climate projections.
This article is included in the Encyclopedia of Geosciences
Duncan Watson-Parris, Nick Schutgens, Nicholas Cook, Zak Kipling, Philip Kershaw, Edward Gryspeerdt, Bryan Lawrence, and Philip Stier
Geosci. Model Dev., 9, 3093–3110, https://doi.org/10.5194/gmd-9-3093-2016, https://doi.org/10.5194/gmd-9-3093-2016, 2016
Short summary
Short summary
In this paper we describe CIS, a new command line tool for the easy visualization, analysis and comparison of a wide variety of gridded and ungridded data sets used in Earth sciences. Users can now use a single tool to not only view plots of satellite, aircraft, station or model data, but also bring them onto the same spatio-temporal sampling. This allows robust, quantitative comparisons to be made easily. CIS is an open-source project and welcomes input from the community.
This article is included in the Encyclopedia of Geosciences
M. S. Mizielinski, M. J. Roberts, P. L. Vidale, R. Schiemann, M.-E. Demory, J. Strachan, T. Edwards, A. Stephens, B. N. Lawrence, M. Pritchard, P. Chiu, A. Iwi, J. Churchill, C. del Cano Novales, J. Kettleborough, W. Roseblade, P. Selwood, M. Foster, M. Glover, and A. Malcolm
Geosci. Model Dev., 7, 1629–1640, https://doi.org/10.5194/gmd-7-1629-2014, https://doi.org/10.5194/gmd-7-1629-2014, 2014
M.-P. Moine, S. Valcke, B. N. Lawrence, C. Pascoe, R. W. Ford, A. Alias, V. Balaji, P. Bentley, G. Devine, S. A. Callaghan, and E. Guilyardi
Geosci. Model Dev., 7, 479–493, https://doi.org/10.5194/gmd-7-479-2014, https://doi.org/10.5194/gmd-7-479-2014, 2014
S. Valcke
Geosci. Model Dev., 6, 373–388, https://doi.org/10.5194/gmd-6-373-2013, https://doi.org/10.5194/gmd-6-373-2013, 2013
S. Valcke, V. Balaji, A. Craig, C. DeLuca, R. Dunlap, R. W. Ford, R. Jacob, J. Larson, R. O'Kuinghttons, G. D. Riley, and M. Vertenstein
Geosci. Model Dev., 5, 1589–1596, https://doi.org/10.5194/gmd-5-1589-2012, https://doi.org/10.5194/gmd-5-1589-2012, 2012
Related subject area
Climate and Earth system modeling
Architectural insights into and training methodology optimization of Pangu-Weather
Evaluation of global fire simulations in CMIP6 Earth system models
Evaluating downscaled products with expected hydroclimatic co-variances
Software sustainability of global impact models
fair-calibrate v1.4.1: calibration, constraining, and validation of the FaIR simple climate model for reliable future climate projections
ISOM 1.0: a fully mesoscale-resolving idealized Southern Ocean model and the diversity of multiscale eddy interactions
A computationally lightweight model for ensemble forecasting of environmental hazards: General TAMSAT-ALERT v1.2.1
Introducing the MESMER-M-TPv0.1.0 module: spatially explicit Earth system model emulation for monthly precipitation and temperature
The need for carbon-emissions-driven climate projections in CMIP7
Robust handling of extremes in quantile mapping – “Murder your darlings”
A protocol for model intercomparison of impacts of marine cloud brightening climate intervention
An extensible perturbed parameter ensemble for the Community Atmosphere Model version 6
Coupling the regional climate model ICON-CLM v2.6.6 to the Earth system model GCOAST-AHOI v2.0 using OASIS3-MCT v4.0
A fully coupled solid-particle microphysics scheme for stratospheric aerosol injections within the aerosol–chemistry–climate model SOCOL-AERv2
An improved representation of aerosol in the ECMWF IFS-COMPO 49R1 through the integration of EQSAM4Climv12 – a first attempt at simulating aerosol acidity
At-scale Model Output Statistics in mountain environments (AtsMOS v1.0)
Impact of ocean vertical-mixing parameterization on Arctic sea ice and upper-ocean properties using the NEMO-SI3 model
Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2.1
A new lightning scheme in the Canadian Atmospheric Model (CanAM5.1): implementation, evaluation, and projections of lightning and fire in future climates
Methane dynamics in the Baltic Sea: investigating concentration, flux, and isotopic composition patterns using the coupled physical–biogeochemical model BALTSEM-CH4 v1.0
ICON ComIn – The ICON Community Interface (ComIn version 0.1.0, with ICON version 2024.01-01)
Split-explicit external mode solver in the finite volume sea ice–ocean model FESOM2
Applying double cropping and interactive irrigation in the North China Plain using WRF4.5
The sea ice component of GC5: coupling SI3 to HadGEM3 using conductive fluxes
CICE on a C-grid: new momentum, stress, and transport schemes for CICEv6.5
HyPhAICC v1.0: a hybrid physics–AI approach for probability fields advection shown through an application to cloud cover nowcasting
CICERO Simple Climate Model (CICERO-SCM v1.1.1) – an improved simple climate model with a parameter calibration tool
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model
This article is included in the Encyclopedia of Geosciences
A 3D-Var assimilation scheme for vertical velocity with CMA-MESO v5.0
Updating the radiation infrastructure in MESSy (based on MESSy version 2.55)
An urban module coupled with the Variable Infiltration Capacity model to improve hydrothermal simulations in urban systems
Bayesian hierarchical model for bias-correcting climate models
Evaluation of the coupling of EMACv2.55 to the land surface and vegetation model JSBACHv4
Reduced floating-point precision in regional climate simulations: an ensemble-based statistical verification
TorchClim v1.0: a deep-learning plugin for climate model physics
The very-high resolution configuration of the EC-Earth global model for HighResMIP
ZEMBA v1.0: An energy and moisture balance climate model to investigate Quaternary climate
Linking global terrestrial and ocean biogeochemistry with process-based, coupled freshwater algae–nutrient–solid dynamics in LM3-FANSY v1.0
Validating a microphysical prognostic stratospheric aerosol implementation in E3SMv2 using observations after the Mount Pinatubo eruption
Implementing detailed nucleation predictions in the Earth system model EC-Earth3.3.4: sulfuric acid–ammonia nucleation
Modeling biochar effects on soil organic carbon on croplands in a microbial decomposition model (MIMICS-BC_v1.0)
Hector V3.2.0: functionality and performance of a reduced-complexity climate model
Evaluation of CMIP6 model simulations of PM2.5 and its components over China
Assessment of a tiling energy budget approach in a land surface model, ORCHIDEE-MICT (r8205)
Virtual Integration of Satellite and In-situ Observation Networks (VISION) v1.0: In-Situ Observations Simulator
Multivariate adjustment of drizzle bias using machine learning in European climate projections
Development and evaluation of the interactive Model for Air Pollution and Land Ecosystems (iMAPLE) version 1.0
Deifilia To, Julian Quinting, Gholam Ali Hoshyaripour, Markus Götz, Achim Streit, and Charlotte Debus
Geosci. Model Dev., 17, 8873–8884, https://doi.org/10.5194/gmd-17-8873-2024, https://doi.org/10.5194/gmd-17-8873-2024, 2024
Short summary
Short summary
Pangu-Weather is a breakthrough machine learning model in medium-range weather forecasting that considers 3D atmospheric information. We show that using a simpler 2D framework improves robustness, speeds up training, and reduces computational needs by 20 %–30 %. We introduce a training procedure that varies the importance of atmospheric variables over time to speed up training convergence. Decreasing computational demand increases the accessibility of training and working with the model.
This article is included in the Encyclopedia of Geosciences
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev., 17, 8751–8771, https://doi.org/10.5194/gmd-17-8751-2024, https://doi.org/10.5194/gmd-17-8751-2024, 2024
Short summary
Short summary
This study provides the first comprehensive assessment of historical fire simulations from 19 Earth system models in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Most models reproduce global totals, spatial patterns, seasonality, and regional historical changes well but fail to simulate the recent decline in global burned area and underestimate the fire response to climate variability. CMIP6 simulations address three critical issues of phase-5 models.
This article is included in the Encyclopedia of Geosciences
Seung H. Baek, Paul A. Ullrich, Bo Dong, and Jiwoo Lee
Geosci. Model Dev., 17, 8665–8681, https://doi.org/10.5194/gmd-17-8665-2024, https://doi.org/10.5194/gmd-17-8665-2024, 2024
Short summary
Short summary
We evaluate downscaled products by examining locally relevant co-variances during precipitation events. Common statistical downscaling techniques preserve expected co-variances during convective precipitation (a stationary phenomenon). However, they dampen future intensification of frontal precipitation (a non-stationary phenomenon) captured in global climate models and dynamical downscaling. Our study quantifies a ramification of the stationarity assumption underlying statistical downscaling.
This article is included in the Encyclopedia of Geosciences
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev., 17, 8593–8611, https://doi.org/10.5194/gmd-17-8593-2024, https://doi.org/10.5194/gmd-17-8593-2024, 2024
Short summary
Short summary
Research software is vital for scientific progress but is often developed by scientists with limited skills, time, and funding, leading to challenges in usability and maintenance. Our study across 10 sectors shows strengths in version control, open-source licensing, and documentation while emphasizing the need for containerization and code quality. We recommend workshops; code quality metrics; funding; and following the findable, accessible, interoperable, and reusable (FAIR) standards.
This article is included in the Encyclopedia of Geosciences
Chris Smith, Donald P. Cummins, Hege-Beate Fredriksen, Zebedee Nicholls, Malte Meinshausen, Myles Allen, Stuart Jenkins, Nicholas Leach, Camilla Mathison, and Antti-Ilari Partanen
Geosci. Model Dev., 17, 8569–8592, https://doi.org/10.5194/gmd-17-8569-2024, https://doi.org/10.5194/gmd-17-8569-2024, 2024
Short summary
Short summary
Climate projections are only useful if the underlying models that produce them are well calibrated and can reproduce observed climate change. We formalise a software package that calibrates the open-source FaIR simple climate model to full-complexity Earth system models. Observations, including historical warming, and assessments of key climate variables such as that of climate sensitivity are used to constrain the model output.
This article is included in the Encyclopedia of Geosciences
Jingwei Xie, Xi Wang, Hailong Liu, Pengfei Lin, Jiangfeng Yu, Zipeng Yu, Junlin Wei, and Xiang Han
Geosci. Model Dev., 17, 8469–8493, https://doi.org/10.5194/gmd-17-8469-2024, https://doi.org/10.5194/gmd-17-8469-2024, 2024
Short summary
Short summary
We propose the concept of mesoscale ocean direct numerical simulation (MODNS), which should resolve the first baroclinic deformation radius and ensure the numerical dissipative effects do not directly contaminate the mesoscale motions. It can be a benchmark for testing mesoscale ocean large eddy simulation (MOLES) methods in ocean models. We build an idealized Southern Ocean model using MITgcm to generate a type of MODNS. We also illustrate the diversity of multiscale eddy interactions.
This article is included in the Encyclopedia of Geosciences
Emily Black, John Ellis, and Ross I. Maidment
Geosci. Model Dev., 17, 8353–8372, https://doi.org/10.5194/gmd-17-8353-2024, https://doi.org/10.5194/gmd-17-8353-2024, 2024
Short summary
Short summary
We present General TAMSAT-ALERT, a computationally lightweight and versatile tool for generating ensemble forecasts from time series data. General TAMSAT-ALERT is capable of combining multiple streams of monitoring and meteorological forecasting data into probabilistic hazard assessments. In this way, it complements existing systems and enhances their utility for actionable hazard assessment.
This article is included in the Encyclopedia of Geosciences
Sarah Schöngart, Lukas Gudmundsson, Mathias Hauser, Peter Pfleiderer, Quentin Lejeune, Shruti Nath, Sonia Isabelle Seneviratne, and Carl-Friedrich Schleussner
Geosci. Model Dev., 17, 8283–8320, https://doi.org/10.5194/gmd-17-8283-2024, https://doi.org/10.5194/gmd-17-8283-2024, 2024
Short summary
Short summary
Precipitation and temperature are two of the most impact-relevant climatic variables. Yet, projecting future precipitation and temperature data under different emission scenarios relies on complex models that are computationally expensive. In this study, we propose a method that allows us to generate monthly means of local precipitation and temperature at low computational costs. Our modelling framework is particularly useful for all downstream applications of climate model data.
This article is included in the Encyclopedia of Geosciences
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
This article is included in the Encyclopedia of Geosciences
Peter Berg, Thomas Bosshard, Denica Bozhinova, Lars Bärring, Joakim Löw, Carolina Nilsson, Gustav Strandberg, Johan Södling, Johan Thuresson, Renate Wilcke, and Wei Yang
Geosci. Model Dev., 17, 8173–8179, https://doi.org/10.5194/gmd-17-8173-2024, https://doi.org/10.5194/gmd-17-8173-2024, 2024
Short summary
Short summary
When bias adjusting climate model data using quantile mapping, one needs to prescribe what to do at the tails of the distribution, where a larger data range is likely encountered outside of the calibration period. The end result is highly dependent on the method used. We show that, to avoid discontinuities in the time series, one needs to exclude data in the calibration range to also activate the extrapolation functionality in that time period.
This article is included in the Encyclopedia of Geosciences
Philip J. Rasch, Haruki Hirasawa, Mingxuan Wu, Sarah J. Doherty, Robert Wood, Hailong Wang, Andy Jones, James Haywood, and Hansi Singh
Geosci. Model Dev., 17, 7963–7994, https://doi.org/10.5194/gmd-17-7963-2024, https://doi.org/10.5194/gmd-17-7963-2024, 2024
Short summary
Short summary
We introduce a protocol to compare computer climate simulations to better understand a proposed strategy intended to counter warming and climate impacts from greenhouse gas increases. This slightly changes clouds in six ocean regions to reflect more sunlight and cool the Earth. Example changes in clouds and climate are shown for three climate models. Cloud changes differ between the models, but precipitation and surface temperature changes are similar when their cooling effects are made similar.
This article is included in the Encyclopedia of Geosciences
Trude Eidhammer, Andrew Gettelman, Katherine Thayer-Calder, Duncan Watson-Parris, Gregory Elsaesser, Hugh Morrison, Marcus van Lier-Walqui, Ci Song, and Daniel McCoy
Geosci. Model Dev., 17, 7835–7853, https://doi.org/10.5194/gmd-17-7835-2024, https://doi.org/10.5194/gmd-17-7835-2024, 2024
Short summary
Short summary
We describe a dataset where 45 parameters related to cloud processes in the Community Earth System Model version 2 (CESM2) Community Atmosphere Model version 6 (CAM6) are perturbed. Three sets of perturbed parameter ensembles (263 members) were created: current climate, preindustrial aerosol loading and future climate with sea surface temperature increased by 4 K.
This article is included in the Encyclopedia of Geosciences
Ha Thi Minh Ho-Hagemann, Vera Maurer, Stefan Poll, and Irina Fast
Geosci. Model Dev., 17, 7815–7834, https://doi.org/10.5194/gmd-17-7815-2024, https://doi.org/10.5194/gmd-17-7815-2024, 2024
Short summary
Short summary
The regional Earth system model GCOAST-AHOI v2.0 that includes the regional climate model ICON-CLM coupled to the ocean model NEMO and the hydrological discharge model HD via the OASIS3-MCT coupler can be a useful tool for conducting long-term regional climate simulations over the EURO-CORDEX domain. The new OASIS3-MCT coupling interface implemented in ICON-CLM makes it more flexible for coupling to an external ocean model and an external hydrological discharge model.
This article is included in the Encyclopedia of Geosciences
Sandro Vattioni, Rahel Weber, Aryeh Feinberg, Andrea Stenke, John A. Dykema, Beiping Luo, Georgios A. Kelesidis, Christian A. Bruun, Timofei Sukhodolov, Frank N. Keutsch, Thomas Peter, and Gabriel Chiodo
Geosci. Model Dev., 17, 7767–7793, https://doi.org/10.5194/gmd-17-7767-2024, https://doi.org/10.5194/gmd-17-7767-2024, 2024
Short summary
Short summary
We quantified impacts and efficiency of stratospheric solar climate intervention via solid particle injection. Microphysical interactions of solid particles with the sulfur cycle were interactively coupled to the heterogeneous chemistry scheme and the radiative transfer code of an aerosol–chemistry–climate model. Compared to injection of SO2 we only find a stronger cooling efficiency for solid particles when normalizing to the aerosol load but not when normalizing to the injection rate.
This article is included in the Encyclopedia of Geosciences
Samuel Rémy, Swen Metzger, Vincent Huijnen, Jason E. Williams, and Johannes Flemming
Geosci. Model Dev., 17, 7539–7567, https://doi.org/10.5194/gmd-17-7539-2024, https://doi.org/10.5194/gmd-17-7539-2024, 2024
Short summary
Short summary
In this paper we describe the development of the future operational cycle 49R1 of the IFS-COMPO system, used for operational forecasts of atmospheric composition in the CAMS project, and focus on the implementation of the thermodynamical model EQSAM4Clim version 12. The implementation of EQSAM4Clim significantly improves the simulated secondary inorganic aerosol surface concentration. The new aerosol and precipitation acidity diagnostics showed good agreement against observational datasets.
This article is included in the Encyclopedia of Geosciences
Maximillian Van Wyk de Vries, Tom Matthews, L. Baker Perry, Nirakar Thapa, and Rob Wilby
Geosci. Model Dev., 17, 7629–7643, https://doi.org/10.5194/gmd-17-7629-2024, https://doi.org/10.5194/gmd-17-7629-2024, 2024
Short summary
Short summary
This paper introduces the AtsMOS workflow, a new tool for improving weather forecasts in mountainous areas. By combining advanced statistical techniques with local weather data, AtsMOS can provide more accurate predictions of weather conditions. Using data from Mount Everest as an example, AtsMOS has shown promise in better forecasting hazardous weather conditions, making it a valuable tool for communities in mountainous regions and beyond.
This article is included in the Encyclopedia of Geosciences
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev., 17, 7445–7466, https://doi.org/10.5194/gmd-17-7445-2024, https://doi.org/10.5194/gmd-17-7445-2024, 2024
Short summary
Short summary
We study the parameters of the turbulent-kinetic-energy mixed-layer-penetration scheme in the NEMO model with regard to sea-ice-covered regions of the Arctic Ocean. This evaluation reveals the impact of these parameters on mixed-layer depth, sea surface temperature and salinity, and ocean stratification. Our findings demonstrate significant impacts on sea ice thickness and sea ice concentration, emphasizing the need for accurately representing ocean mixing to understand Arctic climate dynamics.
This article is included in the Encyclopedia of Geosciences
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024, https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
Short summary
In this study, we improved a climate model by adding the representation of water use sectors such as domestic, industry, and agriculture. This new feature helps us understand how water is used and supplied in various areas. We tested our model from 1971 to 2010 and found that it accurately identifies areas with water scarcity. By modelling the competition between sectors when water availability is limited, the model helps estimate the intensity and extent of individual sectors' water shortages.
This article is included in the Encyclopedia of Geosciences
Cynthia Whaley, Montana Etten-Bohm, Courtney Schumacher, Ayodeji Akingunola, Vivek Arora, Jason Cole, Michael Lazare, David Plummer, Knut von Salzen, and Barbara Winter
Geosci. Model Dev., 17, 7141–7155, https://doi.org/10.5194/gmd-17-7141-2024, https://doi.org/10.5194/gmd-17-7141-2024, 2024
Short summary
Short summary
This paper describes how lightning was added as a process in the Canadian Earth System Model in order to interactively respond to climate changes. As lightning is an important cause of global wildfires, this new model development allows for more realistic projections of how wildfires may change in the future, responding to a changing climate.
This article is included in the Encyclopedia of Geosciences
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024, https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
Short summary
Methane (CH4) cycling in the Baltic Proper is studied through model simulations, enabling a first estimate of key CH4 fluxes. A preliminary budget identifies benthic CH4 release as the dominant source and two main sinks: CH4 oxidation in the water (92 % of sinks) and outgassing to the atmosphere (8 % of sinks). This study addresses CH4 emissions from coastal seas and is a first step toward understanding the relative importance of open-water outgassing compared with local coastal hotspots.
This article is included in the Encyclopedia of Geosciences
Kerstin Hartung, Bastian Kern, Nils-Arne Dreier, Jörn Geisbüsch, Mahnoosh Haghighatnasab, Patrick Jöckel, Astrid Kerkweg, Wilton Jaciel Loch, Florian Prill, and Daniel Rieger
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-135, https://doi.org/10.5194/gmd-2024-135, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
The Icosahedral Nonhydrostatic (ICON) Model Community Interface (ComIn) library supports connecting third-party modules to the ICON model. Third-party modules can range from simple diagnostic Python scripts to full chemistry models. ComIn offers a low barrier for code extensions to ICON, provides multi-language support (Fortran, C/C++ and Python) and reduces the migration effort in response to new ICON releases. This paper presents the ComIn design principles and a range of use cases.
This article is included in the Encyclopedia of Geosciences
Tridib Banerjee, Patrick Scholz, Sergey Danilov, Knut Klingbeil, and Dmitry Sidorenko
Geosci. Model Dev., 17, 7051–7065, https://doi.org/10.5194/gmd-17-7051-2024, https://doi.org/10.5194/gmd-17-7051-2024, 2024
Short summary
Short summary
In this paper we propose a new alternative to one of the functionalities of the sea ice model FESOM2. The alternative we propose allows the model to capture and simulate fast changes in quantities like sea surface elevation more accurately. We also demonstrate that the new alternative is faster and more adept at taking advantages of highly parallelized computing infrastructure. We therefore show that this new alternative is a great addition to the sea ice model FESOM2.
This article is included in the Encyclopedia of Geosciences
Yuwen Fan, Zhao Yang, Min-Hui Lo, Jina Hur, and Eun-Soon Im
Geosci. Model Dev., 17, 6929–6947, https://doi.org/10.5194/gmd-17-6929-2024, https://doi.org/10.5194/gmd-17-6929-2024, 2024
Short summary
Short summary
Irrigated agriculture in the North China Plain (NCP) has a significant impact on the local climate. To better understand this impact, we developed a specialized model specifically for the NCP region. This model allows us to simulate the double-cropping vegetation and the dynamic irrigation practices that are commonly employed in the NCP. This model shows improved performance in capturing the general crop growth, such as crop stages, biomass, crop yield, and vegetation greenness.
This article is included in the Encyclopedia of Geosciences
Ed Blockley, Emma Fiedler, Jeff Ridley, Luke Roberts, Alex West, Dan Copsey, Daniel Feltham, Tim Graham, David Livings, Clement Rousset, David Schroeder, and Martin Vancoppenolle
Geosci. Model Dev., 17, 6799–6817, https://doi.org/10.5194/gmd-17-6799-2024, https://doi.org/10.5194/gmd-17-6799-2024, 2024
Short summary
Short summary
This paper documents the sea ice model component of the latest Met Office coupled model configuration, which will be used as the physical basis for UK contributions to CMIP7. Documentation of science options used in the configuration are given along with a brief model evaluation. This is the first UK configuration to use NEMO’s new SI3 sea ice model. We provide details on how SI3 was adapted to work with Met Office coupling methodology and documentation of coupling processes in the model.
This article is included in the Encyclopedia of Geosciences
Jean-François Lemieux, William H. Lipscomb, Anthony Craig, David A. Bailey, Elizabeth C. Hunke, Philippe Blain, Till A. S. Rasmussen, Mats Bentsen, Frédéric Dupont, David Hebert, and Richard Allard
Geosci. Model Dev., 17, 6703–6724, https://doi.org/10.5194/gmd-17-6703-2024, https://doi.org/10.5194/gmd-17-6703-2024, 2024
Short summary
Short summary
We present the latest version of the CICE model. It solves equations that describe the dynamics and the growth and melt of sea ice. To do so, the domain is divided into grid cells and variables are positioned at specific locations in the cells. A new implementation (C-grid) is presented, with the velocity located on cell edges. Compared to the previous B-grid, the C-grid allows for a natural coupling with some oceanic and atmospheric models. It also allows for ice transport in narrow channels.
This article is included in the Encyclopedia of Geosciences
Rachid El Montassir, Olivier Pannekoucke, and Corentin Lapeyre
Geosci. Model Dev., 17, 6657–6681, https://doi.org/10.5194/gmd-17-6657-2024, https://doi.org/10.5194/gmd-17-6657-2024, 2024
Short summary
Short summary
This study introduces a novel approach that combines physics and artificial intelligence (AI) for improved cloud cover forecasting. This approach outperforms traditional deep learning (DL) methods in producing realistic and physically consistent results while requiring less training data. This architecture provides a promising solution to overcome the limitations of classical AI methods and contributes to open up new possibilities for combining physical knowledge with deep learning models.
This article is included in the Encyclopedia of Geosciences
Marit Sandstad, Borgar Aamaas, Ane Nordlie Johansen, Marianne Tronstad Lund, Glen Philip Peters, Bjørn Hallvard Samset, Benjamin Mark Sanderson, and Ragnhild Bieltvedt Skeie
Geosci. Model Dev., 17, 6589–6625, https://doi.org/10.5194/gmd-17-6589-2024, https://doi.org/10.5194/gmd-17-6589-2024, 2024
Short summary
Short summary
The CICERO-SCM has existed as a Fortran model since 1999 that calculates the radiative forcing and concentrations from emissions and is an upwelling diffusion energy balance model of the ocean that calculates temperature change. In this paper, we describe an updated version ported to Python and publicly available at https://github.com/ciceroOslo/ciceroscm (https://doi.org/10.5281/zenodo.10548720). This version contains functionality for parallel runs and automatic calibration.
This article is included in the Encyclopedia of Geosciences
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024, https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Short summary
A process-based plant carbon (C)–nitrogen (N) interface coupling framework has been developed which mainly focuses on plant resistance and N-limitation effects on photosynthesis, plant respiration, and plant phenology. A dynamic C / N ratio is introduced to represent plant resistance and self-adjustment. The framework has been implemented in a coupled biophysical-ecosystem–biogeochemical model, and testing results show a general improvement in simulating plant properties with this framework.
This article is included in the Encyclopedia of Geosciences
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024, https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Short summary
We give an overview of the Institute of Atmospheric Physics–Chinese Academy of Sciences subseasonal-to-seasonal ensemble forecasting system and Madden–Julian Oscillation forecast evaluation of the system. Compared to other S2S models, the IAP-CAS model has its benefits but also biases, i.e., underdispersive ensemble, overestimated amplitude, and faster propagation speed when forecasting MJO. We provide a reason for these biases and prospects for further improvement of this system in the future.
This article is included in the Encyclopedia of Geosciences
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024, https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary
Short summary
A new brittle sea ice rheology, BBM, has been implemented into the sea ice component of NEMO. We describe how a new spatial discretization framework was introduced to achieve this. A set of idealized and realistic ocean and sea ice simulations of the Arctic have been performed using BBM and the standard viscous–plastic rheology of NEMO. When compared to satellite data, our simulations show that our implementation of BBM leads to a fairly good representation of sea ice deformations.
This article is included in the Encyclopedia of Geosciences
Joseph P. Hollowed, Christiane Jablonowski, Hunter Y. Brown, Benjamin R. Hillman, Diana L. Bull, and Joseph L. Hart
Geosci. Model Dev., 17, 5913–5938, https://doi.org/10.5194/gmd-17-5913-2024, https://doi.org/10.5194/gmd-17-5913-2024, 2024
Short summary
Short summary
Large volcanic eruptions deposit material in the upper atmosphere, which is capable of altering temperature and wind patterns of Earth's atmosphere for subsequent years. This research describes a new method of simulating these effects in an idealized, efficient atmospheric model. A volcanic eruption of sulfur dioxide is described with a simplified set of physical rules, which eventually cools the planetary surface. This model has been designed as a test bed for climate attribution studies.
Hong Li, Yi Yang, Jian Sun, Yuan Jiang, Ruhui Gan, and Qian Xie
Geosci. Model Dev., 17, 5883–5896, https://doi.org/10.5194/gmd-17-5883-2024, https://doi.org/10.5194/gmd-17-5883-2024, 2024
Short summary
Short summary
Vertical atmospheric motions play a vital role in convective-scale precipitation forecasts by connecting atmospheric dynamics with cloud development. A three-dimensional variational vertical velocity assimilation scheme is developed within the high-resolution CMA-MESO model, utilizing the adiabatic Richardson equation as the observation operator. A 10 d continuous run and an individual case study demonstrate improved forecasts, confirming the scheme's effectiveness.
This article is included in the Encyclopedia of Geosciences
Matthias Nützel, Laura Stecher, Patrick Jöckel, Franziska Winterstein, Martin Dameris, Michael Ponater, Phoebe Graf, and Markus Kunze
Geosci. Model Dev., 17, 5821–5849, https://doi.org/10.5194/gmd-17-5821-2024, https://doi.org/10.5194/gmd-17-5821-2024, 2024
Short summary
Short summary
We extended the infrastructure of our modelling system to enable the use of an additional radiation scheme. After calibrating the model setups to the old and the new radiation scheme, we find that the simulation with the new scheme shows considerable improvements, e.g. concerning the cold-point temperature and stratospheric water vapour. Furthermore, perturbations of radiative fluxes associated with greenhouse gas changes, e.g. of methane, tend to be improved when the new scheme is employed.
This article is included in the Encyclopedia of Geosciences
Yibing Wang, Xianhong Xie, Bowen Zhu, Arken Tursun, Fuxiao Jiang, Yao Liu, Dawei Peng, and Buyun Zheng
Geosci. Model Dev., 17, 5803–5819, https://doi.org/10.5194/gmd-17-5803-2024, https://doi.org/10.5194/gmd-17-5803-2024, 2024
Short summary
Short summary
Urban expansion intensifies challenges like urban heat and urban dry islands. To address this, we developed an urban module, VIC-urban, in the Variable Infiltration Capacity (VIC) model. Tested in Beijing, VIC-urban accurately simulated turbulent heat fluxes, runoff, and land surface temperature. We provide a reliable tool for large-scale simulations considering urban environment and a systematic urban modelling framework within VIC, offering crucial insights for urban planners and designers.
This article is included in the Encyclopedia of Geosciences
Jeremy Carter, Erick A. Chacón-Montalván, and Amber Leeson
Geosci. Model Dev., 17, 5733–5757, https://doi.org/10.5194/gmd-17-5733-2024, https://doi.org/10.5194/gmd-17-5733-2024, 2024
Short summary
Short summary
Climate models are essential tools in the study of climate change and its wide-ranging impacts on life on Earth. However, the output is often afflicted with some bias. In this paper, a novel model is developed to predict and correct bias in the output of climate models. The model captures uncertainty in the correction and explicitly models underlying spatial correlation between points. These features are of key importance for climate change impact assessments and resulting decision-making.
This article is included in the Encyclopedia of Geosciences
Anna Martin, Veronika Gayler, Benedikt Steil, Klaus Klingmüller, Patrick Jöckel, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 17, 5705–5732, https://doi.org/10.5194/gmd-17-5705-2024, https://doi.org/10.5194/gmd-17-5705-2024, 2024
Short summary
Short summary
The study evaluates the land surface and vegetation model JSBACHv4 as a replacement for the simplified submodel SURFACE in EMAC. JSBACH mitigates earlier problems of soil dryness, which are critical for vegetation modelling. When analysed using different datasets, the coupled model shows strong correlations of key variables, such as land surface temperature, surface albedo and radiation flux. The versatility of the model increases significantly, while the overall performance does not degrade.
This article is included in the Encyclopedia of Geosciences
Hugo Banderier, Christian Zeman, David Leutwyler, Stefan Rüdisühli, and Christoph Schär
Geosci. Model Dev., 17, 5573–5586, https://doi.org/10.5194/gmd-17-5573-2024, https://doi.org/10.5194/gmd-17-5573-2024, 2024
Short summary
Short summary
We investigate the effects of reduced-precision arithmetic in a state-of-the-art regional climate model by studying the results of 10-year-long simulations. After this time, the results of the reduced precision and the standard implementation are hardly different. This should encourage the use of reduced precision in climate models to exploit the speedup and memory savings it brings. The methodology used in this work can help researchers verify reduced-precision implementations of their model.
This article is included in the Encyclopedia of Geosciences
David Fuchs, Steven C. Sherwood, Abhnil Prasad, Kirill Trapeznikov, and Jim Gimlett
Geosci. Model Dev., 17, 5459–5475, https://doi.org/10.5194/gmd-17-5459-2024, https://doi.org/10.5194/gmd-17-5459-2024, 2024
Short summary
Short summary
Machine learning (ML) of unresolved processes offers many new possibilities for improving weather and climate models, but integrating ML into the models has been an engineering challenge, and there are performance issues. We present a new software plugin for this integration, TorchClim, that is scalable and flexible and thereby allows a new level of experimentation with the ML approach. We also provide guidance on ML training and demonstrate a skillful hybrid ML atmosphere model.
This article is included in the Encyclopedia of Geosciences
Eduardo Moreno-Chamarro, Thomas Arsouze, Mario Acosta, Pierre-Antoine Bretonnière, Miguel Castrillo, Eric Ferrer, Amanda Frigola, Daria Kuznetsova, Eneko Martin-Martinez, Pablo Ortega, and Sergi Palomas
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-119, https://doi.org/10.5194/gmd-2024-119, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We present the high-resolution model version of the EC-Earth global climate model to contribute to HighResMIP. The combined model resolution is about 10-15 km in both the ocean and atmosphere, which makes it one of the finest ever used to complete historical and scenario simulations. This model is compared with two lower-resolution versions, with a 100-km and a 25-km grid. The three models are compared with observations to study the improvements thanks to the increased in the resolution.
This article is included in the Encyclopedia of Geosciences
Daniel Francis James Gunning, Kerim Hestnes Nisancioglu, Emilie Capron, and Roderik van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2024-1384, https://doi.org/10.5194/egusphere-2024-1384, 2024
Short summary
Short summary
This work documents the first results from ZEMBA: an energy balance model of the climate system. The model is a computationally efficient tool designed to study the response of climate to changes in the Earth’s orbit. We demonstrate ZEMBA reproduces many features of the Earth’s climate for both the pre-industrial period and the Earth’s most recent cold extreme- the Last Glacial Maximum. We intend to develop ZEMBA further and investigate the glacial cycles of the last 2.5 million years.
This article is included in the Encyclopedia of Geosciences
Minjin Lee, Charles A. Stock, John P. Dunne, and Elena Shevliakova
Geosci. Model Dev., 17, 5191–5224, https://doi.org/10.5194/gmd-17-5191-2024, https://doi.org/10.5194/gmd-17-5191-2024, 2024
Short summary
Short summary
Modeling global freshwater solid and nutrient loads, in both magnitude and form, is imperative for understanding emerging eutrophication problems. Such efforts, however, have been challenged by the difficulty of balancing details of freshwater biogeochemical processes with limited knowledge, input, and validation datasets. Here we develop a global freshwater model that resolves intertwined algae, solid, and nutrient dynamics and provide performance assessment against measurement-based estimates.
This article is included in the Encyclopedia of Geosciences
Hunter York Brown, Benjamin Wagman, Diana Bull, Kara Peterson, Benjamin Hillman, Xiaohong Liu, Ziming Ke, and Lin Lin
Geosci. Model Dev., 17, 5087–5121, https://doi.org/10.5194/gmd-17-5087-2024, https://doi.org/10.5194/gmd-17-5087-2024, 2024
Short summary
Short summary
Explosive volcanic eruptions lead to long-lived, microscopic particles in the upper atmosphere which act to cool the Earth's surface by reflecting the Sun's light back to space. We include and test this process in a global climate model, E3SM. E3SM is tested against satellite and balloon observations of the 1991 eruption of Mt. Pinatubo, showing that with these particles in the model we reasonably recreate Pinatubo and its global effects. We also explore how particle size leads to these effects.
This article is included in the Encyclopedia of Geosciences
Carl Svenhag, Moa K. Sporre, Tinja Olenius, Daniel Yazgi, Sara M. Blichner, Lars P. Nieradzik, and Pontus Roldin
Geosci. Model Dev., 17, 4923–4942, https://doi.org/10.5194/gmd-17-4923-2024, https://doi.org/10.5194/gmd-17-4923-2024, 2024
Short summary
Short summary
Our research shows the importance of modeling new particle formation (NPF) and growth of particles in the atmosphere on a global scale, as they influence the outcomes of clouds and our climate. With the global model EC-Earth3 we show that using a new method for NPF modeling, which includes new detailed processes with NH3 and H2SO4, significantly impacts the number of particles in the air and clouds and changes the radiation balance of the same magnitude as anthropogenic greenhouse emissions.
This article is included in the Encyclopedia of Geosciences
Mengjie Han, Qing Zhao, Xili Wang, Ying-Ping Wang, Philippe Ciais, Haicheng Zhang, Daniel S. Goll, Lei Zhu, Zhe Zhao, Zhixuan Guo, Chen Wang, Wei Zhuang, Fengchang Wu, and Wei Li
Geosci. Model Dev., 17, 4871–4890, https://doi.org/10.5194/gmd-17-4871-2024, https://doi.org/10.5194/gmd-17-4871-2024, 2024
Short summary
Short summary
The impact of biochar (BC) on soil organic carbon (SOC) dynamics is not represented in most land carbon models used for assessing land-based climate change mitigation. Our study develops a BC model that incorporates our current understanding of BC effects on SOC based on a soil carbon model (MIMICS). The BC model can reproduce the SOC changes after adding BC, providing a useful tool to couple dynamic land models to evaluate the effectiveness of BC application for CO2 removal from the atmosphere.
This article is included in the Encyclopedia of Geosciences
Kalyn Dorheim, Skylar Gering, Robert Gieseke, Corinne Hartin, Leeya Pressburger, Alexey N. Shiklomanov, Steven J. Smith, Claudia Tebaldi, Dawn L. Woodard, and Ben Bond-Lamberty
Geosci. Model Dev., 17, 4855–4869, https://doi.org/10.5194/gmd-17-4855-2024, https://doi.org/10.5194/gmd-17-4855-2024, 2024
Short summary
Short summary
Hector is an easy-to-use, global climate–carbon cycle model. With its quick run time, Hector can provide climate information from a run in a fraction of a second. Hector models on a global and annual basis. Here, we present an updated version of the model, Hector V3. In this paper, we document Hector’s new features. Hector V3 is capable of reproducing historical observations, and its future temperature projections are consistent with those of more complex models.
This article is included in the Encyclopedia of Geosciences
Fangxuan Ren, Jintai Lin, Chenghao Xu, Jamiu A. Adeniran, Jingxu Wang, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Larry W. Horowitz, Steven T. Turnock, Naga Oshima, Jie Zhang, Susanne Bauer, Kostas Tsigaridis, Øyvind Seland, Pierre Nabat, David Neubauer, Gary Strand, Twan van Noije, Philippe Le Sager, and Toshihiko Takemura
Geosci. Model Dev., 17, 4821–4836, https://doi.org/10.5194/gmd-17-4821-2024, https://doi.org/10.5194/gmd-17-4821-2024, 2024
Short summary
Short summary
We evaluate the performance of 14 CMIP6 ESMs in simulating total PM2.5 and its 5 components over China during 2000–2014. PM2.5 and its components are underestimated in almost all models, except that black carbon (BC) and sulfate are overestimated in two models, respectively. The underestimation is the largest for organic carbon (OC) and the smallest for BC. Models reproduce the observed spatial pattern for OC, sulfate, nitrate and ammonium well, yet the agreement is poorer for BC.
This article is included in the Encyclopedia of Geosciences
Yi Xi, Chunjing Qiu, Yuan Zhang, Dan Zhu, Shushi Peng, Gustaf Hugelius, Jinfeng Chang, Elodie Salmon, and Philippe Ciais
Geosci. Model Dev., 17, 4727–4754, https://doi.org/10.5194/gmd-17-4727-2024, https://doi.org/10.5194/gmd-17-4727-2024, 2024
Short summary
Short summary
The ORCHIDEE-MICT model can simulate the carbon cycle and hydrology at a sub-grid scale but energy budgets only at a grid scale. This paper assessed the implementation of a multi-tiling energy budget approach in ORCHIDEE-MICT and found warmer surface and soil temperatures, higher soil moisture, and more soil organic carbon across the Northern Hemisphere compared with the original version.
This article is included in the Encyclopedia of Geosciences
Maria Rosa Russo, Sadie L. Bartholomew, David Hassell, Alex M. Mason, Erica Neininger, A. James Perman, David A. J. Sproson, Duncan Watson-Parris, and Nathan Luke Abraham
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-73, https://doi.org/10.5194/gmd-2024-73, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Observational data and modelling capabilities are expanding in recent years, but there are still barriers preventing these two data sources to be used in synergy. Proper comparison requires generating, storing and handling a large amount of data. This manuscript describes the first step in the development of a new set of software tools, the ‘VISION toolkit’, which can enable the easy and efficient integration of observational and model data required for model evaluation.
This article is included in the Encyclopedia of Geosciences
Georgia Lazoglou, Theo Economou, Christina Anagnostopoulou, George Zittis, Anna Tzyrkalli, Pantelis Georgiades, and Jos Lelieveld
Geosci. Model Dev., 17, 4689–4703, https://doi.org/10.5194/gmd-17-4689-2024, https://doi.org/10.5194/gmd-17-4689-2024, 2024
Short summary
Short summary
This study focuses on the important issue of the drizzle bias effect in regional climate models, described by an over-prediction of the number of rainy days while underestimating associated precipitation amounts. For this purpose, two distinct methodologies are applied and rigorously evaluated. These results are encouraging for using the multivariate machine learning method random forest to increase the accuracy of climate models concerning the projection of the number of wet days.
This article is included in the Encyclopedia of Geosciences
Xu Yue, Hao Zhou, Chenguang Tian, Yimian Ma, Yihan Hu, Cheng Gong, Hui Zheng, and Hong Liao
Geosci. Model Dev., 17, 4621–4642, https://doi.org/10.5194/gmd-17-4621-2024, https://doi.org/10.5194/gmd-17-4621-2024, 2024
Short summary
Short summary
We develop the interactive Model for Air Pollution and Land Ecosystems (iMAPLE). The model considers the full coupling between carbon and water cycles, dynamic fire emissions, wetland methane emissions, biogenic volatile organic compound emissions, and trait-based ozone vegetation damage. Evaluations show that iMAPLE is a useful tool for the study of the interactions among climate, chemistry, and ecosystems.
This article is included in the Encyclopedia of Geosciences
Cited articles
Alexander, K. and Easterbrook, S. M.:
The software architecture of climate models: a graphical comparison of CMIP5 and EMICAR5 configurations, Geosci. Model Dev., 8, 1221–1232, https://doi.org/10.5194/gmd-8-1221-2015, 2015. a, b
Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P.,
Keutzer, K., Patterson, D. A., Plishker, W. L., Shalf, J., Williams, S. W.,
and Yelick, K.: The Landscape of Parallel Computing Research: A View from
Berkeley, Tech. Rep. UCB/EECS-2006-183, University of California, Berkely,
USA, 2006. a
Baker, A. H., Hammerling, D. M., Levy, M. N., Xu, H., Dennis, J. M., Eaton, B. E., Edwards, J., Hannay, C., Mickelson, S. A., Neale, R. B., Nychka, D., Shollenberger, J., Tribbia, J., Vertenstein, M., and Williamson, D.:
A new ensemble-based consistency test for the Community Earth System Model (pyCECT v1.0),
Geosci. Model Dev.,
8, 2829–2840, https://doi.org/10.5194/gmd-8-2829-2015, 2015. a
Balaji, V., Benson, R., Wyman, B., and Held, I.:
Coarse-grained component concurrency in Earth system modeling: parallelizing atmospheric radiative transfer in the GFDL AM3 model using the Flexible Modeling System coupling framework,
Geosci. Model Dev.,
9, 3605–3616, https://doi.org/10.5194/gmd-9-3605-2016, 2016. a, b, c
Balaji, V., Maisonnave, E., Zadeh, N., Lawrence, B. N., Biercamp, J., Fladrich, U., Aloisio, G., Benson, R., Caubel, A., Durachta, J., Foujols, M.-A., Lister, G., Mocavero, S., Underwood, S., and Wright, G.:
CPMIP: measurements of real computational performance of Earth system models in CMIP6,
Geosci. Model Dev.,
10, 19–34, https://doi.org/10.5194/gmd-10-19-2017, 2017. a
Bessières, L., Leroux, S., Brankart, J.-M., Molines, J.-M., Moine, M.-P., Bouttier, P.-A., Penduff, T., Terray, L., Barnier, B., and Sérazin, G.:
Development of a probabilistic ocean modelling system based on NEMO 3.5: application at eddying resolution,
Geosci. Model Dev.,
10, 1091–1106, https://doi.org/10.5194/gmd-10-1091-2017, 2017. a
Craig, A., Valcke, S., and Coquart, L.:
Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0,
Geosci. Model Dev.,
10, 3297–3308, https://doi.org/10.5194/gmd-10-3297-2017, 2017. a
Dagum, L. and Menon, R.:
OpenMP: an industry standard API for shared-memory programming,
IEEE Comput. Sci. Eng.,
5, 46–55, https://doi.org/10.1109/99.660313, 1998. a
Davies, T., Cullen, M. J. P., Malcolm, A. J., Mawson, M. H., Staniforth, A., White, A. A., and Wood, N.:
A new dynamical core for the Met Office's global and regional modelling of the atmosphere,
Q. J. Roy. Meteor. Soc.,
131, 1759–1782, https://doi.org/10.1256/qj.04.101, 2005. a
Deconinck, W., Hamrud, M., Kühnlein, C.,
Mozdzynski, G., K. Smolarkiewicz, P., Szmelter, J., and Wedi, N. P.:
Accelerating extreme-scale numerical weather prediction, in: Parallel
Processing and Applied Mathematics, vol. 9574 of Lecture Notes in Computer
Science, Springer, Cham, 583–593, https://doi.org/10.1007/978-3-319-32152-3_54, 2016. a
Deconinck, W., Bauer, P., Diamantakis, M., Hamrud, M., Kühnlein, C., Maciel, P., Mengaldo, G., Quintino, T., Raoult, B., Smolarkiewicz, P. K., and Wedi, N. P.:
Atlas, a library for numerical weather prediction and climate modelling,
Comput. Phys. Commun.,
220, 188–204, https://doi.org/10.1016/j.cpc.2017.07.006, 2017. a
Dennis, J. M. and Tufo, H. M.:
Scaling climate simulation applications on the IBM Blue Gene/L system,
IBM J. Res. Dev.,
52, 117–126, https://doi.org/10.1147/rd.521.0117, 2008. a
Duran, A., Ayguadé, E., Badia, R. M., Labarta, J., Martinell, L., Martorell, X., and Planas, J.:
OmpSs: a proposal for programming heterogeneous multi-core architectures,
Parallel Processing Letters,
21, 173–193, https://doi.org/10.1142/S0129626411000151, 2011. a
Easterbrook, S. M. and Johns, T. C.:
Engineering the software for understanding climate change,
IEEE Comput. Sci. Eng.,
11, 65–74, https://doi.org/10.1109/MCSE.2009.193, 2009. a
Edwards, H. C., Sunderland, D., Porter, V., Amsler, C., and Mish, S.:
Manycore performance-portability: Kokkos Multidimensional Array Library,
Sci. Programming-Neth., 20, 89–114, 2012. a
Ford, R., Glover, M. J., Ham, D. A., Maynard, C. M., Pickles, S. M.,
Riley, G., and Wood, N.: Gung Ho Phase 1: Computational Science
Recommendations, Forecasting Research Technical Report 587, Met Office,
Exeter, UK, 2013. a
Fu, H., Liao, J., Xue, W., Wang, L., Chen, D., Gu, L., Xu, J., Ding, N.,
Wang, X., He, C., Xu, S., Liang, Y., Fang, J., Xu, Y., Zheng, W., Xu, J.,
Zheng, Z., Wei, W., Ji, X., Zhang, H., Chen, B., Li, K., Huang, X., Chen, W.,
and Yang, G.: Refactoring and optimizing the Community Atmosphere Model (CAM)
on the Sunway Taihulight Supercomputer, in: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
SC '16, IEEE Press, Piscataway, NJ, USA, 13–18 November 2016, 83:1–83:12,
2016. a, b
Fuhrer, O., Bianco, M., Bey, I., and Schaer, C.: PASC | Grid Tools,
available at: http://www.pasc-ch.org/projects/2013-2016/grid-tools/
(last access: 20 April 2018), 2014a. a
Fuhrer, O., Osuna, C., Lapillonne, X., Gysi, T., Cumming, B., Bianco, M.,
Arteaga, A., and Schulthess, T. C.: Towards a performance portable,
architecture agnostic implementation strategy for weather and climate models,
Supercomputing Frontiers and Innovations, 1, 45–62,
https://doi.org/10.14529/jsfi140103, 2014b. a, b, c
Geleyn, J.-F., Mašek, J., Brožková, R., Kuma, P., Degrauwe, D., Hello, G., and Pristov, N.:
Single interval longwave radiation scheme based on the net exchanged rate decomposition with bracketing: single interval longwave radiation scheme,
Q. J. Roy. Meteor. Soc.,
143, 1313–1335, https://doi.org/10.1002/qj.3006, 2017. a
Gonzalez, J., Gimenez, J., Casas, M., Moreto, M., Ramirez, A., Labarta, J., and Valero, M.:
Simulating whole supercomputer applications,
IEEE Micro,
31, 32–45, https://doi.org/10.1109/MM.2011.58, 2011. a
Govett, M., Middlecoff, J., and Henderson, T.: Directive-based
parallelization of the NIM Weather Model for GPUs, in: 2014 First Workshop on
Accelerator Programming Using Directives (WACCPD), New Orleans, USA,
17 November 2014, 55–61, https://doi.org/10.1109/WACCPD.2014.9, 2014. a
Govett, M., Rosinski, J., Middlecoff, J., Henderson, T., Lee, J.,
MacDonald, A., Wang, N., Madden, P., Schramm, J., and Duarte, A.:
Parallelization and performance of the NIM Weather Model on CPU, GPU and MIC
processors, B. Am. Meteorol. Soc., 98, 2201–2213,
https://doi.org/10.1175/BAMS-D-15-00278.1, 2017. a
Gropp, W. and Snir, M.:
Programming for exascale computers,
Comput. Sci. Eng.,
15, 27–35, https://doi.org/10.1109/MCSE.2013.96, 2013. a, b
Gropp, W., Lusk, E., Doss, N., and Skjellum, A.:
A high-performance, portable implementation of the MPI message passing interface standard,
Parallel Comput.,
22, 789–828, https://doi.org/10.1016/0167-8191(96)00024-5, 1996. a
Grünewald, D. and Simmendinger, C.: The GASPI API specification and its
implementation GPI 2.0, in: Proceedings of the 7th International Conference
on PGAS Programming Models, edited by: Weiland, M., Jackson, A., and
Johnson, N., University of Edinburgh, Edinburgh, UK, 3 October 2013,
243–248, 2013. a
Günther, F., Mehl, M., Pögl, M., and Zenger, C.:
A cache-aware algorithm for PDEs on hierarchical data structures based on space-filling curves,
SIAM J. Sci. Comput.,
28, 1634–1650, https://doi.org/10.1137/040604078, 2006. a
Hanappe, P., Beurivé, A., Laguzet, F., Steels, L., Bellouin, N., Boucher, O., Yamazaki, Y. H., Aina, T., and Allen, M.:
FAMOUS, faster: using parallel computing techniques to accelerate the FAMOUS/HadCM3 climate model with a focus on the radiative transfer algorithm,
Geosci. Model Dev.,
4, 835–844, https://doi.org/10.5194/gmd-4-835-2011, 2011. a, b
Heroux, M. A., Doerfler, D. W., Crozier, P. S., Willenbring, J. M.,
Edwards, H. C., Williams, A., Rajan, M., Keiter, E. R., Thornquist, H. K.,
and Numrich, R. W.: Improving Performance via Mini-Applications, Tech. Rep.
SAND2009-5574, Sandia National Laboratories, Albuquerque, USA, 2009. a
Hortal, M. and Simmons, A.: Use of reduced Gaussian grids in spectral models,
Mon. Weather Rev., 119, 1057–1074, 1991. a
Jouppi, N. P., Young, C.,
Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia, S.,
Boden, N., Borchers, A., Boyle, R., Cantin, P.-l., Chao, C., Clark, C.,
Coriell, J., Daley, M., Dau, M., Dean, J., Gelb, B., Vazir Ghaemmaghami, T.,
Gottipati, R., Gulland, W., Hagmann, R., Ho, C. R., Hogberg, D., Hu, J.,
Hundt, R., Hurt, D., Ibarz, J., Jaffey, A., Jaworski, A., Kaplan, A.,
Khaitan, H., Koch, A., Kumar, N., Lacy, S., Laudon, J., Law, J., Le, D.,
Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean, G., Maggiore, A.,
Mahony, M., Miller, K., Nagarajan, R., Narayanaswami, R., Ni, R., Nix, K.,
Norrie, T., Omernick, M., Penukonda, N., Phelps, A., Ross, J., Ross, M.,
Salek, A., Samadiani, E., Severn, C., Sizikov, G., Snelham, M., Souter, J.,
Steinberg, D., Swing, A., Tan, M., Thorson, G., Tian, B., Toma, H.,
Tuttle, E., Vasudevan, V., Walter, R., Wang, W., Wilcox, E., and Yoon, D. H.:
In-Datacenter Performance Analysis of a Tensor Processing Unit, in:
Proceedings of the 44th Annual International Symposium on Computer
Architecture, ISCA'17, ACM, Toronto, ON, Canada, 24–28 June 2017, 1–12,
https://doi.org/10.1145/3079856.3080246, 2017. a
Knüpfer, A., Brendel, R., Brunst, H., Mix, H., and Nagel, W. E.:
Introducing the Open Trace Format (OTF),
in:
Computational Science – ICCS 2006,
Springer, Berlin, Heidelberg, https://doi.org/10.1007/11758525_71, 526–533, 2006. a
Kogge, P. M.:
Updating the energy model for future exascale systems,
in:
High Performance Computing, vol. 9137,
edited by:
Kunkel, J. M. and Ludwig, T.,
Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-20119-1_24, 323–339, 2015. a
Kühnlein, C. and Smolarkiewicz, P. K.:
An unstructured-mesh finite-volume MPDATA for compressible atmospheric dynamics,
J. Comput. Phys.,
334, 16–30, https://doi.org/10.1016/j.jcp.2016.12.054, 2017. a
Labarta, J., Giménez, J., Martínez, E., González, P., Servat, H., Llort, G., and Aguilar, X.:
Scalability of tracing and visualization tools,
in:
Parallel Computing: Current & Future Issues of High-End Computing, no. 33 in John von Neumann Institute for Computing Series,
edited by:
Joubert, G. R., Nage, W. E., Peters, F. J., Plata, O. G., Tirado, P., and Zapata, E. L.,
Central Institute for Applied Mathematics, Julich, 869–876, 2005. a
Leutwyler, D., Fuhrer, O., Lapillonne, X., Lüthi, D., and Schär, C.:
Towards European-scale convection-resolving climate simulations with GPUs: a study with COSMO 4.19,
Geosci. Model Dev.,
9, 3393–3412, https://doi.org/10.5194/gmd-9-3393-2016, 2016. a
Li, J., Liao, W.-k., Choudhary, A., Ross, R., Thakur, R., Gropp, W.,
Latham, R., Siegel, A., Gallagher, B., and Zingale, M.: Parallel netCDF:
a high-performance scientific I/O interface, in: Supercomputing, 2003
ACM/IEEE Conference, Phoenix, USA, 15–21 November 2003, 39–39,
https://doi.org/10.1109/SC.2003.10053, 2003. a
Linford, J. C., Michalakes, J., Vachharajani, M., and Sandu, A.: Multi-core
acceleration of chemical kinetics for simulation and prediction, in:
Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis, Portland, USA, 14–20 November 2009, 1–11,
https://doi.org/10.1145/1654059.1654067, 2009. a
Marras, S., Kelly, J., Moragues, M., Müller, A., Kopera, M.,
Vázquez, M., Giraldo, F., Houzeaux, G., and Jorba, O.: A review of
element-based Galerkin methods for numerical weather prediction: finite
elements, spectral elements, and discontinuous Galerkin, Arch. Comput.
Method. E., 23, 673–722, 2016. a
Martineau, M., McIntosh-Smith, S., and Gaudin, W.: Evaluating OpenMP 4.0's
effectiveness as a heterogeneous parallel programming model, in: 2016 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), Chicago, USA, 338–347, 23 May 2016, https://doi.org/10.1109/IPDPSW.2016.70,
2016. a
Memeti, S., Li, L., Pllana, S., Kolodziej, J., and Kessler, C.: Benchmarking
OpenCL, OpenACC, OpenMP, and CUDA: programming productivity, performance, and
energy consumption, arXiv:1704.05316 [cs], available at :
http://arxiv.org/abs/1704.05316 (last access: 4 May 2018), 2017. a
Méndez, M., Tinetti, F. G., and Overbey, J. L.: Climate models:
challenges for Fortran development tools, in: 2014 Second International
Workshop on Software Engineering for High Performance Computing in
Computational Science and Engineering, New Orleans, USA, 21 November 2014,
6–12, https://doi.org/10.1109/SE-HPCCSE.2014.7, 2014. a
Mengaldo, G.: Definition of Several Weather and Climate Dwarfs, Tech. Rep.
ESCAPE WP1/T1.1, ECMWF, Reading, UK, 2014. a
Michalakes, J. and Vachharajani, M.: GPU acceleration of numerical weather
prediction, in: IPDPS 2008, IEEE International Symposium On Parallel and
Distributed Processing, Miami, USA, 14–18 April 2008, 1–7,
https://doi.org/10.1109/IPDPS.2008.4536351, 2008. a
Michalakes, J., Iacono, M. J., and Jessup, E. R.: Optimizing weather model
radiative transfer physics for Intel's Many Integrated Core (MIC)
architecture, Parallel Processing Letters, 26, 1650019,
https://doi.org/10.1142/S0129626416500195, 2016. a
Mittal, S. and Vetter, J. S.:
A survey of CPU-GPU heterogeneous computing techniques,
ACM Comput. Surv.,
47, 69:1–69:35, https://doi.org/10.1145/2788396, 2015. a
Mozdzynski, G., Hamrud, M., Wedi, N., Doleschal, J., and Richardson, H.:
A PGAS implementation by co-design of the ECMWF Integrated Forecasting System
(IFS), in: 2012 SC Companion: High Performance Computing, Networking Storage
and Analysis, Salt Lake City, USA, 652–661,
https://doi.org/10.1109/SC.Companion.2012.90, 2012. a
Mutlu, O.:Main memory scaling: challenges and solution directions, in: More
than Moore Technologies for Next Generation Computer Design, edited by:
Topaloglu, R. O., Springer, New York, https://doi.org/10.1007/978-1-4939-2163-8_6,
127–153, 2015. a
Nieplocha, J., Palmer, B., Tipparaju, V., Krishnan, M., Trease, H., and Apra, E.:
Advances, applications and performance of the global arrays shared memory programming toolkit,
Int. J. High Perform. C.,
20, 203–231, https://doi.org/10.1177/1094342006064503, 2006. a
NVIDIA: NVIDIA's Next Generation CUDA Compute Architecture Kepler GK110,
available at:
http://www.nvidia.co.uk/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
(last access: 4 May 2018), 2012. a
Perez, J. M., Badia, R. M., and Labarta, J.: A dependency-aware task-based
programming environment for multi-core architectures, in: 2008 IEEE
International Conference on Cluster Computing, Tsukuba, Japan, 142–151,
https://doi.org/10.1109/CLUSTR.2008.4663765, 2008. a
Pipitone, J. and Easterbrook, S.:
Assessing climate model software quality: a defect density analysis of three models,
Geosci. Model Dev.,
5, 1009–1022, https://doi.org/10.5194/gmd-5-1009-2012, 2012. a
Rugaber, S., Dunlap, R., Mark, L., and Ansari, S.:
Managing software complexity and variability in coupled climate models,
IEEE Software,
28, 43–48, https://doi.org/10.1109/MS.2011.114, 2011. a
Schulthess, T. C.:
Programming revisited,
Nat. Phys.,
11, 369–373, https://doi.org/10.1038/nphys3294, 2015. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M.,
Wang, W., and Powers, J. G.: A Description of the Advanced Research WRF
Version 2, Tech. rep., NCAR/TN-468+STR, NCAR, Boulder, USA, 2005. a
Smolarkiewicz, P. K., Deconinck, W., Hamrud, M., Kühnlein, C., Mozdzynski, G., Szmelter, J., and Wedi, N. P.:
A finite-volume module for simulating global all-scale atmospheric flows,
J. Comput. Phys.,
314, 287–304, https://doi.org/10.1016/j.jcp.2016.03.015, 2016. a
Stone, A., Dennis, J., and Strout, M.: Establishing a miniapp as
a programmability proxy, in: Proceedings of the 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP '12, ACM, New York,
NY, USA, 25–29 February 2012, 333–334, https://doi.org/10.1145/2145816.2145881, 2012. a
Theurich, G., DeLuca, C., Campbell, T., Liu, F., Saint, K., Vertenstein, M., Chen, J., Oehmke, R., Doyle, J., Whitcomb, T., Wallcraft, A., Iredell, M.,
Black, T., Da Silva, A. M., Clune, T., Ferraro, R., Li, P., Kelley, M., Aleinov, I., Balaji, V., Zadeh, N., Jacob, R., Kirtman, B., Giraldo, F., McCarren, D., Sandgathe, S., Peckham, S., and Dunlap, R.:
The Earth System Prediction Suite: toward a coordinated U. S. modeling capability,
B. Am. Meteorol. Soc.,
97, 1229–1247, https://doi.org/10.1175/BAMS-D-14-00164.1, 2015. a
Valcke, S., Balaji, V., Craig, A., DeLuca, C., Dunlap, R., Ford, R. W., Jacob, R., Larson, J., O'Kuinghttons, R., Riley, G. D., and Vertenstein, M.:
Coupling technologies for Earth System Modelling,
Geosci. Model Dev.,
5, 1589–1596, https://doi.org/10.5194/gmd-5-1589-2012, 2012.
a, b
Valcke, S., Jonville, G., Ford, R., Hobson, M., Porter, A., and Riley, G:
Report on Benchmark Suite for Evaluation of Coupling Strategies, IS-ENES2-Deliverable-10.3 TR-CMGC-17-87,
Cerfacs, Toulouse, 2017. a
Valiev, M., Bylaska, E. J., Govind, N., Kowalski, K., Straatsma, T. P., Van Dam, H. J. J., Wang, D., Nieplocha, J., Apra, E., Windus, T. L., and de Jong, W. A.:
NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations,
Comput. Phys. Commun.,
181, 1477–1489, https://doi.org/10.1016/j.cpc.2010.04.018, 2010. a
Zhang, S., Harrison, M. J., Rosati, A., and Wittenberg, A.:
System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies,
Mon. Weather Rev.,
135, 3541–3564, https://doi.org/10.1175/MWR3466.1, 2007. a
Zhao, M., Held, I. M., Lin, S.-J., and Vecchi, G. A.:
Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM,
J. Climate,
22, 6653–6678, https://doi.org/10.1175/2009JCLI3049.1, 2009. a
Short summary
Weather and climate models consist of complex software evolving in response to both scientific requirements and changing computing hardware. After years of relatively stable hardware, more diversity is arriving. It is possible that this hardware diversity and the pace of change may lead to an inability for modelling groups to manage their software development. This
chasmbetween aspiration and reality may need to be bridged by large community efforts rather than traditional
in-houseefforts.
Weather and climate models consist of complex software evolving in response to both scientific...