Articles | Volume 11, issue 5
https://doi.org/10.5194/gmd-11-1799-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-11-1799-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Crossing the chasm: how to develop weather and climate models for next generation computers?
Bryan N. Lawrence
CORRESPONDING AUTHOR
Department of Meteorology, University of Reading, Reading, UK
National Centre of Atmospheric Science, Reading, UK
STFC Rutherford Appleton Laboratory, Didcot, UK
Michael Rezny
Monash University, Melbourne, Australia
Reinhard Budich
Max Planck Institute for Meteorology, Hamburg, Germany
Peter Bauer
ECMWF, Reading, UK
Jörg Behrens
DKRZ, Hamburg, Germany
Mick Carter
Met Office, Exeter, UK
Willem Deconinck
ECMWF, Reading, UK
Rupert Ford
STFC Hartree Centre, Daresbury Laboratory, Daresbury, UK
Christopher Maynard
Met Office, Exeter, UK
Steven Mullerworth
Met Office, Exeter, UK
Carlos Osuna
ETH, Zurich, Switzerland
Andrew Porter
STFC Hartree Centre, Daresbury Laboratory, Daresbury, UK
Kim Serradell
Barcelona Supercomputing Center, Barcelona, Spain
Sophie Valcke
Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, Toulouse, France
Nils Wedi
ECMWF, Reading, UK
Simon Wilson
Department of Meteorology, University of Reading, Reading, UK
National Centre of Atmospheric Science, Reading, UK
Met Office, Exeter, UK
Related authors
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Veronique Bouchet, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Detlef Stammer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-376, https://doi.org/10.5194/essd-2023-376, 2023
Preprint under review for ESSD
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines are proposed as international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
This article is included in the Encyclopedia of Geosciences
Thibault Hallouin, Richard J. Ellis, Douglas B. Clark, Simon J. Dadson, Andrew G. Hughes, Bryan N. Lawrence, Grenville M. S. Lister, and Jan Polcher
Geosci. Model Dev., 15, 9177–9196, https://doi.org/10.5194/gmd-15-9177-2022, https://doi.org/10.5194/gmd-15-9177-2022, 2022
Short summary
Short summary
A new framework for modelling the water cycle in the land system has been implemented. It considers the hydrological cycle as three interconnected components, bringing flexibility in the choice of the physical processes and their spatio-temporal resolutions. It is designed to foster collaborations between land surface, hydrological, and groundwater modelling communities to develop the next-generation of land system models for integration in Earth system models.
This article is included in the Encyclopedia of Geosciences
Charlotte Pascoe, Bryan N. Lawrence, Eric Guilyardi, Martin Juckes, and Karl E. Taylor
Geosci. Model Dev., 13, 2149–2167, https://doi.org/10.5194/gmd-13-2149-2020, https://doi.org/10.5194/gmd-13-2149-2020, 2020
Short summary
Short summary
We present a methodology for documenting numerical experiments in the context of an information sharing ecosystem which allows the weather, climate, and earth system modelling community to accurately document and share information about their modelling workflow. We describe how through iteration with a range of stakeholders, we rationalized multiple sources of information and improved the clarity of experimental definitions for the Coupled Model Intercomparison Project Phase 6 (CMIP6).
This article is included in the Encyclopedia of Geosciences
Martin Juckes, Karl E. Taylor, Paul J. Durack, Bryan Lawrence, Matthew S. Mizielinski, Alison Pamment, Jean-Yves Peterschmitt, Michel Rixen, and Stéphane Sénési
Geosci. Model Dev., 13, 201–224, https://doi.org/10.5194/gmd-13-201-2020, https://doi.org/10.5194/gmd-13-201-2020, 2020
Short summary
Short summary
The data request of the Coupled Model Intercomparison Project Phase 6 (CMIP6) defines all the quantities
from CMIP6 simulations that should be archived. The building blocks and structure of the CMIP6 Data Request, which has been constructed to meet these challenges, are described in this paper.
This article is included in the Encyclopedia of Geosciences
Venkatramani Balaji, Karl E. Taylor, Martin Juckes, Bryan N. Lawrence, Paul J. Durack, Michael Lautenschlager, Chris Blanton, Luca Cinquini, Sébastien Denvil, Mark Elkington, Francesca Guglielmo, Eric Guilyardi, David Hassell, Slava Kharin, Stefan Kindermann, Sergey Nikonov, Aparna Radhakrishnan, Martina Stockhause, Tobias Weigel, and Dean Williams
Geosci. Model Dev., 11, 3659–3680, https://doi.org/10.5194/gmd-11-3659-2018, https://doi.org/10.5194/gmd-11-3659-2018, 2018
Short summary
Short summary
We present recommendations for the global data infrastructure needed to support CMIP scientific design and its future growth and evolution. We follow a dataset-centric design less prone to systemic failure. Scientific publication in the digital age is evolving to make data a primary scientific output, alongside articles. We design toward that future scientific data ecosystem, informed by the need for reproducibility, data provenance, future data technologies, and measures of costs and benefits.
This article is included in the Encyclopedia of Geosciences
David Hassell, Jonathan Gregory, Jon Blower, Bryan N. Lawrence, and Karl E. Taylor
Geosci. Model Dev., 10, 4619–4646, https://doi.org/10.5194/gmd-10-4619-2017, https://doi.org/10.5194/gmd-10-4619-2017, 2017
Short summary
Short summary
We present a formal data model for version 1.6 of the CF (Climate and Forecast) metadata conventions that provide a description of the physical meaning of geoscientific data and their spatial and temporal properties. We describe the CF conventions and how they lead to our CF data model, and compare it other data models for storing data and metadata. We present cf-python version 2.1: a software implementation of the CF data model capable of manipulating any CF-compliant dataset.
This article is included in the Encyclopedia of Geosciences
Venkatramani Balaji, Eric Maisonnave, Niki Zadeh, Bryan N. Lawrence, Joachim Biercamp, Uwe Fladrich, Giovanni Aloisio, Rusty Benson, Arnaud Caubel, Jeffrey Durachta, Marie-Alice Foujols, Grenville Lister, Silvia Mocavero, Seth Underwood, and Garrett Wright
Geosci. Model Dev., 10, 19–34, https://doi.org/10.5194/gmd-10-19-2017, https://doi.org/10.5194/gmd-10-19-2017, 2017
Short summary
Short summary
Climate models are among the most computationally expensive scientific applications in the world. We present a set of measures of computational performance that can be used to compare models that are independent of underlying hardware and the model formulation. They are easy to collect and reflect performance actually achieved in practice. We are preparing a systematic effort to collect these metrics for the world's climate models during CMIP6, the next Climate Model Intercomparison Project.
This article is included in the Encyclopedia of Geosciences
Veronika Eyring, Peter J. Gleckler, Christoph Heinze, Ronald J. Stouffer, Karl E. Taylor, V. Balaji, Eric Guilyardi, Sylvie Joussaume, Stephan Kindermann, Bryan N. Lawrence, Gerald A. Meehl, Mattia Righi, and Dean N. Williams
Earth Syst. Dynam., 7, 813–830, https://doi.org/10.5194/esd-7-813-2016, https://doi.org/10.5194/esd-7-813-2016, 2016
Short summary
Short summary
We argue that the CMIP community has reached a critical juncture at which many baseline aspects of model evaluation need to be performed much more efficiently to enable a systematic and rapid performance assessment of the large number of models participating in CMIP, and we announce our intention to implement such a system for CMIP6. At the same time, continuous scientific research is required to develop innovative metrics and diagnostics that help narrowing the spread in climate projections.
This article is included in the Encyclopedia of Geosciences
Duncan Watson-Parris, Nick Schutgens, Nicholas Cook, Zak Kipling, Philip Kershaw, Edward Gryspeerdt, Bryan Lawrence, and Philip Stier
Geosci. Model Dev., 9, 3093–3110, https://doi.org/10.5194/gmd-9-3093-2016, https://doi.org/10.5194/gmd-9-3093-2016, 2016
Short summary
Short summary
In this paper we describe CIS, a new command line tool for the easy visualization, analysis and comparison of a wide variety of gridded and ungridded data sets used in Earth sciences. Users can now use a single tool to not only view plots of satellite, aircraft, station or model data, but also bring them onto the same spatio-temporal sampling. This allows robust, quantitative comparisons to be made easily. CIS is an open-source project and welcomes input from the community.
This article is included in the Encyclopedia of Geosciences
M. S. Mizielinski, M. J. Roberts, P. L. Vidale, R. Schiemann, M.-E. Demory, J. Strachan, T. Edwards, A. Stephens, B. N. Lawrence, M. Pritchard, P. Chiu, A. Iwi, J. Churchill, C. del Cano Novales, J. Kettleborough, W. Roseblade, P. Selwood, M. Foster, M. Glover, and A. Malcolm
Geosci. Model Dev., 7, 1629–1640, https://doi.org/10.5194/gmd-7-1629-2014, https://doi.org/10.5194/gmd-7-1629-2014, 2014
M.-P. Moine, S. Valcke, B. N. Lawrence, C. Pascoe, R. W. Ford, A. Alias, V. Balaji, P. Bentley, G. Devine, S. A. Callaghan, and E. Guilyardi
Geosci. Model Dev., 7, 479–493, https://doi.org/10.5194/gmd-7-479-2014, https://doi.org/10.5194/gmd-7-479-2014, 2014
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Veronique Bouchet, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Detlef Stammer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-376, https://doi.org/10.5194/essd-2023-376, 2023
Preprint under review for ESSD
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines are proposed as international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
This article is included in the Encyclopedia of Geosciences
Thibault Hallouin, Richard J. Ellis, Douglas B. Clark, Simon J. Dadson, Andrew G. Hughes, Bryan N. Lawrence, Grenville M. S. Lister, and Jan Polcher
Geosci. Model Dev., 15, 9177–9196, https://doi.org/10.5194/gmd-15-9177-2022, https://doi.org/10.5194/gmd-15-9177-2022, 2022
Short summary
Short summary
A new framework for modelling the water cycle in the land system has been implemented. It considers the hydrological cycle as three interconnected components, bringing flexibility in the choice of the physical processes and their spatio-temporal resolutions. It is designed to foster collaborations between land surface, hydrological, and groundwater modelling communities to develop the next-generation of land system models for integration in Earth system models.
This article is included in the Encyclopedia of Geosciences
Beatriz M. Monge-Sanz, Alessio Bozzo, Nicholas Byrne, Martyn P. Chipperfield, Michail Diamantakis, Johannes Flemming, Lesley J. Gray, Robin J. Hogan, Luke Jones, Linus Magnusson, Inna Polichtchouk, Theodore G. Shepherd, Nils Wedi, and Antje Weisheimer
Atmos. Chem. Phys., 22, 4277–4302, https://doi.org/10.5194/acp-22-4277-2022, https://doi.org/10.5194/acp-22-4277-2022, 2022
Short summary
Short summary
The stratosphere is emerging as one of the keys to improve tropospheric weather and climate predictions. This study provides evidence of the role the stratospheric ozone layer plays in improving weather predictions at different timescales. Using a new ozone modelling approach suitable for high-resolution global models that provide operational forecasts from days to seasons, we find significant improvements in stratospheric meteorological fields and stratosphere–troposphere coupling.
This article is included in the Encyclopedia of Geosciences
Mohammad Reza Heidari, Zhaoyang Song, Enrico Degregori, Jörg Behrens, and Hendryk Bockelmann
Geosci. Model Dev., 14, 7439–7457, https://doi.org/10.5194/gmd-14-7439-2021, https://doi.org/10.5194/gmd-14-7439-2021, 2021
Short summary
Short summary
To improve our understanding of climate system dynamics and their variability, the numerical atmospheric model ECHAM6 is used to simulate a complete glacial cycle over the past 120 000 years. However, performing such simulations takes a long time even on state-of-the-art supercomputers. To accelerate the model simulation, we propose calculating radiative transfer processes in parallel with adiabatic processes in the atmosphere, which reduces the simulation time by nearly half.
This article is included in the Encyclopedia of Geosciences
Christian Zeman, Nils P. Wedi, Peter D. Dueben, Nikolina Ban, and Christoph Schär
Geosci. Model Dev., 14, 4617–4639, https://doi.org/10.5194/gmd-14-4617-2021, https://doi.org/10.5194/gmd-14-4617-2021, 2021
Short summary
Short summary
Kilometer-scale atmospheric models allow us to partially resolve thunderstorms and thus improve their representation. We present an intercomparison between two distinct atmospheric models for 2 summer days with heavy thunderstorms over Europe. We show the dependence of precipitation and vertical wind speed on spatial and temporal resolution and also discuss the possible influence of the system of equations, numerical methods, and diffusion in the models.
This article is included in the Encyclopedia of Geosciences
Olivier Marti, Sébastien Nguyen, Pascale Braconnot, Sophie Valcke, Florian Lemarié, and Eric Blayo
Geosci. Model Dev., 14, 2959–2975, https://doi.org/10.5194/gmd-14-2959-2021, https://doi.org/10.5194/gmd-14-2959-2021, 2021
Short summary
Short summary
State-of-the-art Earth system models, like the ones used in CMIP6, suffer from temporal inconsistencies at the ocean–atmosphere interface. In this study, a mathematically consistent iterative Schwarz method is used as a reference. Its tremendous computational cost makes it unusable for production runs, but it allows us to evaluate the error made when using legacy coupling schemes. The impact on the climate at longer timescales of days to decades is not evaluated.
This article is included in the Encyclopedia of Geosciences
Jun-Ichi Yano and Nils P. Wedi
Atmos. Chem. Phys., 21, 4759–4778, https://doi.org/10.5194/acp-21-4759-2021, https://doi.org/10.5194/acp-21-4759-2021, 2021
Short summary
Short summary
Sensitivities of forecasts of the Madden–Julian oscillation (MJO) to various different configurations of the physics are examined with the global model of ECMWF's Integrated Forecasting System (IFS). The motivation for the study was to simulate the MJO as a nonlinear free wave. To emulate free dynamics in the IFS,
various momentum dissipation terms (
This article is included in the Encyclopedia of Geosciences
friction) as well as diabatic heating were selectively turned off over the tropics for the range of the latitudes from 20° S to 20° N.
Martine G. de Vos, Wilco Hazeleger, Driss Bari, Jörg Behrens, Sofiane Bendoukha, Irene Garcia-Marti, Ronald van Haren, Sue Ellen Haupt, Rolf Hut, Fredrik Jansson, Andreas Mueller, Peter Neilley, Gijs van den Oord, Inti Pelupessy, Paolo Ruti, Martin G. Schultz, and Jeremy Walton
Geosci. Commun., 3, 191–201, https://doi.org/10.5194/gc-3-191-2020, https://doi.org/10.5194/gc-3-191-2020, 2020
Short summary
Short summary
At the 14th IEEE International eScience Conference domain specialists and data and computer scientists discussed the road towards open weather and climate science. Open science offers manifold opportunities but goes beyond sharing code and data. Besides domain-specific technical challenges, we observed that the main challenges are non-technical and impact the system of science as a whole.
This article is included in the Encyclopedia of Geosciences
Charlotte Pascoe, Bryan N. Lawrence, Eric Guilyardi, Martin Juckes, and Karl E. Taylor
Geosci. Model Dev., 13, 2149–2167, https://doi.org/10.5194/gmd-13-2149-2020, https://doi.org/10.5194/gmd-13-2149-2020, 2020
Short summary
Short summary
We present a methodology for documenting numerical experiments in the context of an information sharing ecosystem which allows the weather, climate, and earth system modelling community to accurately document and share information about their modelling workflow. We describe how through iteration with a range of stakeholders, we rationalized multiple sources of information and improved the clarity of experimental definitions for the Coupled Model Intercomparison Project Phase 6 (CMIP6).
This article is included in the Encyclopedia of Geosciences
Martin Juckes, Karl E. Taylor, Paul J. Durack, Bryan Lawrence, Matthew S. Mizielinski, Alison Pamment, Jean-Yves Peterschmitt, Michel Rixen, and Stéphane Sénési
Geosci. Model Dev., 13, 201–224, https://doi.org/10.5194/gmd-13-201-2020, https://doi.org/10.5194/gmd-13-201-2020, 2020
Short summary
Short summary
The data request of the Coupled Model Intercomparison Project Phase 6 (CMIP6) defines all the quantities
from CMIP6 simulations that should be archived. The building blocks and structure of the CMIP6 Data Request, which has been constructed to meet these challenges, are described in this paper.
This article is included in the Encyclopedia of Geosciences
Andreas Müller, Willem Deconinck, Christian Kühnlein, Gianmarco Mengaldo, Michael Lange, Nils Wedi, Peter Bauer, Piotr K. Smolarkiewicz, Michail Diamantakis, Sarah-Jane Lock, Mats Hamrud, Sami Saarinen, George Mozdzynski, Daniel Thiemert, Michael Glinton, Pierre Bénard, Fabrice Voitus, Charles Colavolpe, Philippe Marguinaud, Yongjun Zheng, Joris Van Bever, Daan Degrauwe, Geert Smet, Piet Termonia, Kristian P. Nielsen, Bent H. Sass, Jacob W. Poulsen, Per Berg, Carlos Osuna, Oliver Fuhrer, Valentin Clement, Michael Baldauf, Mike Gillard, Joanna Szmelter, Enda O'Brien, Alastair McKinstry, Oisín Robinson, Parijat Shukla, Michael Lysaght, Michał Kulczewski, Milosz Ciznicki, Wojciech Piątek, Sebastian Ciesielski, Marek Błażewicz, Krzysztof Kurowski, Marcin Procyk, Pawel Spychala, Bartosz Bosak, Zbigniew P. Piotrowski, Andrzej Wyszogrodzki, Erwan Raffin, Cyril Mazauric, David Guibert, Louis Douriez, Xavier Vigouroux, Alan Gray, Peter Messmer, Alexander J. Macfaden, and Nick New
Geosci. Model Dev., 12, 4425–4441, https://doi.org/10.5194/gmd-12-4425-2019, https://doi.org/10.5194/gmd-12-4425-2019, 2019
Short summary
Short summary
This paper presents an overview of the ESCAPE project. Dwarfs (key patterns in terms of computation and communication) are identified in weather prediction models. They are optimised for different hardware architectures. New algorithms are developed that are specifically designed for better energy efficiency and improved portability through domain-specific languages. Different numerical techniques are compared in terms of energy efficiency and performance for a variety of computing technologies.
This article is included in the Encyclopedia of Geosciences
Margarita Choulga, Ekaterina Kourzeneva, Gianpaolo Balsamo, Souhail Boussetta, and Nils Wedi
Hydrol. Earth Syst. Sci., 23, 4051–4076, https://doi.org/10.5194/hess-23-4051-2019, https://doi.org/10.5194/hess-23-4051-2019, 2019
Short summary
Short summary
Lakes influence weather and climate of regions, especially if several of them are located close by. Just by using upgraded lake depths, based on new or more recent measurements and geological methods of depth estimation, errors of lake surface water forecasts produced by the European Centre for Medium-Range Weather Forecasts became 12–20 % lower compared with observations for 27 lakes collected by the Finnish Environment Institute. For ice-off date forecasts errors changed insignificantly.
This article is included in the Encyclopedia of Geosciences
Dietmar Dommenget, Kerry Nice, Tobias Bayr, Dieter Kasang, Christian Stassen, and Michael Rezny
Geosci. Model Dev., 12, 2155–2179, https://doi.org/10.5194/gmd-12-2155-2019, https://doi.org/10.5194/gmd-12-2155-2019, 2019
Short summary
Short summary
This study describes the scientific basis for a public web page that gives access to a large set of climate model simulations. This web page is called the Monash Simple Climate Model. It provides access to more than 1300 experiments and has an interactive interface for fast analysis of the experiments and open access to the data. The study gives a short overview of the simulation experiments and discusses some of the results.
This article is included in the Encyclopedia of Geosciences
Christian Kühnlein, Willem Deconinck, Rupert Klein, Sylvie Malardel, Zbigniew P. Piotrowski, Piotr K. Smolarkiewicz, Joanna Szmelter, and Nils P. Wedi
Geosci. Model Dev., 12, 651–676, https://doi.org/10.5194/gmd-12-651-2019, https://doi.org/10.5194/gmd-12-651-2019, 2019
Short summary
Short summary
We present a novel finite-volume dynamical core formulation considered for future numerical weather prediction at ECMWF. We demonstrate that this formulation can be competitive in terms of solution quality and computational efficiency to the proven spectral-transform dynamical core formulation currently operational at ECMWF, while providing a local, more scalable discretization, conservative and monotone advective transport, and flexible meshes.
This article is included in the Encyclopedia of Geosciences
Venkatramani Balaji, Karl E. Taylor, Martin Juckes, Bryan N. Lawrence, Paul J. Durack, Michael Lautenschlager, Chris Blanton, Luca Cinquini, Sébastien Denvil, Mark Elkington, Francesca Guglielmo, Eric Guilyardi, David Hassell, Slava Kharin, Stefan Kindermann, Sergey Nikonov, Aparna Radhakrishnan, Martina Stockhause, Tobias Weigel, and Dean Williams
Geosci. Model Dev., 11, 3659–3680, https://doi.org/10.5194/gmd-11-3659-2018, https://doi.org/10.5194/gmd-11-3659-2018, 2018
Short summary
Short summary
We present recommendations for the global data infrastructure needed to support CMIP scientific design and its future growth and evolution. We follow a dataset-centric design less prone to systemic failure. Scientific publication in the digital age is evolving to make data a primary scientific output, alongside articles. We design toward that future scientific data ecosystem, informed by the need for reproducibility, data provenance, future data technologies, and measures of costs and benefits.
This article is included in the Encyclopedia of Geosciences
Andrew R. Porter, Jeremy Appleyard, Mike Ashworth, Rupert W. Ford, Jason Holt, Hedong Liu, and Graham D. Riley
Geosci. Model Dev., 11, 3447–3464, https://doi.org/10.5194/gmd-11-3447-2018, https://doi.org/10.5194/gmd-11-3447-2018, 2018
Short summary
Short summary
Developing computer models in the earth-system domain is a complex and expensive process that can have a duration measured in years. The supercomputers required to run these models, however, are evolving fast with a proliferation of technologies and associated programming models. As a result there is a need that models be "performance portable" between different supercomputers. This paper investigates a way of doing this through a separation of the concerns of performance and natural science.
This article is included in the Encyclopedia of Geosciences
Alexander J. Roberts, Margaret J. Woodage, John H. Marsham, Ellie J. Highwood, Claire L. Ryder, Willie McGinty, Simon Wilson, and Julia Crook
Atmos. Chem. Phys., 18, 9025–9048, https://doi.org/10.5194/acp-18-9025-2018, https://doi.org/10.5194/acp-18-9025-2018, 2018
Short summary
Short summary
The summer Saharan dust hotspot is seasonally tied to the occurrence of convective storms. Global weather and climate models parameterise convection and so are unable to represent their associated dust uplift (haboobs). However, this work shows that even when simulations represent convection explicitly: (1) dust fields are not strongly affected, (2) convective storms are too small, (3) haboobs are too weak and (4) the land surface (bare soil and soil moisture) is dominant in controlling dust.
This article is included in the Encyclopedia of Geosciences
David Hassell, Jonathan Gregory, Jon Blower, Bryan N. Lawrence, and Karl E. Taylor
Geosci. Model Dev., 10, 4619–4646, https://doi.org/10.5194/gmd-10-4619-2017, https://doi.org/10.5194/gmd-10-4619-2017, 2017
Short summary
Short summary
We present a formal data model for version 1.6 of the CF (Climate and Forecast) metadata conventions that provide a description of the physical meaning of geoscientific data and their spatial and temporal properties. We describe the CF conventions and how they lead to our CF data model, and compare it other data models for storing data and metadata. We present cf-python version 2.1: a software implementation of the CF data model capable of manipulating any CF-compliant dataset.
This article is included in the Encyclopedia of Geosciences
Aurore Voldoire, Bertrand Decharme, Joris Pianezze, Cindy Lebeaupin Brossier, Florence Sevault, Léo Seyfried, Valérie Garnier, Soline Bielli, Sophie Valcke, Antoinette Alias, Mickael Accensi, Fabrice Ardhuin, Marie-Noëlle Bouin, Véronique Ducrocq, Stéphanie Faroux, Hervé Giordani, Fabien Léger, Patrick Marsaleix, Romain Rainaud, Jean-Luc Redelsperger, Evelyne Richard, and Sébastien Riette
Geosci. Model Dev., 10, 4207–4227, https://doi.org/10.5194/gmd-10-4207-2017, https://doi.org/10.5194/gmd-10-4207-2017, 2017
Short summary
Short summary
This study presents the principles of the new coupling interface based on the SURFEX multi-surface model and the OASIS3-MCT coupler. As SURFEX can be plugged into several atmospheric models, it can be used in a wide range of applications. The objective of this development is to build and share a common structure for the atmosphere–surface coupling of all these applications, involving on the one hand atmospheric models and on the other hand ocean, ice, hydrology, and wave models.
This article is included in the Encyclopedia of Geosciences
Anthony Craig, Sophie Valcke, and Laure Coquart
Geosci. Model Dev., 10, 3297–3308, https://doi.org/10.5194/gmd-10-3297-2017, https://doi.org/10.5194/gmd-10-3297-2017, 2017
Short summary
Short summary
The OASIS software package provides capabilities that allow different models to be coupled together to carry out new scientific investigation. This is particularly useful in climate model simulations where atmosphere, ocean, sea ice, hydrology, land, ocean wave, chemistry, and other types of Earth system models are often coupled together. The OASIS software package is used by several groups around the world, and this paper describes features of the latest implementation.
This article is included in the Encyclopedia of Geosciences
Jason Holt, Patrick Hyder, Mike Ashworth, James Harle, Helene T. Hewitt, Hedong Liu, Adrian L. New, Stephen Pickles, Andrew Porter, Ekaterina Popova, J. Icarus Allen, John Siddorn, and Richard Wood
Geosci. Model Dev., 10, 499–523, https://doi.org/10.5194/gmd-10-499-2017, https://doi.org/10.5194/gmd-10-499-2017, 2017
Short summary
Short summary
Accurately representing coastal and shelf seas in global ocean models is one of the grand challenges of Earth system science. Here, we explore what the options are for improving this by exploring what the important physical processes are that need to be represented. We use a simple scale analysis to investigate how large the resulting models would need to be. We then compare this with how computer power is increasing to provide estimates of when this might be feasible in the future.
This article is included in the Encyclopedia of Geosciences
Venkatramani Balaji, Eric Maisonnave, Niki Zadeh, Bryan N. Lawrence, Joachim Biercamp, Uwe Fladrich, Giovanni Aloisio, Rusty Benson, Arnaud Caubel, Jeffrey Durachta, Marie-Alice Foujols, Grenville Lister, Silvia Mocavero, Seth Underwood, and Garrett Wright
Geosci. Model Dev., 10, 19–34, https://doi.org/10.5194/gmd-10-19-2017, https://doi.org/10.5194/gmd-10-19-2017, 2017
Short summary
Short summary
Climate models are among the most computationally expensive scientific applications in the world. We present a set of measures of computational performance that can be used to compare models that are independent of underlying hardware and the model formulation. They are easy to collect and reflect performance actually achieved in practice. We are preparing a systematic effort to collect these metrics for the world's climate models during CMIP6, the next Climate Model Intercomparison Project.
This article is included in the Encyclopedia of Geosciences
Veronika Eyring, Peter J. Gleckler, Christoph Heinze, Ronald J. Stouffer, Karl E. Taylor, V. Balaji, Eric Guilyardi, Sylvie Joussaume, Stephan Kindermann, Bryan N. Lawrence, Gerald A. Meehl, Mattia Righi, and Dean N. Williams
Earth Syst. Dynam., 7, 813–830, https://doi.org/10.5194/esd-7-813-2016, https://doi.org/10.5194/esd-7-813-2016, 2016
Short summary
Short summary
We argue that the CMIP community has reached a critical juncture at which many baseline aspects of model evaluation need to be performed much more efficiently to enable a systematic and rapid performance assessment of the large number of models participating in CMIP, and we announce our intention to implement such a system for CMIP6. At the same time, continuous scientific research is required to develop innovative metrics and diagnostics that help narrowing the spread in climate projections.
This article is included in the Encyclopedia of Geosciences
Duncan Watson-Parris, Nick Schutgens, Nicholas Cook, Zak Kipling, Philip Kershaw, Edward Gryspeerdt, Bryan Lawrence, and Philip Stier
Geosci. Model Dev., 9, 3093–3110, https://doi.org/10.5194/gmd-9-3093-2016, https://doi.org/10.5194/gmd-9-3093-2016, 2016
Short summary
Short summary
In this paper we describe CIS, a new command line tool for the easy visualization, analysis and comparison of a wide variety of gridded and ungridded data sets used in Earth sciences. Users can now use a single tool to not only view plots of satellite, aircraft, station or model data, but also bring them onto the same spatio-temporal sampling. This allows robust, quantitative comparisons to be made easily. CIS is an open-source project and welcomes input from the community.
This article is included in the Encyclopedia of Geosciences
M. S. Mizielinski, M. J. Roberts, P. L. Vidale, R. Schiemann, M.-E. Demory, J. Strachan, T. Edwards, A. Stephens, B. N. Lawrence, M. Pritchard, P. Chiu, A. Iwi, J. Churchill, C. del Cano Novales, J. Kettleborough, W. Roseblade, P. Selwood, M. Foster, M. Glover, and A. Malcolm
Geosci. Model Dev., 7, 1629–1640, https://doi.org/10.5194/gmd-7-1629-2014, https://doi.org/10.5194/gmd-7-1629-2014, 2014
M.-P. Moine, S. Valcke, B. N. Lawrence, C. Pascoe, R. W. Ford, A. Alias, V. Balaji, P. Bentley, G. Devine, S. A. Callaghan, and E. Guilyardi
Geosci. Model Dev., 7, 479–493, https://doi.org/10.5194/gmd-7-479-2014, https://doi.org/10.5194/gmd-7-479-2014, 2014
S. Valcke
Geosci. Model Dev., 6, 373–388, https://doi.org/10.5194/gmd-6-373-2013, https://doi.org/10.5194/gmd-6-373-2013, 2013
S. Valcke, V. Balaji, A. Craig, C. DeLuca, R. Dunlap, R. W. Ford, R. Jacob, J. Larson, R. O'Kuinghttons, G. D. Riley, and M. Vertenstein
Geosci. Model Dev., 5, 1589–1596, https://doi.org/10.5194/gmd-5-1589-2012, https://doi.org/10.5194/gmd-5-1589-2012, 2012
Related subject area
Climate and Earth system modeling
The Canadian Atmospheric Model version 5 (CanAM5.0.3)
The Teddy tool v1.1: temporal disaggregation of daily climate model data for climate impact analysis
Assimilation of the AMSU-A radiances using the CESM (v2.1.0) and the DART (v9.11.13)–RTTOV (v12.3)
Modernizing the open-source community Noah with multi-parameterization options (Noah-MP) land surface model (version 5.0) with enhanced modularity, interoperability, and applicability
Simulated stable water isotopes during the mid-Holocene and pre-industrial periods using AWI-ESM-2.1-wiso
Rainbows and climate change: a tutorial on climate model diagnostics and parameterization
ModE-Sim – a medium-sized atmospheric general circulation model (AGCM) ensemble to study climate variability during the modern era (1420 to 2009)
MESMAR v1: a new regional coupled climate model for downscaling, predictability, and data assimilation studies in the Mediterranean region
Climate model Selection by Independence, Performance, and Spread (ClimSIPS v1.0.1) for regional applications
IceTFT v1.0.0: interpretable long-term prediction of Arctic sea ice extent with deep learning
The KNMI Large Ensemble Time Slice (KNMI–LENTIS)
ENSO statistics, teleconnections, and atmosphere–ocean coupling in the Taiwan Earth System Model version 1
Using probabilistic machine learning to better model temporal patterns in parameterizations: a case study with the Lorenz 96 model
The Regional Aerosol Model Intercomparison Project (RAMIP)
DSCIM-Coastal v1.1: an open-source modeling platform for global impacts of sea level rise
TIMBER v0.1: a conceptual framework for emulating temperature responses to tree cover change
Recalibration of a three-dimensional water quality model with a newly developed autocalibration toolkit (EFDC-ACT v1.0.0): how much improvement will be achieved with a wider hydrological variability?
Description and evaluation of the JULES-ES set-up for ISIMIP2b
Simplified Kalman smoother and ensemble Kalman smoother for improving reanalyses
Modelling the terrestrial nitrogen and phosphorus cycle in the UVic ESCM
Modeling river water temperature with limiting forcing data: Air2stream v1.0.0, machine learning and multiple regression
A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES (v2.0)
The fully coupled regionally refined model of E3SM version 2: overview of the atmosphere, land, and river results
The mixed-layer depth in the Ocean Model Intercomparison Project (OMIP): impact of resolving mesoscale eddies
A new simplified parameterization of secondary organic aerosol in the Community Earth System Model Version 2 (CESM2; CAM6.3)
Deep learning for stochastic precipitation generation – deep SPG v1.0
Developing spring wheat in the Noah-MP land surface model (v4.4) for growing season dynamics and responses to temperature stress
Robust 4D climate-optimal flight planning in structured airspace using parallelized simulation on GPUs: ROOST V1.0
The Earth system model CLIMBER-X v1.0 – Part 2: The global carbon cycle
SMLFire1.0: a stochastic machine learning (SML) model for wildfire activity in the western United States
LandInG 1.0: a toolbox to derive input datasets for terrestrial ecosystem modelling at variable resolutions from heterogeneous sources
Conservation of heat and mass in P-SKRIPS version 1: the coupled atmosphere–ice–ocean model of the Ross Sea
Predicting the climate impact of aviation for en-route emissions: the algorithmic climate change function submodel ACCF 1.0 of EMAC 2.53
Implementation of a machine-learned gas optics parameterization in the ECMWF Integrated Forecasting System: RRTMGP-NN 2.0
Differentiable programming for Earth system modeling
Evaluation of CMIP6 model performances in simulating fire weather spatiotemporal variability on global and regional scales
Data-driven aeolian dust emission scheme for climate modelling evaluated with EMAC 2.55.2
Testing the reconstruction of modelled particulate organic carbon from surface ecosystem components using PlankTOM12 and machine learning
An improved method of the Globally Resolved Energy Balance model by the Bayesian networks
Assessing predicted cirrus ice properties between two deterministic ice formation parameterizations
Various ways of using empirical orthogonal functions for climate model evaluation
C-Coupler3.0: an integrated coupler infrastructure for Earth system modelling
FEOTS v0.0.0: a new offline code for the fast equilibration of tracers in the ocean
Pace v0.2: a Python-based performance-portable atmospheric model
Introducing a new floodplain scheme in ORCHIDEE (version 7885): validation and evaluation over the Pantanal wetlands
Hydrological modelling on atmospheric grids: using graphs of sub-grid elements to transport energy and water
The sea level simulator v1.0: a model for integration of mean sea level change and sea level extremes into a joint probabilistic framework
The analysis of large-volume multi-institute climate model output at a Central Analysis Facility (PRIMAVERA Data Management Tool V2.10)
Structural k-means (S k-means) and clustering uncertainty evaluation framework (CUEF) for mining climate data
The emergence of the Gulf Stream and interior western boundary as key regions to constrain the future North Atlantic carbon uptake
Jason Neil Steven Cole, Knut von Salzen, Jiangnan Li, John Scinocca, David Plummer, Vivek Arora, Norman McFarlane, Michael Lazare, Murray MacKay, and Diana Verseghy
Geosci. Model Dev., 16, 5427–5448, https://doi.org/10.5194/gmd-16-5427-2023, https://doi.org/10.5194/gmd-16-5427-2023, 2023
Short summary
Short summary
The Canadian Atmospheric Model version 5 (CanAM5) is used to simulate on a global scale the climate of Earth's atmosphere, land, and lakes. We document changes to the physics in CanAM5 since the last major version of the model (CanAM4) and evaluate the climate simulated relative to observations and CanAM4. The climate simulated by CanAM5 is similar to CanAM4, but there are improvements, including better simulation of temperature and precipitation over the Amazon and better simulation of cloud.
This article is included in the Encyclopedia of Geosciences
Florian Zabel and Benjamin Poschlod
Geosci. Model Dev., 16, 5383–5399, https://doi.org/10.5194/gmd-16-5383-2023, https://doi.org/10.5194/gmd-16-5383-2023, 2023
Short summary
Short summary
Today, most climate model data are provided at daily time steps. However, more and more models from different sectors, such as energy, water, agriculture, and health, require climate information at a sub-daily temporal resolution for a more robust and reliable climate impact assessment. Here we describe and validate the Teddy tool, a new model for the temporal disaggregation of daily climate model data for climate impact analysis.
This article is included in the Encyclopedia of Geosciences
Young-Chan Noh, Yonghan Choi, Hyo-Jong Song, Kevin Raeder, Joo-Hong Kim, and Youngchae Kwon
Geosci. Model Dev., 16, 5365–5382, https://doi.org/10.5194/gmd-16-5365-2023, https://doi.org/10.5194/gmd-16-5365-2023, 2023
Short summary
Short summary
This is the first attempt to assimilate the observations of microwave temperature sounders into the global climate forecast model in which the satellite observations have not been assimilated in the past. To do this, preprocessing schemes are developed to make the satellite observations suitable to be assimilated. In the assimilation experiments, the model analysis is significantly improved by assimilating the observations of microwave temperature sounders.
This article is included in the Encyclopedia of Geosciences
Cenlin He, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek
Geosci. Model Dev., 16, 5131–5151, https://doi.org/10.5194/gmd-16-5131-2023, https://doi.org/10.5194/gmd-16-5131-2023, 2023
Short summary
Short summary
Noah-MP is one of the most widely used open-source community land surface models in the world, designed for applications ranging from uncoupled land surface and ecohydrological process studies to coupled numerical weather prediction and decadal climate simulations. To facilitate model developments and applications, we modernize Noah-MP by adopting modern Fortran code and data structures and standards, which substantially enhance model modularity, interoperability, and applicability.
This article is included in the Encyclopedia of Geosciences
Xiaoxu Shi, Alexandre Cauquoin, Gerrit Lohmann, Lukas Jonkers, Qiang Wang, Hu Yang, Yuchen Sun, and Martin Werner
Geosci. Model Dev., 16, 5153–5178, https://doi.org/10.5194/gmd-16-5153-2023, https://doi.org/10.5194/gmd-16-5153-2023, 2023
Short summary
Short summary
We developed a new climate model with isotopic capabilities and simulated the pre-industrial and mid-Holocene periods. Despite certain regional model biases, the modeled isotope composition is in good agreement with observations and reconstructions. Based on our analyses, the observed isotope–temperature relationship in polar regions may have a summertime bias. Using daily model outputs, we developed a novel isotope-based approach to determine the onset date of the West African summer monsoon.
This article is included in the Encyclopedia of Geosciences
Andrew Gettelman
Geosci. Model Dev., 16, 4937–4956, https://doi.org/10.5194/gmd-16-4937-2023, https://doi.org/10.5194/gmd-16-4937-2023, 2023
Short summary
Short summary
A representation of rainbows is developed for a climate model. The diagnostic raises many common issues. Simulated rainbows are evaluated against limited observations. The pattern of rainbows in the model matches observations and theory about when and where rainbows are most common. The diagnostic is used to assess the past and future state of rainbows. Changes to clouds from climate change are expected to increase rainbows as cloud cover decreases in a warmer world.
This article is included in the Encyclopedia of Geosciences
Ralf Hand, Eric Samakinwa, Laura Lipfert, and Stefan Brönnimann
Geosci. Model Dev., 16, 4853–4866, https://doi.org/10.5194/gmd-16-4853-2023, https://doi.org/10.5194/gmd-16-4853-2023, 2023
Short summary
Short summary
ModE-Sim is an ensemble of simulations with an atmosphere model. It uses observed sea surface temperatures, sea ice conditions, and volcanic aerosols for 1420 to 2009 as model input while accounting for uncertainties in these conditions. This generates several representations of the possible climate given these preconditions. Such a setup can be useful to understand the mechanisms that contribute to climate variability. This paper describes the setup of ModE-Sim and evaluates its performance.
This article is included in the Encyclopedia of Geosciences
Andrea Storto, Yassmin Hesham Essa, Vincenzo de Toma, Alessandro Anav, Gianmaria Sannino, Rosalia Santoleri, and Chunxue Yang
Geosci. Model Dev., 16, 4811–4833, https://doi.org/10.5194/gmd-16-4811-2023, https://doi.org/10.5194/gmd-16-4811-2023, 2023
Short summary
Short summary
Regional climate models are a fundamental tool for a very large number of applications and are being increasingly used within climate services, together with other complementary approaches. Here, we introduce a new regional coupled model, intended to be later extended to a full Earth system model, for climate investigations within the Mediterranean region, coupled data assimilation experiments, and several downscaling exercises (reanalyses and long-range predictions).
This article is included in the Encyclopedia of Geosciences
Anna L. Merrifield, Lukas Brunner, Ruth Lorenz, Vincent Humphrey, and Reto Knutti
Geosci. Model Dev., 16, 4715–4747, https://doi.org/10.5194/gmd-16-4715-2023, https://doi.org/10.5194/gmd-16-4715-2023, 2023
Short summary
Short summary
Using all Coupled Model Intercomparison Project (CMIP) models is unfeasible for many applications. We provide a subselection protocol that balances user needs for model independence, performance, and spread capturing CMIP’s projection uncertainty simultaneously. We show how sets of three to five models selected for European applications map to user priorities. An audit of model independence and its influence on equilibrium climate sensitivity uncertainty in CMIP is also presented.
This article is included in the Encyclopedia of Geosciences
Bin Mu, Xiaodan Luo, Shijin Yuan, and Xi Liang
Geosci. Model Dev., 16, 4677–4697, https://doi.org/10.5194/gmd-16-4677-2023, https://doi.org/10.5194/gmd-16-4677-2023, 2023
Short summary
Short summary
To improve the long-term forecast skill for sea ice extent (SIE), we introduce IceTFT, which directly predicts 12 months of averaged Arctic SIE. The results show that IceTFT has higher forecasting skill. We conducted a sensitivity analysis of the variables in the IceTFT model. These sensitivities can help researchers study the mechanisms of sea ice development, and they also provide useful references for the selection of variables in data assimilation or the input of deep learning models.
This article is included in the Encyclopedia of Geosciences
Laura Muntjewerf, Richard Bintanja, Thomas Reerink, and Karin van der Wiel
Geosci. Model Dev., 16, 4581–4597, https://doi.org/10.5194/gmd-16-4581-2023, https://doi.org/10.5194/gmd-16-4581-2023, 2023
Short summary
Short summary
The KNMI Large Ensemble Time Slice (KNMI–LENTIS) is a large ensemble of global climate model simulations with EC-Earth3. It covers two climate scenarios by focusing on two time slices: the present day (2000–2009) and a future +2 K climate (2075–2084 in the SSP2-4.5 scenario). We have 1600 simulated years for the two climates with (sub-)daily output frequency. The sampled climate variability allows for robust and in-depth research into (compound) extreme events such as heat waves and droughts.
This article is included in the Encyclopedia of Geosciences
Yi-Chi Wang, Wan-Ling Tseng, Yu-Luen Chen, Shih-Yu Lee, Huang-Hsiung Hsu, and Hsin-Chien Liang
Geosci. Model Dev., 16, 4599–4616, https://doi.org/10.5194/gmd-16-4599-2023, https://doi.org/10.5194/gmd-16-4599-2023, 2023
Short summary
Short summary
This study focuses on evaluating the performance of the Taiwan Earth System Model version 1 (TaiESM1) in simulating the El Niño–Southern Oscillation (ENSO), a significant tropical climate pattern with global impacts. Our findings reveal that TaiESM1 effectively captures several characteristics of ENSO, such as its seasonal variation and remote teleconnections. Its pronounced ENSO strength bias is also thoroughly investigated, aiming to gain insights to improve climate model performance.
This article is included in the Encyclopedia of Geosciences
Raghul Parthipan, Hannah M. Christensen, J. Scott Hosking, and Damon J. Wischik
Geosci. Model Dev., 16, 4501–4519, https://doi.org/10.5194/gmd-16-4501-2023, https://doi.org/10.5194/gmd-16-4501-2023, 2023
Short summary
Short summary
How can we create better climate models? We tackle this by proposing a data-driven successor to the existing approach for capturing key temporal trends in climate models. We combine probability, allowing us to represent uncertainty, with machine learning, a technique to learn relationships from data which are undiscoverable to humans. Our model is often superior to existing baselines when tested in a simple atmospheric simulation.
This article is included in the Encyclopedia of Geosciences
Laura J. Wilcox, Robert J. Allen, Bjørn H. Samset, Massimo A. Bollasina, Paul T. Griffiths, James Keeble, Marianne T. Lund, Risto Makkonen, Joonas Merikanto, Declan O'Donnell, David J. Paynter, Geeta G. Persad, Steven T. Rumbold, Toshihiko Takemura, Kostas Tsigaridis, Sabine Undorf, and Daniel M. Westervelt
Geosci. Model Dev., 16, 4451–4479, https://doi.org/10.5194/gmd-16-4451-2023, https://doi.org/10.5194/gmd-16-4451-2023, 2023
Short summary
Short summary
Changes in anthropogenic aerosol emissions have strongly contributed to global and regional climate change. However, the size of these regional impacts and the way they arise are still uncertain. With large changes in aerosol emissions a possibility over the next few decades, it is important to better quantify the potential role of aerosol in future regional climate change. The Regional Aerosol Model Intercomparison Project will deliver experiments designed to facilitate this.
This article is included in the Encyclopedia of Geosciences
Nicholas Depsky, Ian Bolliger, Daniel Allen, Jun Ho Choi, Michael Delgado, Michael Greenstone, Ali Hamidi, Trevor Houser, Robert E. Kopp, and Solomon Hsiang
Geosci. Model Dev., 16, 4331–4366, https://doi.org/10.5194/gmd-16-4331-2023, https://doi.org/10.5194/gmd-16-4331-2023, 2023
Short summary
Short summary
This work presents a novel open-source modeling platform for evaluating future sea level rise (SLR) impacts. Using nearly 10 000 discrete coastline segments around the world, we estimate 21st-century costs for 230 SLR and socioeconomic scenarios. We find that annual end-of-century costs range from USD 100 billion under a 2 °C warming scenario with proactive adaptation to 7 trillion under a 4 °C warming scenario with minimal adaptation, illustrating the cost-effectiveness of coastal adaptation.
This article is included in the Encyclopedia of Geosciences
Shruti Nath, Lukas Gudmundsson, Jonas Schwaab, Gregory Duveiller, Steven J. De Hertog, Suqi Guo, Felix Havermann, Fei Luo, Iris Manola, Julia Pongratz, Sonia I. Seneviratne, Carl F. Schleussner, Wim Thiery, and Quentin Lejeune
Geosci. Model Dev., 16, 4283–4313, https://doi.org/10.5194/gmd-16-4283-2023, https://doi.org/10.5194/gmd-16-4283-2023, 2023
Short summary
Short summary
Tree cover changes play a significant role in climate mitigation and adaptation. Their regional impacts are key in informing national-level decisions and prioritising areas for conservation efforts. We present a first step towards exploring these regional impacts using a simple statistical device, i.e. emulator. The emulator only needs to train on climate model outputs representing the maximal impacts of aff-, re-, and deforestation, from which it explores plausible in-between outcomes itself.
This article is included in the Encyclopedia of Geosciences
Chen Zhang and Tianyu Fu
Geosci. Model Dev., 16, 4315–4329, https://doi.org/10.5194/gmd-16-4315-2023, https://doi.org/10.5194/gmd-16-4315-2023, 2023
Short summary
Short summary
A new automatic calibration toolkit was developed and implemented into the recalibration of a 3-D water quality model, with observations in a wider range of hydrological variability. Compared to the model calibrated with the original strategy, the recalibrated model performed significantly better in modeled total phosphorus, chlorophyll a, and dissolved oxygen. Our work indicates that hydrological variability in the calibration periods has a non-negligible impact on the water quality models.
This article is included in the Encyclopedia of Geosciences
Camilla Mathison, Eleanor Burke, Andrew J. Hartley, Douglas I. Kelley, Chantelle Burton, Eddy Robertson, Nicola Gedney, Karina Williams, Andy Wiltshire, Richard J. Ellis, Alistair A. Sellar, and Chris D. Jones
Geosci. Model Dev., 16, 4249–4264, https://doi.org/10.5194/gmd-16-4249-2023, https://doi.org/10.5194/gmd-16-4249-2023, 2023
Short summary
Short summary
This paper describes and evaluates a new modelling methodology to quantify the impacts of climate change on water, biomes and the carbon cycle. We have created a new configuration and set-up for the JULES-ES land surface model, driven by bias-corrected historical and future climate model output provided by the Inter-Sectoral Impacts Model Intercomparison Project (ISIMIP). This allows us to compare projections of the impacts of climate change across multiple impact models and multiple sectors.
This article is included in the Encyclopedia of Geosciences
Bo Dong, Ross Bannister, Yumeng Chen, Alison Fowler, and Keith Haines
Geosci. Model Dev., 16, 4233–4247, https://doi.org/10.5194/gmd-16-4233-2023, https://doi.org/10.5194/gmd-16-4233-2023, 2023
Short summary
Short summary
Traditional Kalman smoothers are expensive to apply in large global ocean operational forecast and reanalysis systems. We develop a cost-efficient method to overcome the technical constraints and to improve the performance of existing reanalysis products.
This article is included in the Encyclopedia of Geosciences
Makcim L. De Sisto, Andrew H. MacDougall, Nadine Mengis, and Sophia Antoniello
Geosci. Model Dev., 16, 4113–4136, https://doi.org/10.5194/gmd-16-4113-2023, https://doi.org/10.5194/gmd-16-4113-2023, 2023
Short summary
Short summary
In this study, we developed a nitrogen and phosphorus cycle in an intermediate-complexity Earth system climate model. We found that the implementation of nutrient limitation in simulations has reduced the capacity of land to take up atmospheric carbon and has decreased the vegetation biomass, hence, improving the fidelity of the response of land to simulated atmospheric CO2 rise.
This article is included in the Encyclopedia of Geosciences
Manuel C. Almeida and Pedro S. Coelho
Geosci. Model Dev., 16, 4083–4112, https://doi.org/10.5194/gmd-16-4083-2023, https://doi.org/10.5194/gmd-16-4083-2023, 2023
Short summary
Short summary
Water temperature (WT) datasets of low-order rivers are scarce. In this study, five different models are used to predict the WT of 83 rivers. Generally, the results show that the models' hyperparameter optimization is essential and that to minimize the prediction error it is relevant to apply all the models considered in this study. Results also show that there is a logarithmic correlation among the error of the predicted river WT and the watershed time of concentration.
This article is included in the Encyclopedia of Geosciences
Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung
Geosci. Model Dev., 16, 4017–4040, https://doi.org/10.5194/gmd-16-4017-2023, https://doi.org/10.5194/gmd-16-4017-2023, 2023
Short summary
Short summary
Accurately modeling plant coexistence in vegetation demographic models like ELM-FATES is challenging. This study proposes a repeatable method that uses machine-learning-based surrogate models to optimize plant trait parameters in ELM-FATES. Our approach significantly improves plant coexistence modeling, thus reducing errors. It has important implications for modeling ecosystem dynamics in response to climate change.
This article is included in the Encyclopedia of Geosciences
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
This article is included in the Encyclopedia of Geosciences
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
This article is included in the Encyclopedia of Geosciences
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Duseong S. Jo, Simone Tilmes, Louisa K. Emmons, Siyuan Wang, and Francis Vitt
Geosci. Model Dev., 16, 3893–3906, https://doi.org/10.5194/gmd-16-3893-2023, https://doi.org/10.5194/gmd-16-3893-2023, 2023
Short summary
Short summary
A new simple secondary organic aerosol (SOA) scheme has been developed for the Community Atmosphere Model (CAM) based on the complex SOA scheme in CAM with detailed chemistry (CAM-chem). The CAM with the new SOA scheme shows better agreements with CAM-chem in terms of aerosol concentrations and radiative fluxes, which ensures more consistent results between different compsets in the Community Earth System Model. The new SOA scheme also has technical advantages for future developments.
This article is included in the Encyclopedia of Geosciences
Leroy J. Bird, Matthew G. W. Walker, Greg E. Bodeker, Isaac H. Campbell, Guangzhong Liu, Swapna Josmi Sam, Jared Lewis, and Suzanne M. Rosier
Geosci. Model Dev., 16, 3785–3808, https://doi.org/10.5194/gmd-16-3785-2023, https://doi.org/10.5194/gmd-16-3785-2023, 2023
Short summary
Short summary
Deriving the statistics of expected future changes in extreme precipitation is challenging due to these events being rare. Regional climate models (RCMs) are computationally prohibitive for generating ensembles capable of capturing large numbers of extreme precipitation events with statistical robustness. Stochastic precipitation generators (SPGs) provide an alternative to RCMs. We describe a novel single-site SPG that learns the statistics of precipitation using a machine-learning approach.
This article is included in the Encyclopedia of Geosciences
Zhe Zhang, Yanping Li, Fei Chen, Phillip Harder, Warren Helgason, James Famiglietti, Prasanth Valayamkunnath, Cenlin He, and Zhenhua Li
Geosci. Model Dev., 16, 3809–3825, https://doi.org/10.5194/gmd-16-3809-2023, https://doi.org/10.5194/gmd-16-3809-2023, 2023
Short summary
Short summary
Crop models incorporated in Earth system models are essential to accurately simulate crop growth processes on Earth's surface and agricultural production. In this study, we aim to model the spring wheat in the Northern Great Plains, focusing on three aspects: (1) develop the wheat model at a point scale, (2) apply dynamic planting and harvest schedules, and (3) adopt a revised heat stress function. The results show substantial improvements and have great importance for agricultural production.
This article is included in the Encyclopedia of Geosciences
Abolfazl Simorgh, Manuel Soler, Daniel González-Arribas, Florian Linke, Benjamin Lührs, Maximilian M. Meuser, Simone Dietmüller, Sigrun Matthes, Hiroshi Yamashita, Feijia Yin, Federica Castino, Volker Grewe, and Sabine Baumann
Geosci. Model Dev., 16, 3723–3748, https://doi.org/10.5194/gmd-16-3723-2023, https://doi.org/10.5194/gmd-16-3723-2023, 2023
Short summary
Short summary
This paper addresses the robust climate optimal trajectory planning problem under uncertain meteorological conditions within the structured airspace. Based on the optimization methodology, a Python library has been developed, which can be accessed using the following DOI: https://doi.org/10.5281/zenodo.7121862. The developed tool is capable of providing robust trajectories taking into account all probable realizations of meteorological conditions provided by an EPS computationally very fast.
This article is included in the Encyclopedia of Geosciences
Matteo Willeit, Tatiana Ilyina, Bo Liu, Christoph Heinze, Mahé Perrette, Malte Heinemann, Daniela Dalmonech, Victor Brovkin, Guy Munhoven, Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Andrey Ganopolski
Geosci. Model Dev., 16, 3501–3534, https://doi.org/10.5194/gmd-16-3501-2023, https://doi.org/10.5194/gmd-16-3501-2023, 2023
Short summary
Short summary
In this paper we present the carbon cycle component of the newly developed fast Earth system model CLIMBER-X. The model can be run with interactive atmospheric CO2 to investigate the feedbacks between climate and the carbon cycle on temporal scales ranging from decades to > 100 000 years. CLIMBER-X is expected to be a useful tool for studying past climate–carbon cycle changes and for the investigation of the long-term future evolution of the Earth system.
This article is included in the Encyclopedia of Geosciences
Jatan Buch, A. Park Williams, Caroline S. Juang, Winslow D. Hansen, and Pierre Gentine
Geosci. Model Dev., 16, 3407–3433, https://doi.org/10.5194/gmd-16-3407-2023, https://doi.org/10.5194/gmd-16-3407-2023, 2023
Short summary
Short summary
We leverage machine learning techniques to construct a statistical model of grid-scale fire frequencies and sizes using climate, vegetation, and human predictors. Our model reproduces the observed trends in fire activity across multiple regions and timescales. We provide uncertainty estimates to inform resource allocation plans for fuel treatment and fire management. Altogether the accuracy and efficiency of our model make it ideal for coupled use with large-scale dynamical vegetation models.
This article is included in the Encyclopedia of Geosciences
Sebastian Ostberg, Christoph Müller, Jens Heinke, and Sibyll Schaphoff
Geosci. Model Dev., 16, 3375–3406, https://doi.org/10.5194/gmd-16-3375-2023, https://doi.org/10.5194/gmd-16-3375-2023, 2023
Short summary
Short summary
We present a new toolbox for generating input datasets for terrestrial ecosystem models from diverse and partially conflicting data sources. The toolbox documents the sources and processing of data and is designed to make inconsistencies between source datasets transparent so that users can make their own decisions on how to resolve these should they not be content with our default assumptions. As an example, we use the toolbox to create input datasets at two different spatial resolutions.
This article is included in the Encyclopedia of Geosciences
Alena Malyarenko, Alexandra Gossart, Rui Sun, and Mario Krapp
Geosci. Model Dev., 16, 3355–3373, https://doi.org/10.5194/gmd-16-3355-2023, https://doi.org/10.5194/gmd-16-3355-2023, 2023
Short summary
Short summary
Simultaneous modelling of ocean, sea ice, and atmosphere in coupled models is critical for understanding all of the processes that happen in the Antarctic. Here we have developed a coupled model for the Ross Sea, P-SKRIPS, that conserves heat and mass between the ocean and sea ice model (MITgcm) and the atmosphere model (PWRF). We have shown that our developments reduce the model drift, which is important for long-term simulations. P-SKRIPS shows good results in modelling coastal polynyas.
This article is included in the Encyclopedia of Geosciences
Feijia Yin, Volker Grewe, Federica Castino, Pratik Rao, Sigrun Matthes, Katrin Dahlmann, Simone Dietmüller, Christine Frömming, Hiroshi Yamashita, Patrick Peter, Emma Klingaman, Keith P. Shine, Benjamin Lührs, and Florian Linke
Geosci. Model Dev., 16, 3313–3334, https://doi.org/10.5194/gmd-16-3313-2023, https://doi.org/10.5194/gmd-16-3313-2023, 2023
Short summary
Short summary
This paper describes a newly developed submodel ACCF V1.0 based on the MESSy 2.53.0 infrastructure. The ACCF V1.0 is based on the prototype algorithmic climate change functions (aCCFs) v1.0 to enable climate-optimized flight trajectories. One highlight of this paper is that we describe a consistent full set of aCCFs formulas with respect to fuel scenario and metrics. We demonstrate the usage of the ACCF submodel using AirTraf V2.0 to optimize trajectories for cost and climate impact.
This article is included in the Encyclopedia of Geosciences
Peter Ukkonen and Robin J. Hogan
Geosci. Model Dev., 16, 3241–3261, https://doi.org/10.5194/gmd-16-3241-2023, https://doi.org/10.5194/gmd-16-3241-2023, 2023
Short summary
Short summary
Climate and weather models suffer from uncertainties resulting from approximated processes. Solar and thermal radiation is one example, as it is computationally too costly to simulate precisely. This has led to attempts to replace radiation codes based on physical equations with neural networks (NNs) that are faster but uncertain. In this paper we use global weather simulations to demonstrate that a middle-ground approach of using NNs only to predict optical properties is accurate and reliable.
This article is included in the Encyclopedia of Geosciences
Maximilian Gelbrecht, Alistair White, Sebastian Bathiany, and Niklas Boers
Geosci. Model Dev., 16, 3123–3135, https://doi.org/10.5194/gmd-16-3123-2023, https://doi.org/10.5194/gmd-16-3123-2023, 2023
Short summary
Short summary
Differential programming is a technique that enables the automatic computation of derivatives of the output of models with respect to model parameters. Applying these techniques to Earth system modeling leverages the increasing availability of high-quality data to improve the models themselves. This can be done by either using calibration techniques that use gradient-based optimization or incorporating machine learning methods that can learn previously unresolved influences directly from data.
This article is included in the Encyclopedia of Geosciences
Carolina Gallo, Jonathan M. Eden, Bastien Dieppois, Igor Drobyshev, Peter Z. Fulé, Jesús San-Miguel-Ayanz, and Matthew Blackett
Geosci. Model Dev., 16, 3103–3122, https://doi.org/10.5194/gmd-16-3103-2023, https://doi.org/10.5194/gmd-16-3103-2023, 2023
Short summary
Short summary
This study conducts the first global evaluation of the latest generation of global climate models to simulate a set of fire weather indicators from the Canadian Fire Weather Index System. Models are shown to perform relatively strongly at the global scale, but they show substantial regional and seasonal differences. The results demonstrate the value of model evaluation and selection in producing reliable fire danger projections, ultimately to support decision-making and forest management.
This article is included in the Encyclopedia of Geosciences
Klaus Klingmüller and Jos Lelieveld
Geosci. Model Dev., 16, 3013–3028, https://doi.org/10.5194/gmd-16-3013-2023, https://doi.org/10.5194/gmd-16-3013-2023, 2023
Short summary
Short summary
Desert dust has significant impacts on climate, public health, infrastructure and ecosystems. An impact assessment requires numerical predictions, which are challenging because the dust emissions are not well known. We present a novel approach using satellite observations and machine learning to more accurately estimate the emissions and to improve the model simulations.
This article is included in the Encyclopedia of Geosciences
Anna Denvil-Sommer, Erik T. Buitenhuis, Rainer Kiko, Fabien Lombard, Lionel Guidi, and Corinne Le Quéré
Geosci. Model Dev., 16, 2995–3012, https://doi.org/10.5194/gmd-16-2995-2023, https://doi.org/10.5194/gmd-16-2995-2023, 2023
Short summary
Short summary
Using outputs of global biogeochemical ocean model and machine learning methods, we demonstrate that it will be possible to identify linkages between surface environmental and ecosystem structure and the export of carbon to depth by sinking organic particles using real observations. It will be possible to use this knowledge to improve both our understanding of ecosystem dynamics and of their functional representation within models.
This article is included in the Encyclopedia of Geosciences
Zhenxia Liu, Zengjie Wang, Jian Wang, Zhengfang Zhang, Dongshuang Li, Zhaoyuan Yu, Linwang Yuan, and Wen Luo
Geosci. Model Dev., 16, 2939–2955, https://doi.org/10.5194/gmd-16-2939-2023, https://doi.org/10.5194/gmd-16-2939-2023, 2023
Short summary
Short summary
This study introduces an improved method of the Globally Resolved Energy Balance (GREB) model by the Bayesian network. The improved method constructs a coarse–fine structure that combines a dynamical model with a statistical model based on employing the GREB model as the global framework and utilizing Bayesian networks as the local optimization. The results show that the improved model has better applicability and stability on a global scale and maintains good robustness on the timescale.
This article is included in the Encyclopedia of Geosciences
Colin Tully, David Neubauer, and Ulrike Lohmann
Geosci. Model Dev., 16, 2957–2973, https://doi.org/10.5194/gmd-16-2957-2023, https://doi.org/10.5194/gmd-16-2957-2023, 2023
Short summary
Short summary
A new method to simulate deterministic ice nucleation processes based on the differential activated fraction was evaluated against a cumulative approach. Box model simulations of heterogeneous-only ice nucleation within cirrus suggest that the latter approach likely underpredicts the ice crystal number concentration. Longer simulations with a GCM show that choosing between these two approaches impacts ice nucleation competition within cirrus but leads to small and insignificant climate effects.
This article is included in the Encyclopedia of Geosciences
Rasmus E. Benestad, Abdelkader Mezghani, Julia Lutz, Andreas Dobler, Kajsa M. Parding, and Oskar A. Landgren
Geosci. Model Dev., 16, 2899–2913, https://doi.org/10.5194/gmd-16-2899-2023, https://doi.org/10.5194/gmd-16-2899-2023, 2023
Short summary
Short summary
A mathematical method known as common EOFs is not widely used within the climate research community, but it offers innovative ways of evaluating climate models. We show how common EOFs can be used to evaluate large ensembles of global climate model simulations and distill information about their ability to reproduce salient features of the regional climate. We can say that they represent a kind of machine learning (ML) for dealing with big data.
This article is included in the Encyclopedia of Geosciences
Li Liu, Chao Sun, Xinzhu Yu, Hao Yu, Qingu Jiang, Xingliang Li, Ruizhe Li, Bin Wang, Xueshun Shen, and Guangwen Yang
Geosci. Model Dev., 16, 2833–2850, https://doi.org/10.5194/gmd-16-2833-2023, https://doi.org/10.5194/gmd-16-2833-2023, 2023
Short summary
Short summary
C-Coupler3.0 is an integrated coupler infrastructure with new features, i.e. a series of parallel-optimization technologies, a common halo-exchange library, a common module-integration framework, a common framework for conveniently developing a weakly coupled ensemble data assimilation system, and a common framework for flexibly inputting and outputting fields in parallel. It is able to handle coupling under much finer resolutions (e.g. more than 100 million horizontal grid cells).
This article is included in the Encyclopedia of Geosciences
Joseph Schoonover, Wilbert Weijer, and Jiaxu Zhang
Geosci. Model Dev., 16, 2795–2809, https://doi.org/10.5194/gmd-16-2795-2023, https://doi.org/10.5194/gmd-16-2795-2023, 2023
Short summary
Short summary
FEOTS aims to enhance the value of data produced by state-of-the-art climate models by providing a framework to diagnose and use ocean transport operators for offline passive tracer simulations. We show that we can capture ocean transport operators from a validated climate model and employ these operators to estimate water mass budgets in an offline regional simulation, using a small fraction of the compute resources required to run a full climate simulation.
This article is included in the Encyclopedia of Geosciences
Johann Dahm, Eddie Davis, Florian Deconinck, Oliver Elbert, Rhea George, Jeremy McGibbon, Tobias Wicky, Elynn Wu, Christopher Kung, Tal Ben-Nun, Lucas Harris, Linus Groner, and Oliver Fuhrer
Geosci. Model Dev., 16, 2719–2736, https://doi.org/10.5194/gmd-16-2719-2023, https://doi.org/10.5194/gmd-16-2719-2023, 2023
Short summary
Short summary
It is hard for scientists to write code which is efficient on different kinds of supercomputers. Python is popular for its user-friendliness. We converted a Fortran code, simulating Earth's atmosphere, into Python. This new code auto-converts to a faster language for processors or graphic cards. Our code runs 3.5–4 times faster on graphic cards than the original on processors in a specific supercomputer system.
This article is included in the Encyclopedia of Geosciences
Anthony Schrapffer, Jan Polcher, Anna Sörensson, and Lluís Fita
EGUsphere, https://doi.org/10.5194/egusphere-2023-549, https://doi.org/10.5194/egusphere-2023-549, 2023
Short summary
Short summary
The present paper introduces a floodplains scheme for a high resolution Land Surface Model river routing. It was developed and evaluated over one of the world’s largest floodplains: the Pantanal in South America. This shows the impact of tropical floodplains on land surface conditions (soil moisture, temperature) and on land atmosphere fluxes and highlights the potential impact of floodplains on land-atmosphere interactions and the importance of integrating this module in coupled simulations.
This article is included in the Encyclopedia of Geosciences
Jan Polcher, Anthony Schrapffer, Eliott Dupont, Lucia Rinchiuso, Xudong Zhou, Olivier Boucher, Emmanuel Mouche, Catherine Ottlé, and Jérôme Servonnat
Geosci. Model Dev., 16, 2583–2606, https://doi.org/10.5194/gmd-16-2583-2023, https://doi.org/10.5194/gmd-16-2583-2023, 2023
Short summary
Short summary
The proposed graphs of hydrological sub-grid elements for atmospheric models allow us to integrate the topographical elements needed in land surface models for a realistic representation of horizontal water and energy transport. The study demonstrates the numerical properties of the automatically built graphs and the simulated water flows.
This article is included in the Encyclopedia of Geosciences
Magnus Hieronymus
Geosci. Model Dev., 16, 2343–2354, https://doi.org/10.5194/gmd-16-2343-2023, https://doi.org/10.5194/gmd-16-2343-2023, 2023
Short summary
Short summary
A statistical model called the sea level simulator is presented and made freely available. The sea level simulator integrates mean sea level rise and sea level extremes into a joint probabilistic framework that is useful for flood risk estimation. These flood risk estimates are contingent on probabilities given to different emission scenarios and the length of the planning period. The model is also useful for uncertainty quantification and in decision and adaptation problems.
This article is included in the Encyclopedia of Geosciences
Jon Seddon, Ag Stephens, Matthew S. Mizielinski, Pier Luigi Vidale, and Malcolm J. Roberts
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-46, https://doi.org/10.5194/gmd-2023-46, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
The PRIMAVERA project aimed to develop a new generation of advanced global climate models. The large volume of data generated was uploaded to a Central Analysis Facility (CAF) and was analysed by 100 PRIMAVERA scientists there. We describe how the PRIMAVERA project used the CAF's facilities to enable users to analyse this large data set. We believe that similar, multi institute, big-data projects could also use a CAF to efficiently share, organise and analyse large volumes of data.
This article is included in the Encyclopedia of Geosciences
Quang-Van Doan, Toshiyuki Amagasa, Thanh-Ha Pham, Takuto Sato, Fei Chen, and Hiroyuki Kusaka
Geosci. Model Dev., 16, 2215–2233, https://doi.org/10.5194/gmd-16-2215-2023, https://doi.org/10.5194/gmd-16-2215-2023, 2023
Short summary
Short summary
This study proposes (i) the structural k-means (S k-means) algorithm for clustering spatiotemporally structured climate data and (ii) the clustering uncertainty evaluation framework (CUEF) based on the mutual-information concept.
This article is included in the Encyclopedia of Geosciences
Nadine Goris, Klaus Johannsen, and Jerry Tjiputra
Geosci. Model Dev., 16, 2095–2117, https://doi.org/10.5194/gmd-16-2095-2023, https://doi.org/10.5194/gmd-16-2095-2023, 2023
Short summary
Short summary
Climate projections of a high-CO2 future are highly uncertain. A new study provides a novel approach to identifying key regions that dynamically explain the model uncertainty. To yield an accurate estimate of the future North Atlantic carbon uptake, we find that a correct simulation of the upper- and interior-ocean volume transport at 25–30° N is key. However, results indicate that models rarely perform well for both indicators and point towards inconsistencies within the model ensemble.
This article is included in the Encyclopedia of Geosciences
Cited articles
Alexander, K. and Easterbrook, S. M.:
The software architecture of climate models: a graphical comparison of CMIP5 and EMICAR5 configurations, Geosci. Model Dev., 8, 1221–1232, https://doi.org/10.5194/gmd-8-1221-2015, 2015. a, b
Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P.,
Keutzer, K., Patterson, D. A., Plishker, W. L., Shalf, J., Williams, S. W.,
and Yelick, K.: The Landscape of Parallel Computing Research: A View from
Berkeley, Tech. Rep. UCB/EECS-2006-183, University of California, Berkely,
USA, 2006. a
Baker, A. H., Hammerling, D. M., Levy, M. N., Xu, H., Dennis, J. M., Eaton, B. E., Edwards, J., Hannay, C., Mickelson, S. A., Neale, R. B., Nychka, D., Shollenberger, J., Tribbia, J., Vertenstein, M., and Williamson, D.:
A new ensemble-based consistency test for the Community Earth System Model (pyCECT v1.0),
Geosci. Model Dev.,
8, 2829–2840, https://doi.org/10.5194/gmd-8-2829-2015, 2015. a
Balaji, V., Benson, R., Wyman, B., and Held, I.:
Coarse-grained component concurrency in Earth system modeling: parallelizing atmospheric radiative transfer in the GFDL AM3 model using the Flexible Modeling System coupling framework,
Geosci. Model Dev.,
9, 3605–3616, https://doi.org/10.5194/gmd-9-3605-2016, 2016. a, b, c
Balaji, V., Maisonnave, E., Zadeh, N., Lawrence, B. N., Biercamp, J., Fladrich, U., Aloisio, G., Benson, R., Caubel, A., Durachta, J., Foujols, M.-A., Lister, G., Mocavero, S., Underwood, S., and Wright, G.:
CPMIP: measurements of real computational performance of Earth system models in CMIP6,
Geosci. Model Dev.,
10, 19–34, https://doi.org/10.5194/gmd-10-19-2017, 2017. a
Bessières, L., Leroux, S., Brankart, J.-M., Molines, J.-M., Moine, M.-P., Bouttier, P.-A., Penduff, T., Terray, L., Barnier, B., and Sérazin, G.:
Development of a probabilistic ocean modelling system based on NEMO 3.5: application at eddying resolution,
Geosci. Model Dev.,
10, 1091–1106, https://doi.org/10.5194/gmd-10-1091-2017, 2017. a
Craig, A., Valcke, S., and Coquart, L.:
Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0,
Geosci. Model Dev.,
10, 3297–3308, https://doi.org/10.5194/gmd-10-3297-2017, 2017. a
Dagum, L. and Menon, R.:
OpenMP: an industry standard API for shared-memory programming,
IEEE Comput. Sci. Eng.,
5, 46–55, https://doi.org/10.1109/99.660313, 1998. a
Davies, T., Cullen, M. J. P., Malcolm, A. J., Mawson, M. H., Staniforth, A., White, A. A., and Wood, N.:
A new dynamical core for the Met Office's global and regional modelling of the atmosphere,
Q. J. Roy. Meteor. Soc.,
131, 1759–1782, https://doi.org/10.1256/qj.04.101, 2005. a
Deconinck, W., Hamrud, M., Kühnlein, C.,
Mozdzynski, G., K. Smolarkiewicz, P., Szmelter, J., and Wedi, N. P.:
Accelerating extreme-scale numerical weather prediction, in: Parallel
Processing and Applied Mathematics, vol. 9574 of Lecture Notes in Computer
Science, Springer, Cham, 583–593, https://doi.org/10.1007/978-3-319-32152-3_54, 2016. a
Deconinck, W., Bauer, P., Diamantakis, M., Hamrud, M., Kühnlein, C., Maciel, P., Mengaldo, G., Quintino, T., Raoult, B., Smolarkiewicz, P. K., and Wedi, N. P.:
Atlas, a library for numerical weather prediction and climate modelling,
Comput. Phys. Commun.,
220, 188–204, https://doi.org/10.1016/j.cpc.2017.07.006, 2017. a
Dennis, J. M. and Tufo, H. M.:
Scaling climate simulation applications on the IBM Blue Gene/L system,
IBM J. Res. Dev.,
52, 117–126, https://doi.org/10.1147/rd.521.0117, 2008. a
Duran, A., Ayguadé, E., Badia, R. M., Labarta, J., Martinell, L., Martorell, X., and Planas, J.:
OmpSs: a proposal for programming heterogeneous multi-core architectures,
Parallel Processing Letters,
21, 173–193, https://doi.org/10.1142/S0129626411000151, 2011. a
Easterbrook, S. M. and Johns, T. C.:
Engineering the software for understanding climate change,
IEEE Comput. Sci. Eng.,
11, 65–74, https://doi.org/10.1109/MCSE.2009.193, 2009. a
Edwards, H. C., Sunderland, D., Porter, V., Amsler, C., and Mish, S.:
Manycore performance-portability: Kokkos Multidimensional Array Library,
Sci. Programming-Neth., 20, 89–114, 2012. a
Ford, R., Glover, M. J., Ham, D. A., Maynard, C. M., Pickles, S. M.,
Riley, G., and Wood, N.: Gung Ho Phase 1: Computational Science
Recommendations, Forecasting Research Technical Report 587, Met Office,
Exeter, UK, 2013. a
Fu, H., Liao, J., Xue, W., Wang, L., Chen, D., Gu, L., Xu, J., Ding, N.,
Wang, X., He, C., Xu, S., Liang, Y., Fang, J., Xu, Y., Zheng, W., Xu, J.,
Zheng, Z., Wei, W., Ji, X., Zhang, H., Chen, B., Li, K., Huang, X., Chen, W.,
and Yang, G.: Refactoring and optimizing the Community Atmosphere Model (CAM)
on the Sunway Taihulight Supercomputer, in: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
SC '16, IEEE Press, Piscataway, NJ, USA, 13–18 November 2016, 83:1–83:12,
2016. a, b
Fuhrer, O., Bianco, M., Bey, I., and Schaer, C.: PASC | Grid Tools,
available at: http://www.pasc-ch.org/projects/2013-2016/grid-tools/
(last access: 20 April 2018), 2014a. a
Fuhrer, O., Osuna, C., Lapillonne, X., Gysi, T., Cumming, B., Bianco, M.,
Arteaga, A., and Schulthess, T. C.: Towards a performance portable,
architecture agnostic implementation strategy for weather and climate models,
Supercomputing Frontiers and Innovations, 1, 45–62,
https://doi.org/10.14529/jsfi140103, 2014b. a, b, c
Geleyn, J.-F., Mašek, J., Brožková, R., Kuma, P., Degrauwe, D., Hello, G., and Pristov, N.:
Single interval longwave radiation scheme based on the net exchanged rate decomposition with bracketing: single interval longwave radiation scheme,
Q. J. Roy. Meteor. Soc.,
143, 1313–1335, https://doi.org/10.1002/qj.3006, 2017. a
Gonzalez, J., Gimenez, J., Casas, M., Moreto, M., Ramirez, A., Labarta, J., and Valero, M.:
Simulating whole supercomputer applications,
IEEE Micro,
31, 32–45, https://doi.org/10.1109/MM.2011.58, 2011. a
Govett, M., Middlecoff, J., and Henderson, T.: Directive-based
parallelization of the NIM Weather Model for GPUs, in: 2014 First Workshop on
Accelerator Programming Using Directives (WACCPD), New Orleans, USA,
17 November 2014, 55–61, https://doi.org/10.1109/WACCPD.2014.9, 2014. a
Govett, M., Rosinski, J., Middlecoff, J., Henderson, T., Lee, J.,
MacDonald, A., Wang, N., Madden, P., Schramm, J., and Duarte, A.:
Parallelization and performance of the NIM Weather Model on CPU, GPU and MIC
processors, B. Am. Meteorol. Soc., 98, 2201–2213,
https://doi.org/10.1175/BAMS-D-15-00278.1, 2017. a
Gropp, W. and Snir, M.:
Programming for exascale computers,
Comput. Sci. Eng.,
15, 27–35, https://doi.org/10.1109/MCSE.2013.96, 2013. a, b
Gropp, W., Lusk, E., Doss, N., and Skjellum, A.:
A high-performance, portable implementation of the MPI message passing interface standard,
Parallel Comput.,
22, 789–828, https://doi.org/10.1016/0167-8191(96)00024-5, 1996. a
Grünewald, D. and Simmendinger, C.: The GASPI API specification and its
implementation GPI 2.0, in: Proceedings of the 7th International Conference
on PGAS Programming Models, edited by: Weiland, M., Jackson, A., and
Johnson, N., University of Edinburgh, Edinburgh, UK, 3 October 2013,
243–248, 2013. a
Günther, F., Mehl, M., Pögl, M., and Zenger, C.:
A cache-aware algorithm for PDEs on hierarchical data structures based on space-filling curves,
SIAM J. Sci. Comput.,
28, 1634–1650, https://doi.org/10.1137/040604078, 2006. a
Hanappe, P., Beurivé, A., Laguzet, F., Steels, L., Bellouin, N., Boucher, O., Yamazaki, Y. H., Aina, T., and Allen, M.:
FAMOUS, faster: using parallel computing techniques to accelerate the FAMOUS/HadCM3 climate model with a focus on the radiative transfer algorithm,
Geosci. Model Dev.,
4, 835–844, https://doi.org/10.5194/gmd-4-835-2011, 2011. a, b
Heroux, M. A., Doerfler, D. W., Crozier, P. S., Willenbring, J. M.,
Edwards, H. C., Williams, A., Rajan, M., Keiter, E. R., Thornquist, H. K.,
and Numrich, R. W.: Improving Performance via Mini-Applications, Tech. Rep.
SAND2009-5574, Sandia National Laboratories, Albuquerque, USA, 2009. a
Hortal, M. and Simmons, A.: Use of reduced Gaussian grids in spectral models,
Mon. Weather Rev., 119, 1057–1074, 1991. a
Jouppi, N. P., Young, C.,
Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia, S.,
Boden, N., Borchers, A., Boyle, R., Cantin, P.-l., Chao, C., Clark, C.,
Coriell, J., Daley, M., Dau, M., Dean, J., Gelb, B., Vazir Ghaemmaghami, T.,
Gottipati, R., Gulland, W., Hagmann, R., Ho, C. R., Hogberg, D., Hu, J.,
Hundt, R., Hurt, D., Ibarz, J., Jaffey, A., Jaworski, A., Kaplan, A.,
Khaitan, H., Koch, A., Kumar, N., Lacy, S., Laudon, J., Law, J., Le, D.,
Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean, G., Maggiore, A.,
Mahony, M., Miller, K., Nagarajan, R., Narayanaswami, R., Ni, R., Nix, K.,
Norrie, T., Omernick, M., Penukonda, N., Phelps, A., Ross, J., Ross, M.,
Salek, A., Samadiani, E., Severn, C., Sizikov, G., Snelham, M., Souter, J.,
Steinberg, D., Swing, A., Tan, M., Thorson, G., Tian, B., Toma, H.,
Tuttle, E., Vasudevan, V., Walter, R., Wang, W., Wilcox, E., and Yoon, D. H.:
In-Datacenter Performance Analysis of a Tensor Processing Unit, in:
Proceedings of the 44th Annual International Symposium on Computer
Architecture, ISCA'17, ACM, Toronto, ON, Canada, 24–28 June 2017, 1–12,
https://doi.org/10.1145/3079856.3080246, 2017. a
Knüpfer, A., Brendel, R., Brunst, H., Mix, H., and Nagel, W. E.:
Introducing the Open Trace Format (OTF),
in:
Computational Science – ICCS 2006,
Springer, Berlin, Heidelberg, https://doi.org/10.1007/11758525_71, 526–533, 2006. a
Kogge, P. M.:
Updating the energy model for future exascale systems,
in:
High Performance Computing, vol. 9137,
edited by:
Kunkel, J. M. and Ludwig, T.,
Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-20119-1_24, 323–339, 2015. a
Kühnlein, C. and Smolarkiewicz, P. K.:
An unstructured-mesh finite-volume MPDATA for compressible atmospheric dynamics,
J. Comput. Phys.,
334, 16–30, https://doi.org/10.1016/j.jcp.2016.12.054, 2017. a
Labarta, J., Giménez, J., Martínez, E., González, P., Servat, H., Llort, G., and Aguilar, X.:
Scalability of tracing and visualization tools,
in:
Parallel Computing: Current & Future Issues of High-End Computing, no. 33 in John von Neumann Institute for Computing Series,
edited by:
Joubert, G. R., Nage, W. E., Peters, F. J., Plata, O. G., Tirado, P., and Zapata, E. L.,
Central Institute for Applied Mathematics, Julich, 869–876, 2005. a
Leutwyler, D., Fuhrer, O., Lapillonne, X., Lüthi, D., and Schär, C.:
Towards European-scale convection-resolving climate simulations with GPUs: a study with COSMO 4.19,
Geosci. Model Dev.,
9, 3393–3412, https://doi.org/10.5194/gmd-9-3393-2016, 2016. a
Li, J., Liao, W.-k., Choudhary, A., Ross, R., Thakur, R., Gropp, W.,
Latham, R., Siegel, A., Gallagher, B., and Zingale, M.: Parallel netCDF:
a high-performance scientific I/O interface, in: Supercomputing, 2003
ACM/IEEE Conference, Phoenix, USA, 15–21 November 2003, 39–39,
https://doi.org/10.1109/SC.2003.10053, 2003. a
Linford, J. C., Michalakes, J., Vachharajani, M., and Sandu, A.: Multi-core
acceleration of chemical kinetics for simulation and prediction, in:
Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis, Portland, USA, 14–20 November 2009, 1–11,
https://doi.org/10.1145/1654059.1654067, 2009. a
Marras, S., Kelly, J., Moragues, M., Müller, A., Kopera, M.,
Vázquez, M., Giraldo, F., Houzeaux, G., and Jorba, O.: A review of
element-based Galerkin methods for numerical weather prediction: finite
elements, spectral elements, and discontinuous Galerkin, Arch. Comput.
Method. E., 23, 673–722, 2016. a
Martineau, M., McIntosh-Smith, S., and Gaudin, W.: Evaluating OpenMP 4.0's
effectiveness as a heterogeneous parallel programming model, in: 2016 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), Chicago, USA, 338–347, 23 May 2016, https://doi.org/10.1109/IPDPSW.2016.70,
2016. a
Memeti, S., Li, L., Pllana, S., Kolodziej, J., and Kessler, C.: Benchmarking
OpenCL, OpenACC, OpenMP, and CUDA: programming productivity, performance, and
energy consumption, arXiv:1704.05316 [cs], available at :
http://arxiv.org/abs/1704.05316 (last access: 4 May 2018), 2017. a
Méndez, M., Tinetti, F. G., and Overbey, J. L.: Climate models:
challenges for Fortran development tools, in: 2014 Second International
Workshop on Software Engineering for High Performance Computing in
Computational Science and Engineering, New Orleans, USA, 21 November 2014,
6–12, https://doi.org/10.1109/SE-HPCCSE.2014.7, 2014. a
Mengaldo, G.: Definition of Several Weather and Climate Dwarfs, Tech. Rep.
ESCAPE WP1/T1.1, ECMWF, Reading, UK, 2014. a
Michalakes, J. and Vachharajani, M.: GPU acceleration of numerical weather
prediction, in: IPDPS 2008, IEEE International Symposium On Parallel and
Distributed Processing, Miami, USA, 14–18 April 2008, 1–7,
https://doi.org/10.1109/IPDPS.2008.4536351, 2008. a
Michalakes, J., Iacono, M. J., and Jessup, E. R.: Optimizing weather model
radiative transfer physics for Intel's Many Integrated Core (MIC)
architecture, Parallel Processing Letters, 26, 1650019,
https://doi.org/10.1142/S0129626416500195, 2016. a
Mittal, S. and Vetter, J. S.:
A survey of CPU-GPU heterogeneous computing techniques,
ACM Comput. Surv.,
47, 69:1–69:35, https://doi.org/10.1145/2788396, 2015. a
Mozdzynski, G., Hamrud, M., Wedi, N., Doleschal, J., and Richardson, H.:
A PGAS implementation by co-design of the ECMWF Integrated Forecasting System
(IFS), in: 2012 SC Companion: High Performance Computing, Networking Storage
and Analysis, Salt Lake City, USA, 652–661,
https://doi.org/10.1109/SC.Companion.2012.90, 2012. a
Mutlu, O.:Main memory scaling: challenges and solution directions, in: More
than Moore Technologies for Next Generation Computer Design, edited by:
Topaloglu, R. O., Springer, New York, https://doi.org/10.1007/978-1-4939-2163-8_6,
127–153, 2015. a
Nieplocha, J., Palmer, B., Tipparaju, V., Krishnan, M., Trease, H., and Apra, E.:
Advances, applications and performance of the global arrays shared memory programming toolkit,
Int. J. High Perform. C.,
20, 203–231, https://doi.org/10.1177/1094342006064503, 2006. a
NVIDIA: NVIDIA's Next Generation CUDA Compute Architecture Kepler GK110,
available at:
http://www.nvidia.co.uk/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
(last access: 4 May 2018), 2012. a
Perez, J. M., Badia, R. M., and Labarta, J.: A dependency-aware task-based
programming environment for multi-core architectures, in: 2008 IEEE
International Conference on Cluster Computing, Tsukuba, Japan, 142–151,
https://doi.org/10.1109/CLUSTR.2008.4663765, 2008. a
Pipitone, J. and Easterbrook, S.:
Assessing climate model software quality: a defect density analysis of three models,
Geosci. Model Dev.,
5, 1009–1022, https://doi.org/10.5194/gmd-5-1009-2012, 2012. a
Rugaber, S., Dunlap, R., Mark, L., and Ansari, S.:
Managing software complexity and variability in coupled climate models,
IEEE Software,
28, 43–48, https://doi.org/10.1109/MS.2011.114, 2011. a
Schulthess, T. C.:
Programming revisited,
Nat. Phys.,
11, 369–373, https://doi.org/10.1038/nphys3294, 2015. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M.,
Wang, W., and Powers, J. G.: A Description of the Advanced Research WRF
Version 2, Tech. rep., NCAR/TN-468+STR, NCAR, Boulder, USA, 2005. a
Smolarkiewicz, P. K., Deconinck, W., Hamrud, M., Kühnlein, C., Mozdzynski, G., Szmelter, J., and Wedi, N. P.:
A finite-volume module for simulating global all-scale atmospheric flows,
J. Comput. Phys.,
314, 287–304, https://doi.org/10.1016/j.jcp.2016.03.015, 2016. a
Stone, A., Dennis, J., and Strout, M.: Establishing a miniapp as
a programmability proxy, in: Proceedings of the 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP '12, ACM, New York,
NY, USA, 25–29 February 2012, 333–334, https://doi.org/10.1145/2145816.2145881, 2012. a
Theurich, G., DeLuca, C., Campbell, T., Liu, F., Saint, K., Vertenstein, M., Chen, J., Oehmke, R., Doyle, J., Whitcomb, T., Wallcraft, A., Iredell, M.,
Black, T., Da Silva, A. M., Clune, T., Ferraro, R., Li, P., Kelley, M., Aleinov, I., Balaji, V., Zadeh, N., Jacob, R., Kirtman, B., Giraldo, F., McCarren, D., Sandgathe, S., Peckham, S., and Dunlap, R.:
The Earth System Prediction Suite: toward a coordinated U. S. modeling capability,
B. Am. Meteorol. Soc.,
97, 1229–1247, https://doi.org/10.1175/BAMS-D-14-00164.1, 2015. a
Valcke, S., Balaji, V., Craig, A., DeLuca, C., Dunlap, R., Ford, R. W., Jacob, R., Larson, J., O'Kuinghttons, R., Riley, G. D., and Vertenstein, M.:
Coupling technologies for Earth System Modelling,
Geosci. Model Dev.,
5, 1589–1596, https://doi.org/10.5194/gmd-5-1589-2012, 2012.
a, b
Valcke, S., Jonville, G., Ford, R., Hobson, M., Porter, A., and Riley, G:
Report on Benchmark Suite for Evaluation of Coupling Strategies, IS-ENES2-Deliverable-10.3 TR-CMGC-17-87,
Cerfacs, Toulouse, 2017. a
Valiev, M., Bylaska, E. J., Govind, N., Kowalski, K., Straatsma, T. P., Van Dam, H. J. J., Wang, D., Nieplocha, J., Apra, E., Windus, T. L., and de Jong, W. A.:
NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations,
Comput. Phys. Commun.,
181, 1477–1489, https://doi.org/10.1016/j.cpc.2010.04.018, 2010. a
Zhang, S., Harrison, M. J., Rosati, A., and Wittenberg, A.:
System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies,
Mon. Weather Rev.,
135, 3541–3564, https://doi.org/10.1175/MWR3466.1, 2007. a
Zhao, M., Held, I. M., Lin, S.-J., and Vecchi, G. A.:
Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM,
J. Climate,
22, 6653–6678, https://doi.org/10.1175/2009JCLI3049.1, 2009. a
Short summary
Weather and climate models consist of complex software evolving in response to both scientific requirements and changing computing hardware. After years of relatively stable hardware, more diversity is arriving. It is possible that this hardware diversity and the pace of change may lead to an inability for modelling groups to manage their software development. This
chasmbetween aspiration and reality may need to be bridged by large community efforts rather than traditional
in-houseefforts.
Weather and climate models consist of complex software evolving in response to both scientific...