Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
Volume 10, issue 6
Geosci. Model Dev., 10, 2365–2377, 2017
https://doi.org/10.5194/gmd-10-2365-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 10, 2365–2377, 2017
https://doi.org/10.5194/gmd-10-2365-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Methods for assessment of models 27 Jun 2017

Methods for assessment of models | 27 Jun 2017

STRAPS v1.0: evaluating a methodology for predicting electron impact ionisation mass spectra for the aerosol mass spectrometer

David O. Topping et al.

Related authors

Evaluating the use of Facebook's Prophet model v0.6 in forecasting concentrations of NO2 at single sites across the UK and in response to the COVID-19 lockdown in Manchester, England
David Topping, David Watts, Hugh Coe, James Evans, Thomas J. Bannan, Douglas Lowe, Caroline Jay, and Jonathan W. Taylor
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-270,https://doi.org/10.5194/gmd-2020-270, 2020
Preprint under review for GMD
Short summary
PyCHAM (v1.3.4): a Python box model for simulating aerosol chambers
Simon Patrick O'Meara, Shuxuan Xu, David Topping, M. Rami Alfarra, Gerard Capes, Douglas Lowe, and Gordon McFiggans
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-234,https://doi.org/10.5194/gmd-2020-234, 2020
Preprint under review for GMD
Short summary
Measured solid state and subcooled liquid vapour pressures of nitroaromatics using Knudsen effusion mass spectrometry
Petroc D. Shelley, Thomas J. Bannan, Stephen D. Worrall, M. Rami Alfarra, Ulrich K. Krieger, Carl J. Percival, Arthur Garforth, and David Topping
Atmos. Chem. Phys., 20, 8293–8314, https://doi.org/10.5194/acp-20-8293-2020,https://doi.org/10.5194/acp-20-8293-2020, 2020
Short summary
Quantifying Bioaerosol Concentrations in Dust Clouds through Online UV-LIF and Mass Spectrometry Measurements at the Cape Verde Atmospheric Observatory
Douglas Morrison, Ian Crawford, Nicholas Marsden, Michael Flynn, Katie Read, Luis Neves, Virginia Foot, Paul Kaye, Warren Stanley, Hugh Coe, David Topping, and Martin Gallagher
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-157,https://doi.org/10.5194/acp-2020-157, 2020
Revised manuscript accepted for ACP
Short summary
A predictive group-contribution model for the viscosity of aqueous organic aerosol
Natalie R. Gervasi, David O. Topping, and Andreas Zuend
Atmos. Chem. Phys., 20, 2987–3008, https://doi.org/10.5194/acp-20-2987-2020,https://doi.org/10.5194/acp-20-2987-2020, 2020
Short summary

Related subject area

Atmospheric Sciences
The making of the New European Wind Atlas – Part 1: Model sensitivity
Andrea N. Hahmann, Tija Sīle, Björn Witha, Neil N. Davis, Martin Dörenkämper, Yasemin Ezber, Elena García-Bustamante, J. Fidel González-Rouco, Jorge Navarro, Bjarke T. Olsen, and Stefan Söderberg
Geosci. Model Dev., 13, 5053–5078, https://doi.org/10.5194/gmd-13-5053-2020,https://doi.org/10.5194/gmd-13-5053-2020, 2020
Short summary
The Making of the New European Wind Atlas – Part 2: Production and evaluation
Martin Dörenkämper, Bjarke T. Olsen, Björn Witha, Andrea N. Hahmann, Neil N. Davis, Jordi Barcons, Yasemin Ezber, Elena García-Bustamante, J. Fidel González-Rouco, Jorge Navarro, Mariano Sastre-Marugán, Tija Sīle, Wilke Trei, Mark Žagar, Jake Badger, Julia Gottschall, Javier Sanz Rodrigo, and Jakob Mann
Geosci. Model Dev., 13, 5079–5102, https://doi.org/10.5194/gmd-13-5079-2020,https://doi.org/10.5194/gmd-13-5079-2020, 2020
Short summary
The Kinetic Energy Budget of the Atmosphere (KEBA) model 1.0: a simple yet physical approach for estimating regional wind energy resource potentials that includes the kinetic energy removal effect by wind turbines
Axel Kleidon and Lee M. Miller
Geosci. Model Dev., 13, 4993–5005, https://doi.org/10.5194/gmd-13-4993-2020,https://doi.org/10.5194/gmd-13-4993-2020, 2020
Short summary
Dynamic Anthropogenic activitieS impacting Heat emissions (DASH v1.0): development and evaluation
Isabella Capel-Timms, Stefán Thor Smith, Ting Sun, and Sue Grimmond
Geosci. Model Dev., 13, 4891–4924, https://doi.org/10.5194/gmd-13-4891-2020,https://doi.org/10.5194/gmd-13-4891-2020, 2020
Short summary
Role of atmospheric horizontal resolution in simulating tropical and subtropical South American precipitation in HadGEM3-GC31
Paul-Arthur Monerie, Amulya Chevuturi, Peter Cook, Nicholas P. Klingaman, and Christopher E. Holloway
Geosci. Model Dev., 13, 4749–4771, https://doi.org/10.5194/gmd-13-4749-2020,https://doi.org/10.5194/gmd-13-4749-2020, 2020
Short summary

Cited articles

Aiken, A. C., DeCarlo, P. F., and Jimenez, J. L.: Elemental analysis of organic species with electron ionization high-resolution mass spectrometry, Anal. Chem., 79, 8350–8358, https://doi.org/10.1021/ac071150w, 2007.
Alfarra, M. R., Good, N., Wyche, K. P., Hamilton, J. F., Monks, P. S., Lewis, A. C., and McFiggans, G.: Water uptake is independent of the inferred composition of secondary aerosols derived from multiple biogenic VOCs, Atmos. Chem. Phys., 13, 11769–11789, https://doi.org/10.5194/acp-13-11769-2013, 2013.
Aumont, B., Szopa, S., and Madronich, S.: Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach, Atmos. Chem. Phys., 5, 2497–2517, https://doi.org/10.5194/acp-5-2497-2005, 2005.
Aumont, B., Valorso, R., Mouchel-Vallon, C., Camredon, M., Lee-Taylor, J., and Madronich, S.: Modeling SOA formation from the oxidation of intermediate volatility n-alkanes, Atmos. Chem. Phys., 12, 7577–7589, https://doi.org/10.5194/acp-12-7577-2012, 2012.
Publications Copernicus
Download
Short summary
Our ability to model the chemical and thermodynamic processes that lead to secondary organic aerosol (SOA) formation is thought to be hampered by the complexity of the system. In this proof of concept study, the ability to train supervised methods to predict electron impact ionisation (EI) mass spectra for the AMS is evaluated to facilitate improved model evaluation. The study demonstrates the use of a methodology that would be improved with more training data and data from simple mixed systems.
Our ability to model the chemical and thermodynamic processes that lead to secondary organic...
Citation