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Abstract. Our ability to model the chemical and thermo-
dynamic processes that lead to secondary organic aerosol
(SOA) formation is thought to be hampered by the com-
plexity of the system. While there are fundamental models
now available that can simulate the tens of thousands of re-
actions thought to take place, validation against experiments
is highly challenging. Techniques capable of identifying indi-
vidual molecules such as chromatography are generally only
capable of quantifying a subset of the material present, mak-
ing it unsuitable for a carbon budget analysis. Integrative
analytical methods such as the Aerosol Mass Spectrometer
(AMS) are capable of quantifying all mass, but because of
their inability to isolate individual molecules, comparisons
have been limited to simple data products such as total or-
ganic mass and the O : C ratio. More detailed comparisons
could be made if more of the mass spectral information could
be used, but because a discrete inversion of AMS data is not
possible, this activity requires a system of predicting mass
spectra based on molecular composition.

In this proof-of-concept study, the ability to train super-
vised methods to predict electron impact ionisation (EI) mass
spectra for the AMS is evaluated. Supervised Training Re-
gression for the Arbitrary Prediction of Spectra (STRAPS) is
not built from first principles. A methodology is constructed
whereby the presence of specific mass-to-charge ratio (m/z)
channels is fitted as a function of molecular structure before
the relative peak height for each channel is similarly fitted
using a range of regression methods. The widely used AMS
mass spectral database is used as a basis for this, using unit
mass resolution spectra of laboratory standards.

Key to the fitting process is choice of structural informa-
tion, or molecular fingerprint. Our approach relies on using
supervised methods to automatically optimise the relation-
ship between spectral characteristics and these molecular fin-
gerprints. Therefore, any internal mechanisms or instrument
features impacting on fragmentation are implicitly accounted
for in the fitted model. Whilst one might expect a collection
of keys specifically designed according to EI fragmentation
principles to offer a robust basis, the suitability of a range of
commonly available fingerprints is evaluated.

Using available fingerprints in isolation, initial results sug-
gest the generic public “MACCS” fingerprints provide the
most accurate trained model when combined with both deci-
sion trees and random forests, with median cosine angles of
0.94–0.97 between modelled and measured spectra. There is
some sensitivity to choice of fingerprint, but most sensitiv-
ity is in choice of regression technique. Support vector ma-
chines perform the worst, with median values of 0.78–0.85
and lower ranges approaching 0.4, depending on the finger-
print used. More detailed analysis of modelled versus mass
spectra demonstrates important composition-dependent sen-
sitivities on a compound-by-compound basis. This is further
demonstrated when we apply the trained methods to a model
α-pinene SOA system, using output from the GECKO-A
model. This shows that use of a generic fingerprint referred
to as “FP4” and one designed for vapour pressure predictions
(“Nanoolal”) gives plausible mass spectra, whilst the use of
the MACCS keys in isolation performs poorly in this appli-
cation, demonstrating the need for evaluating model perfor-
mance against other SOA systems rather than existing labo-
ratory databases on single compounds.
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Given the limited number of compounds used within the
AMS training dataset, it is difficult to prescribe which com-
bination of approach would lead to a robust generic model
across all expected compositions. Nonetheless, the study
demonstrates the use of a methodology that would be im-
proved with more training data, fingerprints designed ex-
plicitly for fragmentation mechanisms occurring within the
AMS, and data from additional mixed systems for further
validation. To facilitate further development of the method,
including application to other instruments, the model code
for re-training is provided via a public Github and Zenodo
software repository.

1 Introduction

Volatile organic compounds (VOCs), emitted from both nat-
ural and anthropogenic sources, are oxidised in the atmo-
sphere to form lower-volatility species that condense onto
aerosol particles or contribute to new particle formation
(Laaksonen et al., 2008; Sipila et al., 2016; Ehn et al., 2014).
With an enormous number of species that are present, this
diversity in chemistry is reflected in the extensive range of
species and chemical signatures identified in ambient stud-
ies (Hamilton et al., 2013). Within atmospheric science, it is
desirable to develop models for secondary organic aerosol
(SOA) formation based on a given set of precursors and
photochemical processing. Within most global and regional
models, often-used techniques include modelling representa-
tive photochemical yields from specific precursors and tun-
ing accordingly (Spracklen et al., 2011) or employing a para-
metric model such as the volatility basis set (Robinson et
al., 2007). While both of these approaches can deliver re-
alistic absolute concentrations, because they are not based
on explicit physical processes, their predictive skill is al-
ways subject to question (Hallquist et al., 2009; Bergström
et al., 2012). It is therefore desirable to develop SOA models
based around actual molecular processes and kinetics con-
strained through laboratory experiments (where available),
such that this skill can be evaluated. Such models rely on
explicit chemical mechanisms such as the Master Chemical
Mechanism (MCM) (Saunders et al., 1997) or the GECKO
model (Aumont et al., 2005). While this mechanistic ap-
proach has resulted in poor performance in terms of abso-
lute mass concentrations in the past (Volkamer et al., 2006),
much of this shortfall can be accounted for by not con-
sidering all precursors (in particular the semi-volatile and
intermediate-volatility organic matter), unexpected processes
likely to produce lower-volatility products, e.g. oligomerisa-
tion and autoxidation (Ehn et al., 2014), and inadequacies
associated with phase partitioning models (Barley and Mc-
Figgans, 2010; Valorso et al., 2011; McVay et al., 2016).
As the availability of data regarding these has improved and
thus our understanding of these processes matured, the per-

formance of the models has become more realistic (Mc-
Vay et al., 2016). The development of more applicable ex-
plicit models has been facilitated by the ability to automat-
ically predict processes rather than prescribe them (Aumont
et al., 2012, 2005), as has been implemented in the Gener-
ator of Explicit Chemistry and Kinetics of Organics in the
Atmosphere (GECKO-A) and the forthcoming version 4 of
the MCM (http://gotw.nerc.ac.uk/list_full.asp?pcode=NE%
2FM013448%2F1). This can be supplemented by the au-
tomated prediction of properties important for partitioning,
using generalised informatics tools such as UManSysProp
(Topping et al., 2016). While it is unlikely that such complex
models would be used directly for large-scale Eulerian chem-
ical transport and climate models, and uncertainties with re-
gards to fundamental properties remain (Bilde et al., 2015),
they are still highly useful for benchmarking and providing
the parameters for simpler models.

Comparison of model output with measurements in the
ambient air and in the laboratory is required to test model
accuracy. With current analytical methods, it is impossi-
ble to detect and quantify every compound in the particle
even if we can predict compound-by-compound speciation.
While there are techniques capable of resolving a large num-
ber of molecules, such as electrospray ionisation and two-
dimensional gas chromatography (Noziere et al., 2015), com-
prehensively calibrating for and thus providing quantitative
data on the abundances of the molecules is difficult. The
AMS, which is often used in chamber and flow tube experi-
ments, is capable of delivering data on the total mass concen-
tration of organic matter and some other simple top–down
metrics such as the O : C ratio (Aiken et al., 2007). However,
this does not provide the ideal constraint of such models.

While the mass spectral data can be further investigated
through inspection of markers at specificm/z channels (such
as 43 and 44) (Ng et al., 2011), such data tend to be qual-
itative and result in speculative conclusions (Morgan et al.,
2010). In theory, the data across the mass spectrum could
be more systematically compared with the modelled data if
knowledge of the instrument response to molecular features
could be invoked in a general fashion (Ehn et al., 2014).

In this proof-of-concept study we evaluate a methodol-
ogy to bridge existing model–measurement comparison. A
database of the AMS mass spectral responses to various
molecules has been built up over the years, and this has been
used to characterise the response of certain key peaks to cer-
tain functional groups (Ulbrich et al., 2009; Ehn et al., 2014).
In this study we use that information to develop and evaluate
regression software that predicts an AMS spectrum based on
the predicted aerosol composition (Fig. 1).

This is not the first study on predicting electron impact
ionisation (EI) mass spectra based on molecular composi-
tion, or to demonstrate the potential for predicting instru-
ment response functions (Camredon et al., 2007). Bauer and
Grimmer (2016) recently reviewed the current performance
of quantum chemistry methodologies in predicting EI mass
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Figure 1. Schematic of the workflow used in the training process. For a normalised mass spectrum, the SMILEs string associated with each
compound is combined with a given molecular fingerprint to train methods to predict the occurrence of a given m/z channel and then a peak
height.

spectrometry for small to medium sized molecules from first
principles. Whilst that study documents improving general
applicability, they are not immediately suitable for predicting
AMS mass spectra because the thermal desorption promotes
further fragmentation and, in some cases, pyrolysis (Cana-
garatna et al., 2015). While the standard AMS analysis takes
these processes into account through empirical calibrations,
the exact physical processes taking place within the vaporiser
system are still the subject of considerable debate (Murphy,
2016; Drewnick et al., 2015; Robinson et al., 2016), so the
bottom–up modelling of this is not possible with the current
state of knowledge.

Distinct from all previous approaches, the approach pre-
sented here relies on supervised learning methods to auto-
matically optimise the relationship between spectral charac-
teristics and molecular features from the instrument in ques-
tion. Therefore, any internal mechanisms or instrument fea-
tures impacting on fragmentation are implicitly accounted
for in the fitted model.

In Sect. 2 the methodology behind constructing a predic-
tive model is presented, whereas Sect. 3 focuses on results
regarding the accuracy of a model with respect to compar-
isons with spectra for individual components. In addition, we
present results from simulating the mass spectra of α-pinene
aerosol using the GECKO-A model before we discuss future
data requirements in Sect. 4.

2 Methodology

Figure 1 displays the workflow used in building the predic-
tive model. First, a model is trained to predict the occurrence
of specific m/z channels as a function of molecular compo-
sition before a model for each m/z channel is trained to pre-
dict peak height within that channel. It is worthwhile detail-
ing the molecular information used to train each model. Each
molecule has varying levels of structural features, which can
be written in terms of a “fingerprint”. This fingerprint is a nu-
merical identification of a given structure that can equally be
thought of as stoichiometric information for distinct features.

For example, for a collection of 10 compounds, we would
construct a matrix of stoichiometric information where each
row represents a specific molecule and each column the sto-
ichiometry of a given feature. We now refer to each column
as a “key”, which might be a specific functional group or fea-
ture associated with that molecule. We retain the use of the
word “key” since it can provide more generic information
than a functional group. To re-iterate, we refer to the entire
row as the molecular fingerprint. For example, identifying
the occurrence of carboxylic acid groups is a key within the
AIOMFAC fingerprint (Zuend et al., 2011). We then take this
information and use it to train a model to predict both the oc-
currence of a specific m/z channel and then peak heights.

To re-iterate, in constructing a model that can predict AMS
mass spectra, a library of compounds with measured spec-
tra are used to train a series of regression techniques. This
collection of molecules, represented as SMILES strings, is
parsed to produce a matrix where each column represents
the stoichiometry of a particular key, or feature. This entire
matrix is used to fit a predict model for each m/z channel.

The underlying physical principles of EI (McLafferty,
1994) adjusted to the AMS (Gasteiger et al., 1992) do not
exist in algorithmic form, so there is currently no a priori
basis for choosing the most appropriate fingerprint for this
work. Therefore a collection of common fingerprints, and
their combination, are tested in this study and their perfor-
mance critically evaluated. This is an important sensitivity
since one might expect a collection of keys that relate to EI
fragmentation principles to offer a more robust basis for fit-
ting any method used here. We discuss this further in Sect. 4.

Fingerprints used in this study include those employed
in activity coefficient and vapour pressure predictive tech-
niques provided by the UManSysProp package (Topping et
al., 2016; Zuend et al., 2011; Nannoolal et al., 2008), along-
side more general fingerprints, including the MACCS keys
and FP4 keys (Putta et al., 2003). It is difficult to find infor-
mation on the provenance behind these latter generic finger-
prints (Putta et al., 2003), other than that they are designed to
cover a set of molecular features that would be used across
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Figure 2. Basic schematic of interrogating a SMILES string with a SMARTS library to construct a molecular fingerprint.

a broad range of applications. The MACCS fingerprint pro-
vides up to 162 unique keys of any given molecule, the FP4
fingerprint featuring up to 320. The current implementation
of the MACCS keys from the Pybel package (O’Boyle et al.,
2011) is used, whereas the FP4 keys are extracted from the
RDKit open-source informatics package (http://www.rdkit.
org/docs/index.html). Each key is represented in the UMan-
SysProp package (Topping et al., 2016) using SMARTS no-
tation, and each molecule using the SMILES format. The
matrix of keys used to fit each method is constructed by sys-
tematically parsing each molecule. Figure 2 demonstrates the
use of the MACCS SMARTS to populate a matrix of keys.
There are some common features between each fingerprint
library, but also a range of differences. For example, all li-
braries identify the presence of the CH2 group, but then dif-
fer in the optional connecting groups. The FP4 keys cycle
through systematic groupings, such as primary carbon, sec-
ondary carbon, tertiary carbon, primary alcohol, secondary
alcohol, and tertiary alcohol. Similar groups are detected us-
ing the activity coefficient and vapour pressure keys. The full
collection of SMARTS keys can be found in the source code
and we discuss suggestions for future work on refining fin-
gerprints in Sect. 4. Please refer to the code availability sec-
tion.

With regards to the supervised methods used, an ensemble
tree is trained to predict the occurrence of specificm/z chan-
nels as a function of any given fingerprint. To predict peak
height per m/z channel, we evaluate a number of supervised
methods available in the SciKit-learn package: generalised
linear methods, support vector machines (with three sepa-
rate kernels), stochastic gradient descent, Bayesian ridge, or-
dinary least squares, decision trees, and ensemble methods
(Pedregosa et al., 2011). There are a number of other meth-
ods available; however, as we will discuss in Sect. 4, the
results from this study demonstrate a potential, whilst fur-
ther data are needed to confirm general applicability, includ-
ing the use of other methods. For a brief overview of each
method, we refer the reader to Ruske et al. (2017), and ref-
erences therein. Before training each method, the matrix of
identified keys was standardized between zero and one using

the MinMaxScaler pre-processing feature within the Scikit
learn package. In addition, the use of variable selection is de-
signed to use only those features deemed important to con-
struct fingerprint–peak height relationships to try and miti-
gate any underfitting or overfitting. The sensitivity to these
procedures is discussed in Sect. 3.2. To compare modelled
and measured mass spectra, the cosine angle from a dot prod-
uct of the two is used, focusing on specificm/z channels that
are typically found as features within atmospheric and smog
chamber mass spectra (Ulbrich et al., 2009): 15, 18, 28, 29,
39, 41, 43, 44, 50, 51, 53, 55, 57, 60, 73, 77, 91.

The ability of each method to replicate the entire database
is first evaluated. Whilst training on a subset and comparing
with the entire database will test wider applicability, this ini-
tial comparison quantifies the appropriateness of the different
fingerprints in building an accurate model.

3 Results

3.1 Sensitivity to choice of molecular fingerprint

Figure 3 visually compares the number of keys extracted
from the 100 compounds in the AMS library according to
choice of fingerprint. Data are presented according to the
use of the AIOMFAC (panel c), MACCS (panel a), Nanoolal
(panel d), and FP4 (panel b) keys. Using the AIOMFAC fin-
gerprint leads to, at most, 17 keys identified from the AMS
library. The Nanoolal fingerprint leads to a larger set of keys
(19), with the MACCS fingerprint providing the most (74)
and the FP4 keys the second highest (30). The use of more
or less information in the fitting procedure should not be as-
sumed to automatically lead to a more accurate predictive
model. Ideally there should be a balance between the num-
ber of features identified and how those features relate to the
mechanisms of fragmentation on the molecule within the in-
strument in question. As we have already noted, comparing
the information provided by each fingerprint with a working
knowledge of the mechanics of EI fragmentation might help
in understanding why a given fingerprint is more suitable.
However, we first and foremost wish to demonstrate the effi-
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Table 1. Median cosine angle between measured and predicted spectra when fitting to the entire dataset as a function of molecular fingerprint
(given above each column). Please note that the term “Combined” refers to a combination of all individual fingerprints into one. The method
labels are as follows: SMV (support vector machine with three kernels (RBF, Poly(nomial) and Lin(near))); BRR: Bayesian ridge; OLS:
ordinary least squares; SGDR: stochastic gradient descent; Tree: decision tree; and Forest: random forest.

Method MACCS FP4 AIOMFAC Nanoolal Combined

SVM RBF 0.87 0.85 0.86 0.85 0.85
SVM Poly 0.84 0.83 0.82 0.81 0.83
SVM Lin 0.80 0.80 0.79 0.79 0.80
BRR 0.94 0.92 0.90 0.91 0.95
OLS 1.00 0.96 0.94 0.94 0.99
SGDR 0.88 0.82 0.80 0.80 0.89
Tree 1.00 1.00 1.00 1.00 1.00
Forest 1.00 1.00 1.00 1.00 1.00

Figure 3. Sparsity of keys extracted (x axes) from each compound (y axes) as a function of the molecular fingerprint used (a: MACCS; b:
FP4; c: AIOMFAC; d: Nanoolal). Keys are coloured according to normalised stoichiometry across all compounds.

cacy of using pre-defined fingerprints as they are available in
the literature or within existing open-source software pack-
ages. The exact physical processes taking place within the
instrument are still the subject of considerable debate.

Table 1 presents the median cosine angle of modelled
spectra fitted to the entire AMS database derived from the
different supervised methods and different fingerprints, ei-
ther isolated or combined into one, to two decimal places.
The left-hand-side box-plots in Fig. 4a–d display the entire
cosine angle spread for each method for the isolated MACCS

(panel a), FP4 (panel b), AIOMFAC (panel c), and Nanoolal
fingerprints (panel d). When fitting to the entire library of
AMS spectra, initial results suggest that the tree-based meth-
ods (“Tree”, “Forest”) perform better than others, with the
MACCS keys leading to improved model performance over
other fingerprints. However, the difference between using ei-
ther the MACCS or Nanoolal keys, for example, is not sig-
nificant for any given supervised method, as noted in Ta-
ble 1. Rather than demonstrating 100 % accuracy, the val-
ues of 1.00 must be taken with caution, as we demonstrate
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Figure 4. (a) Spread of the cosine angle between experimental and predicted mass spectra (y axes) for all 100 compounds in the AMS library
as a function of the supervised method (x axes) using the MACCS fingerprint. Left: using all compounds in the training process. Right: using
80 % of the compounds in the training process with variable selection. The method labels are as follows: SMV (support vector machine with
three kernels (RBF, Poly(nomial), and Lin(near))); BRR: Bayesian ridge; OLS: ordinary least squares; SGDR: stochastic gradient descent;
Tree: decision tree; and Forest: random forest. (b) Spread of the cosine angle between experimental and predicted mass spectra (y axes) for
all 100 compounds in the AMS library as a function of the supervised method (x axes) using the FP4 fingerprint. Left: using all compounds
in the training process. Right: using 80 % of the compounds in the training process with variable selection. The method labels are as follows:
SMV (support vector machine with three kernels (RBF, Poly(nomial), and Lin(near))); BRR: Bayesian ridge; OLS: ordinary least squares;
SGDR: stochastic gradient descent; Tree: decision tree; and Forest: random forest. (c) Spread of the cosine angle between experimental
and predicted mass spectra (y axes) for all 100 compounds in the AMS library as a function of the supervised method (x axes) using the
AIOMFAC fingerprint. Left: using all compounds in the training process. Right: using 80 % of the compounds in the training process with
variable selection. The method labels are as follows: SMV (support vector machine with three kernels (RBF, Poly(nomial), and Lin(near)));
BRR: Bayesian ridge; OLS: ordinary least squares; SGDR: stochastic gradient descent; Tree: decision tree; and Forest: random forest.
(d) Spread of the cosine angle between experimental and predicted mass spectra (y axes) for all 100 compounds in the AMS library as a
function of the supervised method (x axes) using the Nanoolal fingerprint. Left: using all compounds in the training process. Right: using
80 % of the compounds in the training process with variable selection. The method labels are as follows: SMV (support vector machine with
three kernels (RBF, Poly(nomial), and Lin(near)); BRR: Bayesian ridge; OLS: ordinary least squares; SGDR: stochastic gradient descent;
Tree: decision tree; and Forest: random forest.
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Table 2. Median cosine angle between measured and predicted spectra, using 80% of the compounds in the training process, with variable
selection, as a function of molecular fingerprint (given above each column). Please note that the term “Combined” refers to a combination of
all individual fingerprints into one. The method labels are as follows: SMV (support vector machine with three kernels (RBF, Poly(nomial)
and Lin(near))); BRR: Bayesian ridge; OLS: ordinary least squares; SGDR: stochastic gradient descent; Tree: decision tree; and Forest:
random forest.

Method MACCS FP4 AIOMFAC Nanoolal Combined

SVM RBF 0.85 0.82 0.80 0.81 0.85
SVM Poly 0.82 0.81 0.81 0.79 0.82
SVM Lin 0.78 0.79 0.78 0.78 0.80
BRR 0.93 0.91 0.88 0.88 0.94
OLS 0.95 0.93 0.90 0.90 0.98
SGDR 0.87 0.82 0.81 0.80 0.88
Tree 0.97 0.97 0.94 0.96 0.98
Forest 0.97 0.97 0.95 0.96 0.98

in the proceeding analyses. Whichever fingerprint is used,
the ranking of performance between supervised methods re-
mains similar, with the tree-based methods, ordinary least
squares, and Bayesian ridge outperforming stochastic gradi-
ent descent and all support vector machine kernels. Along
with higher median values, the spread of cosine angles from
the tree-based methods and ordinary least squares is much
lower than all other methods. Whilst the use of MACCS
and FP4 provides, in theory, more information, there is some
similarity in structural information provided in all keys, as
already discussed. For example, each fingerprint identifies
key functional groups such as alkanes, alcohol, and ketones,
whilst the FP4 and MACCS keys in particular include more
positional detail, including relative positions of groups. At
least for the 100 compounds in the AMS library, that ad-
ditional information leads to a slight increase in cosine an-
gle agreement of around 0.02 between methods, if we use
only results from Table 1 and Fig. 4. A key objective of this
study, noted above, is to demonstrate the use of pre-defined
fingerprints in constructing a predictive model. However, it
is useful to also demonstrate the efficacy of combining the
information from each fingerprint into one, without relating
variable performance according to physical processes taking
place within the instrument. The performance of combining
all fingerprints into one, represented in Table 1 under the col-
umn heading “Combined”, illustrates a similar trend in per-
formance between methods.

We discuss the significance of values displayed in Table 1
after performance is re-evaluated following a more general
approach of training to a subset of compounds, and the use
of variable selection, in the next section.

3.2 Training to a subset, variable selection, and
dimensionality reduction

Table 2 presents the median cosine angle between modelled
and predicted mass spectra, as a function of fingerprint, ei-
ther isolated or combined into one, and regression technique,

when training to a subset of the entire database and use of
variable selection. To minimise overfitting any model to spe-
cific features, the process of variable selection allows us to
refit the model to those keys deemed most important. The
combination of both strategies might be considered the most
suitable test of the methodology presented, with the full
spread of statistics presented in the right-hand column of
Fig. 4a–d. It should be noted that randomly selecting the sub-
set used for training leads to a significant decrease in model
performance. This is due to missing keys within the train-
ing subset that are deemed important in predicting spectra
for those compounds outside of the subset. A different ap-
proach is to select the subset by maximising the number of
keys across each molecule in the training subset, and is used
in our proceeding analysis.

In some cases, such as with the ordinary least squares and
forest methods, the data provided in Table 2 suggest that us-
ing both strategies leads to a lower median cosine angle and
thus slightly reduced model performance when using isolated
fingerprints. However, in practice, the statistics presented in
Table 1 should not be considered a true test of the method-
ology, but rather a precursor demonstration of the sensitivity
to choice of fingerprint, and perhaps any variability in instru-
ment response across the AMS library. In this, the use of the
“combined” fingerprint demonstrates the ability to retain in-
formation from those keys that improve overall performance.

Given their wide use across many disciplines, it is difficult
to quantify the reasons behind the poor performance of the
support vector machines relative to other methods. To assess
whether dimensional reduction procedures would improve
accuracy, Table 3 presents the median and overall spread
of cosine angles when using principal component analysis
(PCA) on the “combined” fingerprints. The number of prin-
cipal components is between 20, 10, 8, and 4. Generally, re-
ducing the number of keys from up to 278 to 20 components
leads to an improvement of around 0.01–0.02 in all meth-
ods apart from ordinary least squares and support vector ma-
chines with both the polynomial and linear kernels. Results
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Table 3. Median cosine angle between measured and predicted
spectra, applying PCA analysis to the “combined” fingerprints, as a
function of the number of principal components used given above
each column. The method labels are as follows: SMV (support vec-
tor machine with three kernels (RBF, Poly(nomial) and Lin(near)));
BRR: Bayesian ridge; OLS: ordinary least squares; SGDR: stochas-
tic gradient descent; Tree: decision tree; and Forest: random forest.

Method 20 10 8 4

SVM RBF 0.84 0.84 0.85 0.67
SVM Poly 0.83 0.83 0.81 0.79
SVM Lin 0.80 0.80 0.80 0.80
BRR 0.93 0.90 0.89 0.87
OLS 0.94 0.89 0.89 0.87
SGDR 0.89 0.89 0.89 0.88
Tree 0.98 0.98 0.98 0.98
Forest 0.99 0.99 0.99 0.99

demonstrate clear sensitivity to the number of components
when combined with the RBF support vector machine ker-
nel, performance varying from 0.84 to 0.67 on reducing the
number of components from 20 to 4.

On the significance of the value of the cosine angle, Figs. 5
and 6 display predicted spectra for compounds not included
in a training set, along with the cosine angle between mod-
elled and measured spectra. From this point on we use iso-
lated fingerprints to demonstrate the efficacy of our approach.
For oxalic acid, in Fig. 5, the difference in performance be-
tween the FP4 and MACCS fingerprint (cosine of 0.83 and
0.77) is apparent through certain features, including the rela-
tive proportion of peak heights for the three dominant chan-
nels, and the ratio of f44 to f43. In Fig. 6, a similar pattern is
found for leucine, including a marked difference in whether
the model predicted non-zero entries across f41–f44. Whilst
a small subset, these results suggest use of the cosine angle
alone is not sufficient to validate model performance, which
is confirmed in Sect. 3.3 when applied to the α-pinene sys-
tem. Based on these comparisons, a tentative suggestion of
using a cosine angle of 0.8 might go some way to clari-
fying the performance statistics provided in Tables 1 and 2
and Fig. 4. Indeed, results demonstrate that, whilst statistics
in Table 2 and Fig. 4 suggest similar performance for both
MACCS and FP4 keys, this performance is composition de-
pendent. This reflects sensitivity to information used in the
training process and how similarity between performances
should be taken with caution in prescribing which method
to take forward. This is better highlighted in the proceeding
section with regards to a model SOA system.

Results at least suggest the tree-based methods are at least
the most stable given the higher range of cosine angles pre-
sented in Fig. 4a–d and the decision tree method will be used
in all proceeding analysis.

Figure 5. Measured mass spectra for oxalic acid (a) versus pre-
dicted mass spectra from an ensemble tree using the FP4 fingerprint
(b, cosine of 0.83) and the MACCS fingerprint (c, cosine of 0.77).

Figure 6. Measured mass spectra for leucine (a) versus predicted
mass spectra from an ensemble tree using the FP4 fingerprint (b,
cosine of 0.70) and the MACCS fingerprint (c, cosine of 0.94).

3.3 Example application to a model aerosol system.

In this section we apply the trained methods to a model SOA
system, using output from the GECKO-A model used by Val-
orso et al. (2011) to study SOA formation from α-pinene
in a simulated chamber experiment. The purpose of this ex-
ercise is to explore sensitivity of predicted mass spectra to
combined speciated output from a fixed model configura-
tion through varying fingerprints to support the comparisons
made in the previous section. It is not designed as a thorough
quantitative analysis of spectra comparisons, but rather to
demonstrate the ability to extract specific features and high-
light sensitivities to choice of model configuration. A recent
study of McVay et al. (2016) presented results demonstrat-
ing sensitivity of aerosol mass and composition to processes
included in a box model, including the addition of autoxi-
dation mechanisms. They proposed that autoxidation might
resolve some or all of the measurement–model discrepancy
from chamber simulations, but that this hypothesis could not
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Figure 7. Comparison of the predicted mass spectra of α-pinene SOA based on the GECKO-A simulation presented by Valorso et al. (2011)
using various fingerprinting techniques. These are compared with an actual α-pinene SOA mass spectrum obtained by Alfarra et al. (2013)
during a chamber experiment.

be confirmed until more explicit mechanisms are established
for α-pinene autoxidation (McVay et al., 2016). One might
imagine an ideal sensitivity study would be to use speciated
output from these updated models and add additional con-
straint to prescribing model performance through a compari-
son between measured and predicted mass spectra. Indeed,
that is a rationale behind the study presented here. How-
ever, as proceeding results will demonstrate, with the existing
training data and lack of validation on simple mixtures, there
is potential for false positives in the predicted spectra to con-
fuse a diagnosis of accurate model configurations. Specifi-
cally, the composition space derived from a series of box-
model configurations would need to be mapped onto the ex-
isting space covered by the AMS spectral library. Combined
with additional measurements of mixed systems of known
composition, we could then prescribe a more robust set of
regression model configurations through which a more de-
tailed sensitivity study could take place.

Nonetheless, to illustrate sensitivity to choice of finger-
prints in a complex system, Fig. 7 displays the predicted
mass spectra for the GECKO-A model results of Valorso et
al. (2011) combined with the experimental data taken from
a chamber-based α-pinene SOA formation experiment re-
ported by Alfarra et al. (2013) (high VOC : NOx ratio). With-
out further refinement of model and measurement conditions,
these results exhibit large errors in the predicted mass spec-
tra when using MACCS keys, despite the brief analysis pre-
sented in Sect. 3.2. This demonstrates that overfitting to dis-
tinct features in the training set and the difference between
this composition space and that provided by the box-model
output are leading to features that are missed in the final spec-
tra. This is further supported by the abundance of features
extracted from the training set displayed in Fig. 3.

To expand on this performance, Fig. 8 displays the pre-
dicted mass spectra f44 peak height versus O : C ratio from
the GECKO-A model results of Valorso et al. (2011) in

a manner similar to Aiken et al. (2008). There are nine
points on each curve, representing points in time during the
GECKO-A simulation, with the model predicting a mono-
tonic increase in O : C over time. It is worth noting the values
are low compared to typical atmospheric LV-OOA (Aiken et
al., 2008; Kroll et al., 2011). Overall, use of the FP4 and
Nanoolal keys gives absolute f44s that compare well with
published calibrations relative to O : C, specifically Aiken et
al. (2008) and the updated calibration presented by Cana-
garatna et al. (2015). The direction of the trend in f44 ver-
sus O : C is reversed when using the Nanoolal keys, with f44
decreasing with O : C, which runs contrary to expectations.
However, it should be noted that the values are within the
spread of values used to generate the Aiken et al. (2008) and
Canagaratna et al. (2015) calibrations, as these performed
regressions over much bigger ranges of O : C than obtained
in this simulation, so the prediction based on Nanoolal keys
could still be plausible.

Figure 9 displays the predicted f44 to f43 peak heights
from the model system using the commonly used “triangle
plot” (Morgan et al., 2010; Ng et al., 2011), compared with
the experimental data taken from the chamber experiments of
Alfarra et al. (2013) and also Chhabra et al. (2011), who stud-
ied the formation of α-pinene oxidation in response to differ-
ent oxidants. Note the trajectories in this space are not mono-
tonic for either the experimental or simulated data, which in-
dicate the complexities in interpreting spectra based on these
metrics. Results suggest that f43 values when using the FP4
and Nanoolal keys are plausible when compared to published
studies. The f44 peak height is systematically low for all fin-
gerprints, as also shown in Figs. 5–7. However, rather than
a deficiency in the mass spectral prediction methods, this is
likely due to a deficiency in the Valorso et al. (2011) model
treatment. It has recently been shown how important mech-
anisms such as autooxidation are to the α-pinene SOA sys-
tem (Ehn et al., 2014), which are capable of rapidly adding
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Figure 8. Comparison of O : C ratios and predicted fractional con-
tribution to the AMS m/z 44 channel (f44) for the Valorso et
al. (2011) GECKO-A simulation, compared against the regressions
performed by Aiken et al. (2008) and Canagaratna et al. (2015). The
highlighted points indicate the final points in the simulation.

oxygenated functional groups to the molecules that are re-
sponsible for both the suppression of vapour pressures nec-
essary for SOA formation and also the increase in the f44
metric (Canagaratna et al., 2015). More recent versions of
GECKO-A have included such mechanisms (McVay et al.,
2016); however, a systematic comparison of the predicted
spectra based on these inclusions is beyond the scope of this
proof-of-concept paper and will be presented in a future pub-
lication.

4 Discussion and future work

The preceding analysis demonstrates the potential for the
methodology presented to lead to interesting investigations
on model versus measured mass spectra. However, there are
a number of remaining improvements that need to be made.
It is inevitable that not all of the chemical species predicted
by the models will be covered by previous laboratory work.
If a class of species predicted by any chemical mechanism
is identified as not covered by existing SMARTS-based frag-
mentation rules, it could be characterised in the laboratory
using the same facilities and methodologies employed for
previous characterisation work (Canagaratna et al., 2015, and
references therein).

On the sensitivity to choice of fingerprint, our results
demonstrate compound specific trends that lead to perfor-
mance variability when applied to a complex SOA sys-
tem that is not apparent when analysing median cosine an-
gle statistics. Combining available fingerprints into one can

Figure 9. “Triangle plot” comparing predicted f44 and f43 values
for the Valorso et al. (2011) GECKO-A α-pinene SOA simulation
with chamber experiments. The Chhabra et al. (2011) data compare
different oxidant systems and are taken from Fig. 2a of that paper.
The chronological final points in each dataset are highlighted.

slightly improve performance in some cases, but as the com-
parison of isolated MACCS versus FP4 performance illus-
trates, there is potential danger in overfitting to distinct fea-
tures in the training set that is not provided by the box-model
output. To re-iterate, one might expect a collection of keys
that relate to EI fragmentation principles to offer a more ro-
bust basis for fitting any method used here. However, that
requires further work with additional laboratory data to vali-
date the efficacy of any new bespoke fingerprint.

The methods here have a number of uses, although it must
be re-iterated that the predicted mass spectra are not defini-
tive. The performance of this method will be improved by
the addition of further training data. Following the develop-
ment of group contribution methods, this could include stud-
ies on compounds within a specific series and mixtures of
those compounds. As outlined in the Introduction, the ability
of this model to predict AMS spectra will be useful in the
development and validation of explicit SOA mechanisms in
the laboratory, meaning that the models can be challenged
by the entire mass spectrum and not just the mass and O : C
ratio. This method can also be used at the experiment design
stage, allowing predictions of whether an AMS will be able
to discern expected changes in composition associated with
a process and thus whether it will be useful to test particular
hypotheses.

The method could also be used to simulate atmospheric
aerosol, probably if the chemical model is used in a La-
grangian configuration. In addition to the insights gained in
atmospheric processes, this could be used to critically test
the data model used in positive matrix factorisation (PMF)
(Ulbrich et al., 2009). Because of the condition that PMF
factors have fixed profiles, the reduction of the complex-
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ity associated with atmospheric SOA to (typically) two fac-
tors results in an increase in “rotational ambiguity” associ-
ated with the factorisation. A two-component factorisation
of SOA is often interpreted as representing the “low volatil-
ity” and “semivolatile” components of the SOA (Jimenez et
al., 2009), although this has shown not to be applicable to all
environments, where other sources of variability contribute
to the split in the factors (Young et al., 2015). If the mass
spectral response to atmospheric SOA could be more explic-
itly simulated using this technique, a synthetic AMS dataset
could be used as the subject of PMF analysis in a manner
similar to Ulbrich et al. (2009). This in turn could be used
to investigate the contributions of the factorisation on a more
explicit level and investigate the effects this has on rotational
ambiguity and the validity of solutions.

Code availability. A publicly available copy of the code used to
derive performance statistics of the chosen regression methods can
be found at https://github.com/loftytopping/STRAPS covered by a
GPL v3.0 license. This includes a copy of the AMS spectral files
that now also include appropriate SMILEs strings. The code sepa-
rates the four fingerprint libraries used in this study. We also provide
an associated DOI for the exact model version given in this paper as
provided by the Zenodo service: https://zenodo.org/record/213068#
.WFlryyiPD3s (Topping, 2016).

Please note that an extension to the SMARTS libraries in-
cluded in UmanSysProp was carried out in this project. To re-
view the features extracted for each fingerprint, please refer to the
files “FP4.smarts”, “MACCS.smarts”, “nannoolal_primary.smarts”,
and “aiomfac_unifac.smarts” included in the directory UMan-
SysProp_public/umansysprop/data/.
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