Articles | Volume 10, issue 5
https://doi.org/10.5194/gmd-10-1873-2017
https://doi.org/10.5194/gmd-10-1873-2017
Development and technical paper
 | 
05 May 2017
Development and technical paper |  | 05 May 2017

Representing winter wheat in the Community Land Model (version 4.5)

Yaqiong Lu, Ian N. Williams, Justin E. Bagley, Margaret S. Torn, and Lara M. Kueppers

Related authors

Using the anomaly forcing Community Land Model (CLM 4.5) for crop yield projections
Yaqiong Lu and Xianyu Yang
Geosci. Model Dev., 14, 1253–1265, https://doi.org/10.5194/gmd-14-1253-2021,https://doi.org/10.5194/gmd-14-1253-2021, 2021
Short summary
Modeling canopy-induced turbulence in the Earth system: a unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0)
Gordon B. Bonan, Edward G. Patton, Ian N. Harman, Keith W. Oleson, John J. Finnigan, Yaqiong Lu, and Elizabeth A. Burakowski
Geosci. Model Dev., 11, 1467–1496, https://doi.org/10.5194/gmd-11-1467-2018,https://doi.org/10.5194/gmd-11-1467-2018, 2018
Short summary

Related subject area

Climate and Earth system modeling
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024,https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024,https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024,https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary
HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model
Joseph P. Hollowed, Christiane Jablonowski, Hunter Y. Brown, Benjamin R. Hillman, Diana L. Bull, and Joseph L. Hart
Geosci. Model Dev., 17, 5913–5938, https://doi.org/10.5194/gmd-17-5913-2024,https://doi.org/10.5194/gmd-17-5913-2024, 2024
Short summary
A 3D-Var assimilation scheme for vertical velocity with CMA-MESO v5.0
Hong Li, Yi Yang, Jian Sun, Yuan Jiang, Ruhui Gan, and Qian Xie
Geosci. Model Dev., 17, 5883–5896, https://doi.org/10.5194/gmd-17-5883-2024,https://doi.org/10.5194/gmd-17-5883-2024, 2024
Short summary

Cited articles

Aase, J. K. and Siddoway, F. H.: Crown-Depth Soil Temperatures and Winter Protection for Winter-Wheat Survival, Soil Sci. Soc. Am. J., 43, 1229–1233, 1979.
Anthoni, P. M., Freibauer, A., Kolle, O., and Schulze, E. D.: Winter wheat carbon exchange in Thuringia, Germany, Agr. Forest Meteorol., 121, 55–67, 2004.
Arora, V. K.: Simulating energy and carbon fluxes over winter wheat using coupled land surface and terrestrial ecosystem models, Agr. Forest Meteorol., 118, 21–47, 2003.
Barlow, K. M., Christy, B. P., O'Leary, G. J., Riffkin, P. A., and Nuttall, J. G.: Simulating the impact of extreme heat and frost events on wheat crop production: A review, Field Crop Res., 171, 109–119, 2015.
Bergjord, A. K., Bonesmo, H., and Skjelvag, A. O.: Modelling the course of frost tolerance in winter wheat I. Model development, Eur. J. Agron., 28, 321–330, 2008.
Download
Short summary
Predicting winter wheat growth in the future climate scenarios is crucial for food security. We developed a winter wheat model in the Community Land Model to better predict winter wheat growth and grain production at multiple temporal and spatial scales. We validated the model and found that the new winter wheat model improved the prediction of winter wheat growth related variables during the spring growing season but underestimated yield in regions with historically greater yields.