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Abstract. Winter wheat is a staple crop for global food secu-
rity, and is the dominant vegetation cover for a significant
fraction of Earth’s croplands. As such, it plays an impor-
tant role in carbon cycling and land–atmosphere interactions
in these key regions. Accurate simulation of winter wheat
growth is not only crucial for future yield prediction under a
changing climate, but also for accurately predicting the en-
ergy and water cycles for winter wheat dominated regions.
We modified the winter wheat model in the Community Land
Model (CLM) to better simulate winter wheat leaf area index,
latent heat flux, net ecosystem exchange of CO2, and grain
yield. These included schemes to represent vernalization as
well as frost tolerance and damage. We calibrated three key
parameters (minimum planting temperature, maximum crop
growth days, and initial value of leaf carbon allocation co-
efficient) and modified the grain carbon allocation algorithm
for simulations at the US Southern Great Plains ARM site
(US-ARM), and validated the model performance at eight
additional sites across North America. We found that the
new winter wheat model improved the prediction of monthly
variation in leaf area index, reduced latent heat flux, and net
ecosystem exchange root mean square error (RMSE) by 41
and 35 % during the spring growing season. The model accu-
rately simulated the interannual variation in yield at the US-
ARM site, but underestimated yield at sites and in regions
(northwestern and southeastern US) with historically greater
yields by 35 %.

1 Introduction

Wheat is a widely grown temperate cereal (Shewry, 2009),
ranked fourth among commodity crops with a global produc-
tion of 711 million tonnes, and encompasses 13.3 % of global
permanent cropland as of 2013 (http://faostat3.fao.org/home/
E). Wheat provides one-fifth of the total caloric input of the
world’s population (Curtis et al., 2002), and therefore plays
an important role in global food security (Chakraborty and
Newton, 2011; Vermeulen et al., 2012). In many regions,
such as the United States, winter wheat (Triticum aestivum) is
the dominant wheat cultivar, accounting for 74 % of the total
US wheat production, based on data from the National Agri-
cultural Statistics Service of the U.S. Department of Agricul-
ture in 2013 (http://www.nass.usda.gov).

Winter wheat, which is planted in fall and harvested in
early summer, has a different growth cycle and responds to
environmental stresses differently from summer crops. Win-
ter wheat may suffer less from summer drought, but is sub-
ject to winter damage due to exposure to low temperatures
and frequent freeze–thaw cycles (Vico et al., 2014). There
are two important over-winter survival mechanisms for win-
ter wheat: vernalization and cold tolerance. Vernalization is
the process whereby winter wheat is exposed to a period of
non-lethal low temperature required to fully enter the flower-
ing stage and to produce grain in spring (Chouard, 1960). Ad-
ditionally, winter wheat acclimates to low temperature, giv-
ing it the ability to survive cold temperatures. Both of these
processes – vernalization and cold tolerance – are cumula-
tive processes and have similar optimum temperature ranges.
When the temperature is outside of the optimum range, the
processes can be stopped, reversed, and restarted (Fowler et
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al., 1999). Damage can occur when temperatures are lower
than the accumulated cold tolerance (reviewed by Barlow et
al., 2015). Cold-induced damage has been observed to persist
through the remainder of the growing season, and its impact
on yield is greater than on growth. Effectively representing
these processes in crop models could improve understanding
of the uncertainty in the future crop yield projections.

Winter wheat also plays an important role in land–
atmosphere interactions through effects on energy, water, and
carbon fluxes. Winter wheat cropland has much less soil car-
bon loss compared to maize cropland averaged across sev-
eral sites (Ceschia et al., 2010), and could either be a carbon
sink (Waldo et al., 2016) or source (Anthoni et al., 2004),
depending on the year and the location. The earlier grow-
ing season can influence surface fluxes of water, energy, and
momentum, and hence regional climate (Riley et al., 2009).
This land-surface influence is particularly strong in the US
Southern Great Plains, where winter wheat is a dominant
land-cover type. For example, statistical analyses indicated
cooler and moister near-surface air over Oklahoma’s win-
ter wheat belt from November to April compared to adjacent
grassland, due to the influence of winter wheat (McPherson
et al., 2004). This influence highlights the importance of ad-
equately representing winter wheat in land-surface models
used for climate projections, in order to assess both the im-
pact of climate change on agriculture and agriculture’s influ-
ence on regional climate.

The agricultural research community developed several
winter wheat models during the 1980s, such as the Agricul-
tural Research Council winter wheat model (ARCWHEAT)
(Porter, 1984; Weir et al., 1984) and the Crop Estimation
through Resource and Environment Synthesis winter wheat
model (CERES-wheat) (Ritchie and Otter, 1985). These
models were designed to simulate winter wheat growth at the
farm level and have well-defined winter wheat growth phe-
nology, which is a function of thermal time and day length
that is adjusted by vernalization and a photoperiod factor.
Photosynthesis and respiration processes determine the dry
matter for partitioning among roots, shoots, leaves, and grain.
Some models (e.g., CERES-wheat) considered winter wheat
loss due to extreme low temperature in winter. In contrast
to their strength in representing crop growth processes, these
models have simplified treatment of important upstream pro-
cesses that affect crop growth. For example, the photosynthe-
sis scheme is a linear function of intercepted photosyntheti-
cally active radiation (PAR), PAR itself is simplified as a con-
stant fraction of incoming solar radiation, and radiation is not
separated into direct and diffuse fractions. Further, these crop
models were originally developed to simulate individual, as
opposed to multiple, crops, making multi-crop simulations at
regional and global scales difficult.

To incorporate more physical processes and to simulate
crop growth at regional or global scales, some agronomic
crop growth models were incorporated into agro-ecosystem
models. For example, CERES maize and wheat growth were

added to the Decision Support System for Agrotechnology
Transfer (DSSAT) model (Jones et al., 2003). A substantial
modified version of CERES Wheat (Keating et al., 2001) has
also been added to the Agricultural Production Systems Sim-
ulator (APSIM) model (Keating et al., 2003). As the effects
of vegetation on the atmospheric boundary layer have been
increasingly appreciated, some land-surface models started
to also incorporate crop growth models to not only simulate
crop yield, but also to simulate crop growth effects on sur-
face carbon, water, and energy fluxes. For example, the SU-
CROS crop growth model was incorporated into JULES (Van
den Hoof et al., 2011) and the STIC crop growth model was
incorporated into ORCHIDEE (Wu et al., 2016). In the re-
cent Agricultural Model Intercomparison and Improvement
Project (AgMIP), these agro-ecosystem models and land-
surface models were categorized as global gridded crop mod-
els (GGCMs).

The Community Land Model (CLM) (Oleson et al., 2013)
is one of the GGCMs included in AgMIP. It is also a state-of-
the-art land-surface model used in the Community Earth Sys-
tem Model (Hurrell et al., 2013) that simulates biogeophysi-
cal and biogeochemical processes on a spatial grid. CLM can
be run online, coupled with the atmosphere model, or offline
at multiple spatial scales (site, regional, and global) and res-
olutions. One grid cell in CLM is divided into different land
units (urban, glacier, lake, wetland, vegetation), and the vege-
tation unit can consist of up to 14 natural vegetation types and
64 crop types in the most recent version (a developer version
of CLM4.5). CLM is a community effort that incorporates
scientific advances through time, such as two-leaf stomatal
conductance and photosynthesis, transient land use, multi-
layer canopy models (Bonan et al., 2012), methane models
(Riley et al., 2011), and carbon isotope models (Koven et al.,
2013).

In order to better represent agricultural ecosystems, Levis
et al. (2012) introduced crop growth modules into CLM
based on the AgroIBIS model (Kucharik, 2003). Since their
introduction, the crop modules in CLM have been updated
to represent more crop types (maize, soybean, cotton, wheat,
rice, sugarcane, tropical maize, tropical soybean) and pro-
cesses, such as soybean nitrogen fixation (Drewniak et al.,
2013) and ozone impacts on yields (Lombardozzi et al.,
2015). In CLM, crop growth depends on photosynthetic pro-
cesses, which are limited by light, water, and nutrient avail-
ability. At each time step, photosynthesis estimations provide
the potential available carbon for plant growth, which is ad-
justed by nitrogen supply and demand. The actual available
carbon is distributed to leaf, stem, root, and grain by car-
bon allocation coefficients that vary based on crop growth
stages. While the initial focus for incorporating crop growth
into CLM was as a lower boundary condition to the atmo-
sphere, the model also predicts crop yields and is participat-
ing in the AgMIP GGCM Intercomparison project (Elliott et
al., 2015).
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Although Levis et al.’s (2012) initial crop growth modules
in CLM included a simplified representation of winter wheat
growth, it has never been validated and some of the key win-
ter wheat growth processes are out of date, such as vernal-
ization, or not included (e.g., frost tolerance and damage).
Our new winter wheat model adopted the same phenology
phases as the original winter wheat model in CLM, but re-
placed the vernalization process, added frost tolerance and
damage processes, slightly modified the carbon allocation
algorithm, and calibrated several key parameters that affect
winter wheat growth. Our work focused on improving the
representation of the key growth processes for winter wheat
in order to (1) better simulate the land-surface influence on
surface CO2, water, and energy exchanges in winter wheat-
dominated regions and (2) accurately simulate crop growth
and yield so the model can be used for winter wheat yield
projections.

2 Methods

2.1 Calibration data

We calibrated the simulated leaf area index and yield us-
ing observations from the Atmospheric Radiation Measure-
ment Southern Great Plains Central Facility site (US-ARM)
in northern Oklahoma, USA. The site has well-documented
crop growth and management information, including crop
types and planting and harvest dates. The site conducts bi-
weekly leaf area index (LAI) measurements with a light
wand (Licor LAI-2000) during the active growing season.
Using a combination of in situ LAI and site reflectance spec-
trum measurements, Williams and Torn (2015) generated a
daily LAI product, used here to develop and calibrate the
winter wheat model. Six winter wheat seasons are used from
the US-ARM site: 2003, 2004, 2006, 2007, 2009, and 2010
(winter wheat was not grown at the US-ARM site during
2005 and 2008).

2.2 Validation data

We validated the simulated leaf area index, and leaf, stem,
and grain dry weight at five winter wheat field sites (TXLU,
KSMA, NESA, NDMA, and ABLE) in North America.
The experiments were originally designed to understand
winter wheat response to nitrogen fertilization and wa-
ter treatments (four nitrogen levels and three irrigation
regimes) in the Great Plains (Hubbard et al., 1988; Ma-
jor et al., 1988; Reginato et al., 1988), and have been used
as part of the AgMIP Wheat project. For our validations,
we only validated to seven site-year rainfed plots, which
are TXLU-1985&1986, KSMA-1985, NESA-1985&1986,
NDMA-1986, and ABLE-1986.

We validated the simulated energy, water, and CO2 flux at
three additional eddy flux tower sites: (1) Ponca City (US-
PON), (2) Curtice Walter-Berger Cropland (US-CRT), and

Figure 1. The PRISM 1981–2013 averaged annual total precipi-
tation (mm yr−1) and the nine site locations (US-ARM, US-PON,
US-CRT, CAF-CT, ABLE, NDMA, NESA, KSMA, TXLU) used in
this study.

(3) the Washington State University Cook Agronomy Farm
conventional tillage site (CAF-CT) (Fig. 1). These three sites
do not have detailed crop growth measurements of tissue
biomass, but have surface flux measurements that are crucial
to understanding the role of winter wheat in altering land–
atmosphere interactions. One caveat of using the eddy flux
observation is the energy balance closure problem (Foken,
2008; Wilson et al., 2002) due to the eddy covariance tech-
nique limitation or the errors in calculating energy flux terms.
The energy closure ratios at the four eddy flux sites are 87 %
at US-ARM, 91 % at US-PON, 70 % at US-CRT, and 83 %
at CAF-CT during the period used in the comparison. We
used these imbalanced energy fluxes as is and discussed their
impacts on our results.

We also validated the simulated US winter wheat yield
with the USDA NASS county-level non-irrigated winter
wheat yield data. For the sites that did not have site-level
yield observations, we also validated site-level simulations
with the nearest county non-irrigated yield.

2.3 Model development

Similar to other crops in CLM, winter wheat has four pheno-
logical phases, including planting, leaf emergence, grain fill,
and harvest. The criteria and thresholds for entering different
phenology phases are listed in Table 2. Growing degree days
is the key variable controlling phenology, and is measured as
heat accumulation during the whole growing season or over
a certain period. It was calculated by accumulating the differ-
ence (no accumulation if less than 0) between the target tem-
perature (e.g., mean air temperature) and base temperature,
and normally has a maximum daily increment. We used three
different growing degree day algorithms to determine winter
wheat phenology, all using the same base temperature (0 ◦C)
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Table 1. Winter wheat validation site descriptions.

Site Latitude Longitude MAT (◦C) Prec (mm) Simulation years References

US-ARM 36.61 −97.49 14.76 843 2002–2010 Fischer et al. (2007),
Raz-Yaseef et al. (2015)

US-PON 36.77 −97.13 14.94 866 1997–1999 Hanan et al. (2005, 2002)
US-CRT 41.63 −83.35 10.10 849 2012–2013 Chu et al. (2014)
CAF-CT 46.78 −117.08 8.74 455 2013–2014 Waldo et al. (2016)

TXLU 33.63 −101.83 8.2 531 1984–1986
KSMA 39.09 −96.37 11.7 922 1984–1986 Hubbard et al. (1988),
NESA 41.37 −100.49 11.5 499 1984–1986 Major et al. (1988),
NDMA 46.46 −100.55 14.2 496 1984-1986 Reginato et al. (1988)
ABLE 49.42 −112.5 12.2 378 1984–1986

Table 2. Criteria and notation for winter wheat to enter each phenological stage.

Criteria Notation

Planting 5-day running minimum temperature<minimum planting temperature
and, day of year>minimum planting day of year
and, 20-year running average of gdd0>minimum gdd

T5d < 5◦C
doy> 1 Sep
GDD020 > 50

Leaf emergence Growing degree days of soil temperature to 2.79 cm depth> 3 % of maturity
growing degree days

GDDtsoi > 3% GDDmat

Grain fill Growing degree days of 2 m temperature since planting> 40 % of maturity
growing degree days

GDDplant > 40% GDDmat

Harvest Growing degree days of 2 m temperature since planting ≥ maturity growing
degree days
or, the number of days past planting>maximum growing days

GDDplant ≥ GDDmat
DPP> 330

and maximum daily increment (26◦) (Levis et al., 2012). The
20-year running average of growing degree days (GDD020)

uses 2 m air temperature (T2 m) from September to June in the
Northern Hemisphere (from April to September in the South-
ern Hemisphere), and is updated each year by averaging the
previous 19 years. The growing degree days for soil tempera-
ture since planting (GDDtsoi) uses averaged soil temperature
from the top two model soil layers (0.71 and 2.79 cm). Grow-
ing degree days since planting (GDDplant) uses T2 m, and is
reduced by a vernalization factor (see below) after leaf emer-
gence.

To better represent winter wheat phenology, we added
two additional processes: vernalization and frost damage.
We adopted a generalized winter wheat vernalization model
(Eqs. 1–3 were directly adopted from Streck et al., 2003).
Similar to other winter crops, winter wheat must be exposed
to low and nonfreezing temperature to enter the reproductive
stage. Additionally, the vernalization process affects cold tol-
erance, as discussed below. If plants are not fully vernalized,
the potential size of the flower head will be reduced. Vernal-
ization starts after leaf emergence and ends before flowering.
To model this process, daily vernalization rate (fvn, Eq. 1) is
calculated based on the difference between the crown tem-

perature (Tcrown) and the optimum vernalization temperature
(Topt). In the CLM crop model, the crown temperature is the
crown depth soil temperature (Aase and Siddoway, 1979),
calculated as the function of 2 m air temperature and snow
depth. The crown temperature is typically warmer than the
2 m air temperature in winter, if the plant is covered by snow,
and the same as the 2 m air temperature without snow cover.
If the crown temperature is equal to the optimum temperature
for a whole day, then fvn is equal to 1. Otherwise, fvn is less
than 1 as calculated in Eq. (1).

fvn(Tcrown)= (1)
[
2(Tcrown − Tmin)

α
(
Topt − Tmin

)α
− (Tcrown − Tmin)

2α](
Topt − Tmin

)2α Tmin ≤ Tcrown ≤ Tmax

0 T < Tmin or Tcrown > Tmax
1 Tcrown = Topt

where α = ln2
ln[(Tmax−Tmin)/(Topt−Tmin)]

.
Next, the sum of fvn over sequential days is the effective

vernalization days (VD, Eq. 2).

VD=
∑

fvn(Tcrown) (2)

This is used to calculate the vernalization factor (VF, Eq. 3).
VF varies from 0 to 1 (fully vernalized) to represent the ver-
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nalization stage.

VF=
VD5

22.55
+VD5 (3)

Finally, VF was used in adjusting the growing degree days
since planting (GDDplant = GDDplant,unadjusted×VF) and the
grain carbon allocation coefficient (agrain = agrain, unadjusted×

VF). When winter wheat is not fully vernalized (VF< 1),
then GDDplant and agrain are reduced, resulting in slowed
growth and reduced yield.

We quantify the impacts of low temperature damage, in-
cluding from frost, using three variables: (1) temperature at
which 50 % of winter wheat was damaged (LT50), (2) sur-
vival probability (fsurv), and (3) winter killing degree days
(WDD). Here, Eqs. (4)–(8) were from Bergjord et al. (2008)
and Eqs. (9)–(10) were from Vico et al. (2014), without any
modifications. The calculations for the three variables are
briefly summarized, and more detailed descriptions of the
calculations can be found in Bergjord et al. (2008) and Vico
et al. (2014). LT50 (Eq. 4) depends on LT50 from the previous
time step (LT50t−1), low temperature acclimation (i.e., hard-
ening; RATEH), loss of hardening due to exposure to high
temperatures (i.e., dehardening; RATED), stress due to res-
piration under snow (RATER), and exposure to low temper-
ature (RATES). Lower LT50 results in greater frost tolerance
for winter wheat while higher LT50 indicates lower frost tol-
erance.

LT50t = LT50t−1−RATEH+RATED+RATES+RATER (4)
RATEH=Hparam (10−max(Tcrown,0))(LT50t−1−LT50c)

Tcrown < 10◦ (5)

The contribution of hardening to LT50 was calculated as
RATEH (Eq. 5), which was mainly a function of crown
temperature (Tcrown) and adjusted by a hardening param-
eter (Hparam = 0.0093), maximum frost tolerance (LT50c =

−23 ◦C). RATEH increased rapidly when crown tempera-
ture (Tcrown) fell below 10 ◦C. When Tcrown fell below 0 ◦C,
the slope of RATEH was same as Tcrown at 0 ◦C. RATEH
is also determined by the difference between the current
level of frost tolerance and the maximum level of frost toler-
ance (LT50t−1−LT50c). At the beginning of cold acclimation,
when LT50t−1 is much higher than LT50c, RAHEH increases
quickly.

RATED=Dparam (LT50i −LT50t−1)(Tcrown+ 4)3

Tcrown ≥ 10 ◦ when VF< 1
Tcrown ≥−4◦ when VF= 1 (6)

where LT50i =−0.6+0.142LT50c represents LT50 for an un-
acclimated plant.

RATED accounts for the dehardening contribution (Eq. 6),
which is a function of crown temperature and is adjusted by
a dehardening parameter (Dparam = 2.7×10−5) and LT50 for

a plant that is not acclimated to cold (LT50i). Cold acclima-
tion is a cumulative process and can reverse (dehardening)
when plants are exposed to high temperature or restart (hard-
ening) when temperature is below 10 ◦C. The high temper-
ature threshold depends on the vernalization stage. Dehard-
ening occurs when Tcrown ≥ 10◦ for plants that are not fully
vernalized (VF< 1), and when Tcrown ≥−4◦ for plants that
are fully vernalized (VF= 1).

RATER= Rparam×RE× f (snowdepth) (7)

where RE= e0.84+0.051Tcrown−2
1.85 , and

Rparam = 0.54f (snowdepth)=
min(snowdepth, 12.5)/12.5.

Stress due to respiration under snow also increases LT50
and was calculated as RATER (Eq. 7), which is a function
of snow depth and a respiration factor (RE). RE is a re-
gression function fitted to respiration measurements (Sunde,
1996). f (snowdepth) ranges from 0 to 1 for snow depth up
to 12.5 cm, and is equal to 1 when snow depth is greater than
12.5 cm.

RATES=
LT50t−1− Tcrown

e−Sparam(LT50t−1−Tcrown)−3.74
(8)

where Sparam = 1.9.
Long-term exposure to near-lethal temperature will also

increase LT50 and was calculated as RATES (Eq. 8), which
is based on the winter survival model developed by Fowler et
al. (1999).

The probability of survival (fsurv, Eq. 9) is a function
of LT50 and crown temperature. The probability of survival
reaches a median value when Tcrown equals LT50, and in-
creases when Tcrown is warmer than LT50 and decreases
when Tcrown colder than LT50.

fsurv (Tcrown, t)= 2−(
|Tcrown(t)|
|LT50(t)| )

αsurv
Tcrown ≤ 0◦ (9)

Finally, we calculate winter killing degree days (WDD,
Eq. 10) as a function of Tcrown and fsurv. WDD not only ac-
counts for the cumulative degree days when the crop was ex-
posed to freezing temperatures but also accounts for the prob-
ability of death at the temperature of exposure. High WDD
occurs with low temperature and low survival probability.

WDD=
∫

winter

max[(Tbase− Tcrown) ,0]

[1− fsurv (Tcrown, t)]dt (10)

where Tbase = 0◦.
Although Bergjord et al. (2008) and Vico et al. (2014)

defined the frost tolerance and damage indicators described
above, they did not propose a model for the growth response
to crop damage from low temperatures. Here we developed
our own hypothetical two-stage frost damage parameteriza-
tion (Eqs. 11–12) that includes both instant damage and ac-
cumulated damage during the leaf emergence phase of win-
ter wheat growth. In CLM, plant tissues are represented as

www.geosci-model-dev.net/10/1873/2017/ Geosci. Model Dev., 10, 1873–1888, 2017



1878 Y. Lu et al.: Representing winter wheat in the Community Land Model (version 4.5)

Table 3. Carbon allocation algorithms for the leaf emergence to grain fill stage, and the grain fill to harvest stage.

Phase Allocation algorithm

Leaf emergence to grain fill agrain = 0

afroot = a
i
froot− (a

i
froot− a

f
froot)

GDDT2m
GDDmat

aleaf = (1−afroot)
f ileaf(e

−0.1
−e
[−0.1(GDDT2m/h)] )

e−0.1−1
alivestem = 1− agrain− afroot− aleaf

Grain fill to harvest aleaf = a
i,3
leaf when ai,3leaf ≤ a

f
leaf else

aleaf = a
i,3
leaf(1−

GDDT2m−h

GDDmatdL−h
)
dallocleaf

alivestem = a
i,3
livestem when ai,3livestem ≤ a

f
livestem

else
alivestem = a

i,3
livestem(1−

GDDT2m−h

GDDmatdL−h
)d

stem
alloc

afroot = a
i
froot− (a

i
froot− a

f
froot)

GDDT2m
GDDmat

agrain = 1− alivestem− afroot− aleaf

the mass of carbon and nitrogen per m2 ground. We simu-
lated leaf carbon and nitrogen reduction for each of the two
types of frost damage. We assumed that instant damage oc-
curs at the beginning of the growing season (VF< 0.9) when
plants are not fully vernalized and have low survival proba-
bility when exposed to subzero temperatures. In this case, the
growth of leaves most vulnerable to cold (e.g., new leaves or
small seedlings) would slow or cease. After many sensitiv-
ity tests, we found the best fit to observations by removing
an amount of leaf carbon (leafcdamage_i = 5 g C m−2) to the
soil carbon litter pool, scaled by a factor of 1-fsurv (Eq. 11)
at each time step (half-hourly). The leaf carbon was reduced
whenever fsurv was less than 1 until leaf carbon reached a
minimum value (10 g C m−2).

leafct = leafct−1− leafcdamage_i (1− fsurv) ,

forWDD> 0, fsurv < 1, and leafct > 10 (11)

In addition to this instantaneous damage, we introduced
an accumulated damage parameterization for when winter
wheat is close to or has completed vernalization (VF> 0.9)
in spring. We assumed that plants would not be likely to suf-
fer as much from instantaneous frost damage as in the early
winter season due to less subzero temperature, but that an ex-
tended period of subzero temperatures (large WDD) would
lead to severe crop damage. To simulate this, we let WDD
accumulate up to a set value (set to 1◦ days), when it triggers
the accumulated damage function and we track the average
fsurv for this time period. When WDD> 1◦ days, all leaf car-
bon from the previous time step (leafct−1, representing the
damage to the whole plant), scaled by a factor of (1-averaged
fsurv), was removed from the leaf carbon to the soil carbon
litter pool. After leaf carbon was reduced, WDD was reset to
0, and the accumulation and tracking of the averaged fsurv
was restarted. For both frost damage types, leaf nitrogen was
removed to the nitrogen litter pool. The nitrogen was scaled

to the reduction of leaf carbon by the fixed C : N ratio (25
for winter wheat). The results show that the simulation of
LAI (Fig. S1 in the Supplement) can be improved by includ-
ing a representation of frost damage in winter wheat models.
However, the approach here is based on empirical indicators
of frost damage. This suggests the potential for further im-
provement by incorporating process-level representation of
frost damage in future model versions.

leafct = leafct−1× averaged fsurv,

VF≥ 0.9andWDD> 1 (12)

CLM leaf (aleaf) and stem (alivestem) carbon allocation coef-
ficients for winter wheat were also adjusted during the grain
fill to harvest phase. The original aleaf and alivestem changed
in time as a function of growing degree days. This approach
resulted in a rapid decline in the stem carbon allocation, and
led to a grain carbon allocation coefficient that was too large
(Fig. S2), producing unrealistically high yields at the US-
ARM site. We modified the leaf and stem carbon allocation
coefficients to be functions of carbon allocation at the initial
time of grain fill (ai,3leaf and ai,3livestem), and therefore alivestem
gradually declines and agrain gradually increases during the
grain fill phase (Table 3, Fig. S2b).

After the above modification of carbon allocation and ad-
dition of the new vernalization and frost damage processes,
we calibrated three parameter values (indicated with * in Ta-
ble 4) in the US-ARM simulation. We adjusted minimum
planting temperature and maximum days for growing to bet-
ter match the US-ARM site planting and harvest dates, and
adjusted the initial leaf carbon allocation coefficient to better
match the US-ARM LAI and yield.
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2.4 Experiment design

We set up paired CLM4.5 site simulations using Levis et
al.’s (2012) original winter wheat model (CLMBASE) and
our modified winter wheat model (CLMWHE) at the winter
wheat sites in Table 1. We forced the site simulations with
half-hourly observed temperature, relative humidity, precip-
itation, wind, and incoming solar radiation. Incoming long-
wave radiation was available at the US-ARM and US-CRT
sites and was also input to the simulations at those sites.
Each paired simulation ran with the same initial conditions,
which were generated using a spin-up of several hundred
years at each site (described below). The simulated differ-
ences between the original winter wheat and the modified
winter wheat are therefore due to the modified parameters
and updated processes described above.

Land-surface models, especially those including biogeo-
chemical components, require long-term (thousands of sim-
ulation years) spin-up for their carbon and nitrogen pools to
reach equilibrium (Shi et al., 2013). Therefore, generating
initial conditions with steady-state carbon and nitrogen pools
is computationally time-consuming and expensive if the sim-
ulation starts with no carbon and nitrogen. To accelerate the
spin-up process, we generated site-level initial conditions by
interpolating a global simulation that had reached carbon and
nitrogen equilibrium, and then further spun up the site-level
simulations for 200 years using recycled site observed me-
teorology for years listed in Table 1. When CLM reaches
equilibrium, the averaged land-surface variables during each
atmospheric forcing cycle should not change or vary within
a threshold (Table S1 in the Supplement). We found latent
heat flux, sensible heat flux, leaf area index, and wheat yield
reached equilibrium fairly quickly (< 40 years), but the total
ecosystem carbon, total soil organic carbon, and total vegeta-
tion carbon took a longer time to reach the equilibrium state.

We also set up a regional simulation (50 km resolution,
1979–2010) over the continental US to compare spatial pat-
terns in yield predictions to the USDA NASS county-level
winter wheat yield. To get the winter wheat land-cover per-
centage, we first estimated the winter wheat fraction using
the USDA NASS county-level acres harvested data, and then
split the wheat land-cover percentage in the default CLM sur-
face file into winter wheat and spring wheat. Since the goal of
the regional simulation was to validate the spatial yield and
not the carbon pools, we ran a partial spin-up and allowed
the crop yield to reach equilibrium while the total ecosystem
(i.e., soil) carbon was not at equilibrium.

We applied the nitrogen fertilization in all the simula-
tions. CLM4.5 considered the nitrogen limitation through the
down-regulation of the potential photosynthesis based on the
nitrogen demand and supply deficit, which was calculated by
considering the complex belowground biogeochemical pro-
cesses (e.g., nitrification, denitrification, leaching, soil or-
ganic matter decomposition). When nitrogen supply is less
than the nitrogen demand, the potential photosynthesis will

be reduced by the deficit factor. For the TXLU, KSMA,
NESA, NDMA, and ABLE site simulations, we applied the
observed nitrogen fertilization amount (10–20 gN m−2) at
the same days as the observation, while for the other sites
and the US simulations, we applied the default nitrogen fer-
tilization during leaf emergence every year for an amount of
8 gN m−2. With this nitrogen fertilization, there is no nitro-
gen limitation at all in our simulations.

2.5 Statistical analysis of yield at US-ARM site

To determine the factors that contributed most strongly to
yield in observations and the model, we performed statistical
regressions for US-ARM observations and CLMWHE out-
puts separately. We had 11 observed and simulated variables,
including growing degree days, nitrogen fertilization, peak
leaf area index, precipitation, days of grain fill, days of leaf
emergence, day of peak leaf area index, 10 cm soil moisture,
20 cm soil moisture, planting date, and harvest date. We per-
formed simple linear regressions with each of these variables
and compared the R2 values between observational data and
simulation outputs.

3 Results

3.1 Leaf area index and dry weight

The modified winter wheat model (CLMWHE) showed a
better seasonal growth cycle than the original model (CLM-
BASE) (Fig. 2). In the CLMBASE simulation, the vernaliza-
tion factor is too high even at the beginning of the growing
season (Fig. S3). Without the reduction on the growing de-
gree days from the vernalization function, winter wheat LAI
and leaf weight reached peaks in December and then de-
clined due to the onset of the grain fill stage. The long grain
fill stage (December–May) in CLMBASE did not produce a
sufficiently high grain mass because of the low rate of pho-
tosynthesis with the low LAI. In the CLMWHE simulation,
LAI and leaf weight reached peaks in April, and stem and
grain weight reached peaks in May, which are similar to the
site observations. The improvements in the seasonal variation
are mainly due to the updated vernalization, which produced
a reasonable vernalization period of about 2–3 months, re-
duced the growing degree days and extended the leaf emer-
gence stage. The cold damage scheme also played a role in
reasonable simulation of winter LAI and leaf weight. For ex-
ample, at KSMA-1985, cold damage reduced the LAI and
leaf weight in fall yielding a better match to the winter
measurement (at DOY= 320). Besides these improvements,
we also observed an overestimation of LAI during the later
growing season, which is due to the low leaf senescence rate
during the grain fill period.

The updated winter wheat model captured the grain weight
temporal and spatial variations, and root mean square error
(RMSE) and the index of agreement are better in CLMWHE
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Table 4. A list of key parameters used for phenology and carbon and nitrogen allocation for the original and modified CLM winter wheat
models.

Parameters Description Original Modified

Phenology minplanttemp∗ Minimum planting temperature 278.15 (K) 283.15 (K)
mxmat∗ Maximum days for growing 265 (days) 330 (days)
GDDmat Maturity growing degree days 1700 1700
gddmin Minimum growing degree days for planting 50 50
lfemerg Percentage of gddmaturity to enter leaf emerge phase 3 % 3 %
grnfill Percentage of gddmaturity to enter grain fill phase 40 % 40 %

CN allocation aifroot Initial value of root carbon allocation coefficient 0.3 0.3
a
f
froot Final value of root carbon allocation coefficient 0 0
f ileaf

∗ Initial value of leaf carbon allocation coefficient 0.425 0.6
h Heat unit threshold (grnfill x hybgdd) 680 680
dL Leaf area index decline factor 1.05 1.05
d leaf

alloc Leaf carbon allocation decline factor 3 3
dstem

alloc Stem carbon allocation decline factor 1 1

∗ indicates parameters that have different values between the original and modified models.
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Figure 2. The daily leaf area index (m2 m−2), leaf dry weight (t ha−1), stem dry weight (t ha−1), and grain dry weight (t ha−1) simulations
in CLMWHE (the updated winter wheat model) and CLMBASE (the original winter wheat model), and in site observations for 7 site years.

than CLMBASE for 7 site years. RMSE was reduced by
19 % and the index of agreement was increased by 45 %.
CLMWHE showed higher grain weight in 1986 than 1985 at
TXLU and NESA, as did the observations, because 1986 was
a wetter year for both TXLU (8 % higher annual precipitation
than 1985) and NESA (84 % higher). In 1986, CLMWHE

showed more grain weight in NESA and NDMA than TXLU
and ABLE, as in the observations.

For the four flux tower sites, CLMWHE also improved
LAI and crop growth seasonal variations (Fig. 3a–d). Both
sites exhibited reduced RMSE compared to CLMBASE
(Table S3). At the US-ARM site, CLMWHE underesti-
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Figure 3. Monthly averaged (a–d) leaf area index (m2 m−2), (e–h) net ecosystem exchange of CO2 (µmol m−2 s−1), (i–l) net radiation
(W m−2), (m–p) latent heat flux (W m−2), and (q–t) sensible heat flux (W m−2) for observations, CLMWHE, and CLMBASE across four
sites. The US-ARM site data were averaged over 6 winter wheat years (2003, 2004, 2006, 2007, 2009, 2010), US-PON data were averaged
over 1997 and 1998, US-CRT data are from 2013, and CAF-CT data are from 2014. The error bars indicate the standard error for the month
across years, and there are no error bars for US-CRT and CAF-CT because the values are for 1 year.

mated peak LAI but captured the seasonal LAI variation
(peak in April and then decline). At the US-PON site,
CLMWHE overestimated LAI throughout the growing sea-
son but showed similar seasonal variation. Although the
US-CRT and CAF-CT sites have no LAI observations,
CLMWHE generally increased LAI and had a more reason-
able seasonal variation compared to CLMBASE.

3.2 Surface carbon, water and energy fluxes

The improved simulation of LAI seasonal variation led to
better monthly patterns of net ecosystem exchange of CO2
(NEE) (Fig. 3e–h). In Fig. 3, negative values indicate a car-
bon sink, where the crop gains more carbon through photo-
synthesis than is lost due to respiration. During the winter
wheat growing season, the observed NEE is most negative
coincident with peak LAI. CLMWHE captured these sea-
sonal patterns at US-ARM and US-CRT sites, although it did
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underestimate the NEE magnitudes at their peak. The under-
estimation of peak LAI may have contributed to this bias.
CLMBASE has much smaller NEE relative to CLMWHE,
consistent with the lower LAI. We also observed a discrep-
ancy after harvest, where CLMWHE (and CLMBASE, to a
lesser extent) simulated a strong carbon source for the site,
but observations exhibited either neutral NEE at US-ARM
or a smaller NEE at US-CRT site. This discrepancy is due to
the model treating the land cover as bare ground after har-
vest, when in reality weeds (identified by visual inspection
of daily site photographs) quickly exert influence on surface
fluxes of carbon.

The annual net radiation (Rn) simulations (Fig. 3i–l) at
the four sites were slightly improved in CLMWHE. Av-
eraged across the four sites, Rn RMSE was reduced from
16.6 W m−2 in CLMBASE to 12.9 W m−2 in CLMWHE.
The latent heat flux (LE) simulation was improved during
March–May (Fig. 3m–p). The spring LE RMSE was reduced
by 10–70 % across the four sites in CLMWHE due to the
better LAI simulation in spring. However, the annual LE
RMSE was only slightly reduced (up to 23 % RMSE reduc-
tion in CLMWHE) at US-ARM, US-PON, and US-CRT, and
showed no improvement at CAF-CT. The sensible heat flux
(H ) showed no obvious improvement (Fig. 3q–t).

At the US-ARM and US-PON sites, the LE monthly vari-
ation patterns were improved by better representing the leaf
area index, but this improvement was limited by surface en-
ergy partitioning problems in the model. The model parti-
tioned more energy to LE than was observed during the pe-
riod when LAI declines in the late growing season (May–
July). The observed LE is 45 and 53 % of net radiation
at the US-ARM and US-PON sites, while LE simulated in
CLMWHE is 53 and 67 % of net radiation at the US-ARM
and US-PON sites. This energy partitioning problem is re-
versed at the US-CRT and CAF-CT sites, where the model
partitioned less energy to LE than observations. The ob-
served LE is 68 and 66 % of net radiation at the US-CRT and
CAF-CT sites, while simulated LE in CLMWHE is 52 and
30 % of net radiation at the US-CRT and CAF-CT sites. Both
sites are rainfed with no irrigation applied. In addition, the
month of peak LE does not coincide with the month of peak
LAI in the observations at US-ARM and US-PON. In obser-
vations, LE reaches a peak at the same time when LAI is at
its peak, but in CLMWHE, LE reaches a peak 1 month later
than the LAI peak. The lack of energy balance closure for
the eddy flux measurements could affect the energy fluxes’
RMSE estimations, but will not change the major conclu-
sions here: CLMWHE showed improved spring LE simu-
lations than CLMBASE, and the simulated LE peak was 1
month later than LAI peaks. Finally, we note that the winter
wheat model did not improve surface energy partitioning in
summer after winter wheat harvest.

We found that the overestimation of LE in summer and fall
can be reduced using a new soil evaporation scheme (Swen-
son and Lawrence, 2014) that will be available in CLM5.

In CLM, vegetation affects LE through leaf transpiration,
and LE in vegetated grid cells has three components: soil
evaporation, wet leaf evaporation, and dry leaf transpiration
(Lawrence et al., 2007). The excessive spring soil evapora-
tion in CLM has been reported in earlier versions of CLM
(Lu and Kueppers, 2012; Stockli et al., 2008) and some ef-
fort has been made to reduce soil evaporation. For example,
Sakaguchi and Zeng (2009) added a litter resistance to soil
evaporation in CLM3.5 that reduced the annual averaged soil
evaporation. Recent work by Swenson and Lawrence (2014)
added a dry surface layer that increased the soil resistance
and reduced soil evaporation. We tested the new dry surface
layer scheme at the US-ARM site, and found that soil evap-
oration was reduced by 21 % and the LE simulation was im-
proved in May–December (Fig. 4c). However, the spring LE
was still underestimated and the LE peak was still 1 month
later than the LAI peak, which is due to the leaf transpiration
reaching its peak 1 month later than the LAI peak (Fig. 4c).

3.3 Yield

The accuracy of the simulated yield depended on whether
the region has a similar climate to the site where the model
was calibrated (Fig. 5). US-ARM had the smallest RMSE
(0.80 t ha−1) due to calibration, and the US-PON site had
only a slightly higher RMSE (1.11 t ha−1) than US-ARM be-
cause the two sites have similar climates (both are located
in northern Oklahoma). The yield was overestimated by 0.59
and 1.00 t ha−1 for US-ARM and US-PON. However, at US-
CRT and CAF-CT, which are far from US-ARM, the yield
RMSE values were much higher (2.46 and 3.68 t ha−1) and
yields were underestimated by 2.45 and 3.68 t ha−1. In terms
of the interannual variation in yield, CLMWHE accurately
simulated the yield decline at the US-ARM site from 2003
to 2006 and captured the interannual variation from 2007 to
2010, but failed to simulate the lowest yield in 2007. We
also note that CAF-CT is the only site where yield simu-
lations with CLMWHE were worse than CLMBASE. Here
the yield RMSE increased from 0.90 t ha−1 in CLMBASE to
3.86 t ha−1 in CLMWHE (discussed further below).

CLMWHE (Fig. 6b) showed a better US yield estimation
(RMSE reduced by 24 %) than CLMBASE (Fig. 6c) but still
underestimated the US winter wheat yield by 35 % compared
to USDA county-level non-irrigated winter wheat yield data
averaged across 1979–2010 (Fig. 6a), which is largely due
to the underestimation of the northwestern US winter wheat
yield. In the simulation, winter wheat growth in the north-
west was limited by soil water availability. Figure 7 shows
that the plant wetness factor (btran, averaged across grow-
ing season) was < 0.5 in much of the region. In CLM, btran
varies between 0 and 1 and represents the available soil wa-
ter to the plant (1 means no water stress at all). The low btran
in this region limited photosynthesis and reduced crop yield
in the model. We applied irrigation to a single point in the
northwest, and the yield increased from 1.98 to 5.42 t ha−1
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Figure 5. The annual winter wheat yield compared against the near-
est county USDA NASS yield data and site observations (if avail-
able). The nearest county USDA NASS yield data are very similar
to the site measured yield at the US-ARM site.

with irrigation, which is consistent with yields in subregions
of the northwest. For the southeastern US, CLMWHE sim-
ulated a similar yield to the Southern Great Plains, but the
simulated yield was lower than USDA yield for the region,
which may be due to model deficiencies in the representa-
tion of fertilization, lack of regional varieties, or other forms
of crop management not well captured in the model.

We quantified frost damage impacts on LAI and yield
in the US domain through CLMWHE simulations with and
without the frost damage function. Frost damage resulted in
lower LAI and yield, with spatial variation across the US
(Fig. 8). For the domain average, frost damage reduced LAI
by 27 % (or 1.69 m2 m−2) and reduced yield by 28 % (or
0.5 t ha−1). The greatest reduction (> 45 %) in LAI occurred
in Texas and the southeastern US, which was due to insuffi-
cient hardening, producing a high LT50 and low survival rate.
LAI in the cold northern US regions had less impact (< 15 %)
from frost damage. The cold damage indirectly affects yield
through reduced photosynthesis with lower LAI, but photo-
synthesis and yield changes were not always geographically
consistent with the LAI damage. For example, the northern
Great Plains and Midwest had greater percentage reductions
(> 45 %) in yield than reductions in LAI (< 15 %).

A simple, single-variable, statistical yield regression indi-
cated that variables important in predicting CLMWHE yield
may be irrelevant for predicting observed yield. The simu-
lated yields depend most on the growing degree days (R2

=

0.94), which only explained 24 % of observed yield variation
(Fig. 9). Although there are many other variables that con-
tribute to variation in the CLMWHE yield, such as peak LAI,
length of leaf emergence period, harvest date, and day of LAI
peak, these variables have strong correlations with growing
degree days, which suggests that crop yields in CLM depend
too much on growing degree days. Soil moisture, especially
the lower layer soil moisture at 20 cm, is the only variable
that explained a large amount of yield variation in both ob-
servations (R2

= 0.80) and CLMWHE (R2
= 0.86). So im-

proved representation of soil hydrology, especially the inter-
annual variability of soil moisture, may improve the simula-
tions of yield variation.

4 Discussion and conclusions

We improved the winter wheat model in CLM with new
vernalization, frost tolerance, and frost damage processes.
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Figure 6. 1979–2010 averaged winter wheat yield for (a) USDA county-level yield, (b) the CLMWHE simulated yield, and (c) CLMBASE
simulated yield.
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Figure 7. 1979–2010 averaged plant wetness factor between leaf
emergence and harvest. Values less than 1 indicate water stress and
cause photosynthesis to be reduced in the model.

We modified the grain carbon allocation algorithm and per-
formed a calibration on three key parameters (minimum
planting temperature, maximum crop growth days, and initial
value of leaf carbon allocation coefficient) at the US-ARM
site, and then validated the model performance at multiple
other sites in North America. These model alterations led to
large improvements for crop phenology (indicated by LAI),
net ecosystem exchange, and spring latent heat flux. Addi-
tionally, the modeled yield RMSE is comparable to literature
values (Palosuo et al., 2011). However, there are several re-
maining limitations of the model that need to be resolved in
a future version.

CLM needs to better represent the land cover after harvest
to include the influence of weeds and litter on the carbon bal-
ance. Although CLM properly simulated the seasonal evolu-
tion of NEE, the NEE RMSE at US-ARM and US-CRT (2-
3 µmol m−2 s−1) is higher than the Lund-Potsdam-Jena man-
aged Land model (LPJ-ml) simulation (Bondeau et al., 2007)
at the US-PON site (1.09 µmol m−2 s−1), which is largely
due to incorrect simulation of NEE after harvest. When win-

ter wheat is not alive, CLM represents the land cover as bare
ground so GPP is zero but heterotrophic respiration from lit-
ter and soil organic matter is still large, which resulted in a
carbon source after harvest (positive NEE). This is not true
for the US-ARM site, where we observed weed growth af-
ter harvest and positive NEE (Raz-Yaseef et al., 2015). This
vegetation cover after harvest resulted in a near-zero NEE
at US-ARM or negative NEE at US-CRT site. Appropriate
simulation of the post-harvest land cover is critical for better
representing the role of agriculture in global carbon fluxes.

CLM needs to further increase the influence of crops and
vegetation on the surface energy balance and latent heat flux
(LE) in particular. The LE simulation in CLM has a R2

range from 0.62 to 0.97 across the four sites, which is better
than other model simulations at the same sites. For example,
Arora et al. (2003) simulated LE RMSE 22.0 W m−2 at US-
PON from March to May in 1997 using their coupled land-
surface and terrestrial ecosystem model (CLASS-Twoleaf
model), and we simulated LE RMSE 10.55 W m−2 at the
same site from March to May averaged for 1998–1999. But
our LE response to the improved LAI was not as strong as we
expected. Williams and Torn (2015) showed that vegetation
has stronger controls on surface heat flux partitioning than
soil moisture at the US-ARM site, where LAI explained 53 %
of the variation in evaporative fraction (EF=LE/(LE+H)),
while soil moisture only explained 11 % of EF variation. For
our 6 winter wheat years, Williams and Torn (2015) used 8
years that included other cover types, and we found similar
patterns in the US-ARM observations. LAI explained 40 %
of EF variation, while soil moisture only explained 7 % (not
shown). However, EF in CLMWHE and CLMBASE was not
as well predicted by LAI, which only explained 5 and 1 %,
respectively, of variation in EF. In CLM, vegetation affects
LE through leaf transpiration, and LE in vegetated grid cells
has three components: soil evaporation, wet leaf evaporation,
and dry leaf transpiration (Lawrence et al., 2007). The wet
leaf evaporation is the smallest and overall LE depends on the
tradeoff between soil evaporation and leaf transpiration. Soil
evaporation is dominant when LAI is small, and leaf transpi-
ration is dominant when LAI is higher. Using the US-ARM
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Figure 8. Frost damage-induced percentage difference in (a) leaf area index and (b) yield between two 1979–2010 CLMWHE simulations,
one with frost damage and one without frost damage.
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Figure 9. Comparison of the linear regression R square for yield
and each of the 11 variables.

site as an example, in CLMBASE, the leaf transpiration is
very small due to low LAI but soil evaporation is very large,
which is opposite in CLMWHE (Fig. 4a and b). Such a trade-
off is why the large increase in LAI in CLMWHE only in-
creased overall LE a small amount compared to CLMBASE.
We found that although the new soil evaporation parameter-
ization (Swenson and Lawrence, 2014) in a later version of
CLM reduced soil evaporation and improved the summer and
fall LE simulation (Fig. 4), it also reduced spring soil evapo-
ration (Fig. 4b) and induced an even lower spring LE. If we
assume this reduction in soil evaporation is reasonable, then
further improvement of the LE simulation needs to be fo-
cused on increasing the leaf transpiration and correcting the
inconsistent peak time between leaf transpiration and LAI.

CLMWHE tends to underestimate the winter wheat yield,
but the yield RMSE is comparable to other literature values.

The averaged yield RMSE across the four sites is 1.96 t ha−1,
which was within the range of other winter wheat mod-
els’ yield RMSE (1.41–2.15 t ha−1) reported by Palosuo et
al. (2011), although the simulation sites and years are dif-
ferent. The low simulated yield may be due to the insuf-
ficient calibrations. Table 4 listed the key crop growth pa-
rameters used in CLMWHE. We calibrated these parame-
ters at the US-ARM site, and applied the same values every-
where, which is a common approach in land-surface model
development. However, the US-ARM site represents a rela-
tively low yield compared to the US national average. This
likely contributed to underestimated yields at sites or in re-
gions with historically greater yields, such as at US-CRT and
CAF-CT, and in the southeastern and northwestern US. The
current modeling framework of CLM does not facilitate the
substantial calibration required to more accurately capture
the full range of observed winter wheat yields. As a grid-
ded global crop model, gridded parameters (e.g., maximum
maturity days, leaf emerge and grain fill threshold, and back-
ground litter fall factor) that allow for spatial variation in
the key parameters should be considered in future versions
of the model. Alternately, for parameters with spatial struc-
ture linked to environmental variation, parameters could vary
with climate or soil conditions.

We investigated the causes of the low yield in 2007 at
the US-ARM site. The observational yield data in Fig. 4 are
from the county-level USDA yield estimate, which is very
similar (RMSE= 0.11 t ha−1) to the US-ARM site observed
yield. Both the site observed yield and USDA county-level
yield showed the lowest values in 2007 (1.35 t ha−1), so the
low yield in 2007 is not specific to the field represented by
the US-ARM site. The field notes indicate that only part of
the wheat field was harvested in early July of 2007, while
the remainder of the field was not harvested due to wheat
sprouting in the head. Pre-harvest sprouting reduces the qual-
ity (and price) of the grain, and can occur when the crop is
exposed to prolonged heavy rain. We examined the precip-
itation, temperature, and wind speed during May and June
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across the 8 years and found that in 2007 there was double
the mean precipitation in June (108.2 % higher than the 8-
year June average). Such large amounts of precipitation may
have caused the low observed yield. Assuming that the low
yield was strongly linked to the high rainfall, the implication
is that the winter wheat crop model needs to include more
types of environmental damage to fully simulate interannual
variation in yields.

Our new winter wheat model improved the LAI and yield
simulation compared to the original winter wheat model ex-
cept at the CAF-CT site due to (1) drier soil conditions dur-
ing the grain fill phase and (2) the adjusted grain carbon
allocation coefficient in CLMWHE. CLMWHE started the
grain fill phase during the end of May, while CLMBASE
started the grain fill phase in the beginning of May. In mid-
May, the higher LAI in CLMWHE resulted in 30 % more
LE than CLMBASE and dried the soil. The plant wetness
factor dropped from 0.98 on 15 May to 0.19 on 28 May
in CLMWHE, but remained greater than 0.89 through May
in CLMBASE. The grain carbon allocation in CLMWHE is
strongly limited by soil water available to the plant, so grain
carbon was much smaller in CLMWHE than in CLMBASE.
The larger LAI also increased LE at the other three sites rel-
ative to the baseline simulations, but did not result in long-
term water stress due to sufficient precipitation during the
rainy season. The CAF-CT site has 10 times less precipita-
tion than the other three sites in May. The observed LE at
CAF-CT site is much higher than the simulation given the
same precipitation, suggesting the plant wetness factor in the
model is too sensitive to low precipitation.

Some of our modeling approaches need further improve-
ments to the processes supported by new observations. We
developed hypothetical (empirically based) frost damage
functions that account for both small and frequent damage
early in the growing season, and severe damage in win-
ter and spring. Such a hypothetical approach is not uncom-
mon in crop modeling when lacking observations at a pro-
cess level. For example, CERES-Wheat (Ritchie and Ot-
ter, 1985) developed a hypothetical leaf senescence scheme
during cold temperature that monitored a cold hardening
index (http://nowlin.css.msu.edu/wheat_book/CHAPTER3.
html). We tested the CERES-Wheat leaf senescence scheme
in CLM and found it produced too much reduction in LAI.
This finding motivated our approach based on recently de-
veloped frost tolerance indicators. The magnitude of the leaf
carbon reductions and how such reductions are linked to frost
damage requires more observations, such as high-frequency
aboveground and belowground biomass measurements. Fur-
thermore, the linear yield regressions showed that the yields
in CLM depend too much on growing degree days, a sensi-
tivity that is not reflected in observations. In CLM, growing
degree days not only determine crop phenology, but are also
involved in calculation of the carbon allocation coefficients
(Table 3). Exploring other possible factors that control phe-
nology and carbon allocation may improve crop simulation

in CLM. Meanwhile, soil moisture, especially the deeper soil
moisture, explains a large amount of the yield variation in
both observations and the simulations. Fixing the current bi-
ases in soil hydrology and reducing interannual variability in
the simulated soil moisture will benefit the yield simulation.

In summary, we found that our new winter wheat model
in CLM better captured the monthly variation of leaf area
index and improved the latent heat flux and net ecosystem
exchange simulation in spring. Our model correctly simu-
lated the interannual variation in yield at the US-ARM site,
but the crop growth calibration at the US-ARM site intro-
duced a low-yield bias that produced underestimates of the
yield in high-yield sites (US-CRT and CAF-CT) and regions
(northwestern and southeastern US). Our analysis indicates
that while this model of winter wheat represents a substan-
tial step forward in simulating the processes that influence
winter wheat growth and yield, further refinements would be
helpful to capture the impacts of environmental stress on en-
ergy partitioning, carbon fluxes, and yield, and would im-
prove simulations of regional variation.

Code availability. The winter wheat code in CLM4.5 can be re-
quested from Yaqiong Lu (yaqiong@ucar.edu). It will be available
in the next released version of the Community Land Model (version
5) for public access.
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at doi:10.5194/gmd-10-1873-2017-supplement.
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