Articles | Volume 10, issue 4
https://doi.org/10.5194/gmd-10-1789-2017
https://doi.org/10.5194/gmd-10-1789-2017
Methods for assessment of models
 | 
27 Apr 2017
Methods for assessment of models |  | 27 Apr 2017

Tuning without over-tuning: parametric uncertainty quantification for the NEMO ocean model

Daniel B. Williamson, Adam T. Blaker, and Bablu Sinha

Related authors

Emulation of high-resolution land surface models using sparse Gaussian processes with application to JULES
Evan Baker, Anna B. Harper, Daniel Williamson, and Peter Challenor
Geosci. Model Dev., 15, 1913–1929, https://doi.org/10.5194/gmd-15-1913-2022,https://doi.org/10.5194/gmd-15-1913-2022, 2022
Short summary

Related subject area

Climate and Earth system modeling
A Fortran–Python interface for integrating machine learning parameterization into earth system models
Tao Zhang, Cyril Morcrette, Meng Zhang, Wuyin Lin, Shaocheng Xie, Ye Liu, Kwinten Van Weverberg, and Joana Rodrigues
Geosci. Model Dev., 18, 1917–1928, https://doi.org/10.5194/gmd-18-1917-2025,https://doi.org/10.5194/gmd-18-1917-2025, 2025
Short summary
A rapid-application emissions-to-impacts tool for scenario assessment: Probabilistic Regional Impacts from Model patterns and Emissions (PRIME)
Camilla Mathison, Eleanor J. Burke, Gregory Munday, Chris D. Jones, Chris J. Smith, Norman J. Steinert, Andy J. Wiltshire, Chris Huntingford, Eszter Kovacs, Laila K. Gohar, Rebecca M. Varney, and Douglas McNeall
Geosci. Model Dev., 18, 1785–1808, https://doi.org/10.5194/gmd-18-1785-2025,https://doi.org/10.5194/gmd-18-1785-2025, 2025
Short summary
The DOE E3SM version 2.1: overview and assessment of the impacts of parameterized ocean submesoscales
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025,https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
WRF-ELM v1.0: a regional climate model to study land–atmosphere interactions over heterogeneous land use regions
Huilin Huang, Yun Qian, Gautam Bisht, Jiali Wang, Tirthankar Chakraborty, Dalei Hao, Jianfeng Li, Travis Thurber, Balwinder Singh, Zhao Yang, Ye Liu, Pengfei Xue, William J. Sacks, Ethan Coon, and Robert Hetland
Geosci. Model Dev., 18, 1427–1443, https://doi.org/10.5194/gmd-18-1427-2025,https://doi.org/10.5194/gmd-18-1427-2025, 2025
Short summary
Modeling commercial-scale CO2 storage in the gas hydrate stability zone with PFLOTRAN v6.0
Michael Nole, Jonah Bartrand, Fawz Naim, and Glenn Hammond
Geosci. Model Dev., 18, 1413–1425, https://doi.org/10.5194/gmd-18-1413-2025,https://doi.org/10.5194/gmd-18-1413-2025, 2025
Short summary

Cited articles

Beck, J. and Guillas, S.: Sequential design with Mutual Information for Computer Experiments (MICE): Emulation of a Tsunami model, arXiv, 2015.
Brynjarsdottir, J. and O'Hagan, A.: Learning about physical parameters: The importance of model discrepancy, Inverse Prob., 30, 114007 24 pp., 2014.
Conti, S., Gosling, J. P., Oakley, J. E., and O'Hagan, A.: Gaussian process emulation of dynamic computer codes, Biometrika, 96, 663–676, 2009.
Craig, P. S., Goldstein, M., Seheult, A. H., and Smith, J. A.: Bayes Linear Strategies for Matching Hydrocarbon Reservoir History, in: Bayesian Statistics 5, edited by: Bernado, J. M., Berger, J. O., Dawid, A. P., and Smith, A. F. M., Oxford University Press, 69–95, 1996.
Download
Short summary
We present a method from the statistical science literature to assist in the tuning of global climate models submitted to CMIP. We apply the method to the NEMO ocean model and find choices of its free parameters that lead to improved representations of depth integrated global mean temperature and salinity. We argue against automatic tuning procedures that involve optimising certain outputs of a model and explain why our method avoids common difficulties with/arguments against automatic tuning.
Share