Articles | Volume 10, issue 4
https://doi.org/10.5194/gmd-10-1789-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gmd-10-1789-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Tuning without over-tuning: parametric uncertainty quantification for the NEMO ocean model
Daniel B. Williamson
CORRESPONDING AUTHOR
College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
Adam T. Blaker
National Oceanography Centre, Southampton, SO14 3ZH, UK
Bablu Sinha
National Oceanography Centre, Southampton, SO14 3ZH, UK
Viewed
Total article views: 4,681 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 30 Aug 2016)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,938 | 1,586 | 157 | 4,681 | 685 | 176 | 179 |
- HTML: 2,938
- PDF: 1,586
- XML: 157
- Total: 4,681
- Supplement: 685
- BibTeX: 176
- EndNote: 179
Total article views: 3,903 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 27 Apr 2017)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,611 | 1,145 | 147 | 3,903 | 577 | 169 | 166 |
- HTML: 2,611
- PDF: 1,145
- XML: 147
- Total: 3,903
- Supplement: 577
- BibTeX: 169
- EndNote: 166
Total article views: 778 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 30 Aug 2016)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
327 | 441 | 10 | 778 | 108 | 7 | 13 |
- HTML: 327
- PDF: 441
- XML: 10
- Total: 778
- Supplement: 108
- BibTeX: 7
- EndNote: 13
Viewed (geographical distribution)
Total article views: 4,681 (including HTML, PDF, and XML)
Thereof 4,374 with geography defined
and 307 with unknown origin.
Total article views: 3,903 (including HTML, PDF, and XML)
Thereof 3,634 with geography defined
and 269 with unknown origin.
Total article views: 778 (including HTML, PDF, and XML)
Thereof 740 with geography defined
and 38 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
44 citations as recorded by crossref.
- What should we do when a model crashes? Recommendations for global sensitivity analysis of Earth and environmental systems models R. Sheikholeslami et al. 10.5194/gmd-12-4275-2019
- Exploring the potential of history matching for land surface model calibration N. Raoult et al. 10.5194/gmd-17-5779-2024
- Uncertainty Analysis of Simulations of the Turn‐of‐the‐Century Drought in the Western United States G. Anderson et al. 10.1029/2017JD027824
- Semi‐Automatic Tuning of Coupled Climate Models With Multiple Intrinsic Timescales: Lessons Learned From the Lorenz96 Model R. Lguensat et al. 10.1029/2022MS003367
- Improved estimates of water cycle change from ocean salinity: the key role of ocean warming J. Zika et al. 10.1088/1748-9326/aace42
- Are general circulation models obsolete? V. Balaji et al. 10.1073/pnas.2202075119
- Modeling the GABLS4 Strongly‐Stable Boundary Layer With a GCM Turbulence Parameterization: Parametric Sensitivity or Intrinsic Limits? O. Audouin et al. 10.1029/2020MS002269
- Spatial probabilistic calibration of a high-resolution Amundsen Sea Embayment ice sheet model with satellite altimeter data A. Wernecke et al. 10.5194/tc-14-1459-2020
- Parametric Sensitivity and Uncertainty Quantification in the Version 1 of E3SM Atmosphere Model Based on Short Perturbed Parameter Ensemble Simulations Y. Qian et al. 10.1029/2018JD028927
- Finding plausible and diverse variants of a climate model. Part II: development and validation of methodology A. Karmalkar et al. 10.1007/s00382-019-04617-3
- The Atlantic Meridional Overturning Circulation in High‐Resolution Models J. Hirschi et al. 10.1029/2019JC015522
- Neglecting Model Parametric Uncertainty Can Drastically Underestimate Flood Risks S. Sharma et al. 10.1029/2022EF003050
- Earth system responses to carbon dioxide removal as exemplified by ocean alkalinity enhancement: tradeoffs and lags A. Jeltsch-Thömmes et al. 10.1088/1748-9326/ad4401
- The CNRM Global Atmosphere Model ARPEGE‐Climat 6.3: Description and Evaluation R. Roehrig et al. 10.1029/2020MS002075
- Diagnostics-Driven Nonstationary Emulators Using Kernel Mixtures V. Volodina & D. Williamson 10.1137/19M124438X
- Estimating Convection Parameters in the GFDL CM2.1 Model Using Ensemble Data Assimilation S. Li et al. 10.1002/2017MS001222
- Reducing climate model biases by exploring parameter space with large ensembles of climate model simulations and statistical emulation S. Li et al. 10.5194/gmd-12-3017-2019
- The importance of uncertainty quantification in model reproducibility V. Volodina & P. Challenor 10.1098/rsta.2020.0071
- Machine learning for weather and climate are worlds apart D. Watson-Parris 10.1098/rsta.2020.0098
- Sensitivity of NEMO4.0-SI3 model parameters on sea ice budgets in the Southern Ocean Y. Nie et al. 10.5194/gmd-16-1395-2023
- Toward machine-assisted tuning avoiding the underestimation of uncertainty in climate change projections F. Hourdin et al. 10.1126/sciadv.adf2758
- Predicting the Output From a Stochastic Computer Model When a Deterministic Approximation is Available E. Baker et al. 10.1080/10618600.2020.1750416
- Revisiting Antarctic ice loss due to marine ice-cliff instability T. Edwards et al. 10.1038/s41586-019-0901-4
- A Bayesian ensemble data assimilation to constrain model parameters and land-use carbon emissions S. Lienert & F. Joos 10.5194/bg-15-2909-2018
- Uncertainty Quantification for Computer Models With Spatial Output Using Calibration-Optimal Bases J. Salter et al. 10.1080/01621459.2018.1514306
- A review on computer model calibration C. Sung & R. Tuo 10.1002/wics.1645
- An iterative process for efficient optimisation of parameters in geoscientific models: a demonstration using the Parallel Ice Sheet Model (PISM) version 0.7.3 S. Phipps et al. 10.5194/gmd-14-5107-2021
- Intermediate Variable Emulation: Using Internal Processes in Simulators to Build More Informative Emulators R. Oughton et al. 10.1137/20M1370902
- Exploration of diverse solutions for the calibration of imperfect climate models S. Peatier et al. 10.5194/esd-15-987-2024
- Region and cloud regime dependence of parametric sensitivity in E3SM atmosphere model Y. Qian et al. 10.1007/s00382-023-06977-3
- Climate–carbon cycle uncertainties and the Paris Agreement P. Holden et al. 10.1038/s41558-018-0197-7
- Emulation of high-resolution land surface models using sparse Gaussian processes with application to JULES E. Baker et al. 10.5194/gmd-15-1913-2022
- Quantifying Spatio-Temporal Boundary Condition Uncertainty for the North American Deglaciation J. Salter et al. 10.1137/21M1409135
- Calibration and Uncertainty Quantification of a Gravity Wave Parameterization: A Case Study of the Quasi‐Biennial Oscillation in an Intermediate Complexity Climate Model L. Mansfield & A. Sheshadri 10.1029/2022MS003245
- Differentiable programming for Earth system modeling M. Gelbrecht et al. 10.5194/gmd-16-3123-2023
- Updates on Model Hierarchies for Understanding and Simulating the Climate System: A Focus on Data‐Informed Methods and Climate Change Impacts L. Mansfield et al. 10.1029/2023MS003715
- Process‐Based Climate Model Development Harnessing Machine Learning: I. A Calibration Tool for Parameterization Improvement F. Couvreux et al. 10.1029/2020MS002217
- Process‐Based Climate Model Development Harnessing Machine Learning: II. Model Calibration From Single Column to Global F. Hourdin et al. 10.1029/2020MS002225
- On Constraining the Mesoscale Eddy Energy Dissipation Time‐Scale J. Mak et al. 10.1029/2022MS003223
- Quantifying the uncertainty in the Eurasian ice-sheet geometry at the Penultimate Glacial Maximum (Marine Isotope Stage 6) O. Pollard et al. 10.5194/tc-17-4751-2023
- Ice Shelf Basal Melt Rates in the Amundsen Sea at the End of the 21st Century N. Jourdain et al. 10.1029/2022GL100629
- Improvements in the Canadian Earth System Model (CanESM) through systematic model analysis: CanESM5.0 and CanESM5.1 M. Sigmond et al. 10.5194/gmd-16-6553-2023
- Machine learning and the quest for objectivity in climate model parameterization J. Jebeile et al. 10.1007/s10584-023-03532-1
- Rising methane emissions from boreal lakes due to increasing ice-free days M. Guo et al. 10.1088/1748-9326/ab8254
43 citations as recorded by crossref.
- What should we do when a model crashes? Recommendations for global sensitivity analysis of Earth and environmental systems models R. Sheikholeslami et al. 10.5194/gmd-12-4275-2019
- Exploring the potential of history matching for land surface model calibration N. Raoult et al. 10.5194/gmd-17-5779-2024
- Uncertainty Analysis of Simulations of the Turn‐of‐the‐Century Drought in the Western United States G. Anderson et al. 10.1029/2017JD027824
- Semi‐Automatic Tuning of Coupled Climate Models With Multiple Intrinsic Timescales: Lessons Learned From the Lorenz96 Model R. Lguensat et al. 10.1029/2022MS003367
- Improved estimates of water cycle change from ocean salinity: the key role of ocean warming J. Zika et al. 10.1088/1748-9326/aace42
- Are general circulation models obsolete? V. Balaji et al. 10.1073/pnas.2202075119
- Modeling the GABLS4 Strongly‐Stable Boundary Layer With a GCM Turbulence Parameterization: Parametric Sensitivity or Intrinsic Limits? O. Audouin et al. 10.1029/2020MS002269
- Spatial probabilistic calibration of a high-resolution Amundsen Sea Embayment ice sheet model with satellite altimeter data A. Wernecke et al. 10.5194/tc-14-1459-2020
- Parametric Sensitivity and Uncertainty Quantification in the Version 1 of E3SM Atmosphere Model Based on Short Perturbed Parameter Ensemble Simulations Y. Qian et al. 10.1029/2018JD028927
- Finding plausible and diverse variants of a climate model. Part II: development and validation of methodology A. Karmalkar et al. 10.1007/s00382-019-04617-3
- The Atlantic Meridional Overturning Circulation in High‐Resolution Models J. Hirschi et al. 10.1029/2019JC015522
- Neglecting Model Parametric Uncertainty Can Drastically Underestimate Flood Risks S. Sharma et al. 10.1029/2022EF003050
- Earth system responses to carbon dioxide removal as exemplified by ocean alkalinity enhancement: tradeoffs and lags A. Jeltsch-Thömmes et al. 10.1088/1748-9326/ad4401
- The CNRM Global Atmosphere Model ARPEGE‐Climat 6.3: Description and Evaluation R. Roehrig et al. 10.1029/2020MS002075
- Diagnostics-Driven Nonstationary Emulators Using Kernel Mixtures V. Volodina & D. Williamson 10.1137/19M124438X
- Estimating Convection Parameters in the GFDL CM2.1 Model Using Ensemble Data Assimilation S. Li et al. 10.1002/2017MS001222
- Reducing climate model biases by exploring parameter space with large ensembles of climate model simulations and statistical emulation S. Li et al. 10.5194/gmd-12-3017-2019
- The importance of uncertainty quantification in model reproducibility V. Volodina & P. Challenor 10.1098/rsta.2020.0071
- Machine learning for weather and climate are worlds apart D. Watson-Parris 10.1098/rsta.2020.0098
- Sensitivity of NEMO4.0-SI3 model parameters on sea ice budgets in the Southern Ocean Y. Nie et al. 10.5194/gmd-16-1395-2023
- Toward machine-assisted tuning avoiding the underestimation of uncertainty in climate change projections F. Hourdin et al. 10.1126/sciadv.adf2758
- Predicting the Output From a Stochastic Computer Model When a Deterministic Approximation is Available E. Baker et al. 10.1080/10618600.2020.1750416
- Revisiting Antarctic ice loss due to marine ice-cliff instability T. Edwards et al. 10.1038/s41586-019-0901-4
- A Bayesian ensemble data assimilation to constrain model parameters and land-use carbon emissions S. Lienert & F. Joos 10.5194/bg-15-2909-2018
- Uncertainty Quantification for Computer Models With Spatial Output Using Calibration-Optimal Bases J. Salter et al. 10.1080/01621459.2018.1514306
- A review on computer model calibration C. Sung & R. Tuo 10.1002/wics.1645
- An iterative process for efficient optimisation of parameters in geoscientific models: a demonstration using the Parallel Ice Sheet Model (PISM) version 0.7.3 S. Phipps et al. 10.5194/gmd-14-5107-2021
- Intermediate Variable Emulation: Using Internal Processes in Simulators to Build More Informative Emulators R. Oughton et al. 10.1137/20M1370902
- Exploration of diverse solutions for the calibration of imperfect climate models S. Peatier et al. 10.5194/esd-15-987-2024
- Region and cloud regime dependence of parametric sensitivity in E3SM atmosphere model Y. Qian et al. 10.1007/s00382-023-06977-3
- Climate–carbon cycle uncertainties and the Paris Agreement P. Holden et al. 10.1038/s41558-018-0197-7
- Emulation of high-resolution land surface models using sparse Gaussian processes with application to JULES E. Baker et al. 10.5194/gmd-15-1913-2022
- Quantifying Spatio-Temporal Boundary Condition Uncertainty for the North American Deglaciation J. Salter et al. 10.1137/21M1409135
- Calibration and Uncertainty Quantification of a Gravity Wave Parameterization: A Case Study of the Quasi‐Biennial Oscillation in an Intermediate Complexity Climate Model L. Mansfield & A. Sheshadri 10.1029/2022MS003245
- Differentiable programming for Earth system modeling M. Gelbrecht et al. 10.5194/gmd-16-3123-2023
- Updates on Model Hierarchies for Understanding and Simulating the Climate System: A Focus on Data‐Informed Methods and Climate Change Impacts L. Mansfield et al. 10.1029/2023MS003715
- Process‐Based Climate Model Development Harnessing Machine Learning: I. A Calibration Tool for Parameterization Improvement F. Couvreux et al. 10.1029/2020MS002217
- Process‐Based Climate Model Development Harnessing Machine Learning: II. Model Calibration From Single Column to Global F. Hourdin et al. 10.1029/2020MS002225
- On Constraining the Mesoscale Eddy Energy Dissipation Time‐Scale J. Mak et al. 10.1029/2022MS003223
- Quantifying the uncertainty in the Eurasian ice-sheet geometry at the Penultimate Glacial Maximum (Marine Isotope Stage 6) O. Pollard et al. 10.5194/tc-17-4751-2023
- Ice Shelf Basal Melt Rates in the Amundsen Sea at the End of the 21st Century N. Jourdain et al. 10.1029/2022GL100629
- Improvements in the Canadian Earth System Model (CanESM) through systematic model analysis: CanESM5.0 and CanESM5.1 M. Sigmond et al. 10.5194/gmd-16-6553-2023
- Machine learning and the quest for objectivity in climate model parameterization J. Jebeile et al. 10.1007/s10584-023-03532-1
1 citations as recorded by crossref.
Latest update: 21 Jan 2025
Short summary
We present a method from the statistical science literature to assist in the tuning of global climate models submitted to CMIP. We apply the method to the NEMO ocean model and find choices of its free parameters that lead to improved representations of depth integrated global mean temperature and salinity. We argue against automatic tuning procedures that involve optimising certain outputs of a model and explain why our method avoids common difficulties with/arguments against automatic tuning.
We present a method from the statistical science literature to assist in the tuning of global...