Articles | Volume 9, issue 3
https://doi.org/10.5194/gmd-9-965-2016
https://doi.org/10.5194/gmd-9-965-2016
Development and technical paper
 | 
04 Mar 2016
Development and technical paper |  | 04 Mar 2016

Assimilating compact phase space retrievals of atmospheric composition with WRF-Chem/DART: a regional chemical transport/ensemble Kalman filter data assimilation system

Arthur P. Mizzi, Avelino F. Arellano Jr., David P. Edwards, Jeffrey L. Anderson, and Gabriele G. Pfister

Related authors

Assimilating compact phase space retrievals (CPSRs): comparison with independent observations (MOZAIC in situ and IASI retrievals) and extension to assimilation of truncated retrieval profiles
Arthur P. Mizzi, David P. Edwards, and Jeffrey L. Anderson
Geosci. Model Dev., 11, 3727–3745, https://doi.org/10.5194/gmd-11-3727-2018,https://doi.org/10.5194/gmd-11-3727-2018, 2018
Short summary
Assimilation of satellite NO2 observations at high spatial resolution using OSSEs
Xueling Liu, Arthur P. Mizzi, Jeffrey L. Anderson, Inez Y. Fung, and Ronald C. Cohen
Atmos. Chem. Phys., 17, 7067–7081, https://doi.org/10.5194/acp-17-7067-2017,https://doi.org/10.5194/acp-17-7067-2017, 2017
Short summary

Related subject area

Atmospheric sciences
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024,https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024,https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024,https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024,https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024,https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary

Cited articles

Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903, 2001.
Anderson, J. L.: A local least squares framework for ensemble filtering, Mon. Weather Rev., 131, 634–642, 2003.
Anderson, J. L., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Arellano, A.: The Data Assimilation Research Testbed: A community facility, B. Am. Meteorol. Soc., 90, 1283–1296, 2009.
Bei, N., de Foy, B., Lei, W., Zavala, M., and Molina, L. T.: Using 3DVAR data assimilation system to improve ozone simulations in the Mexico City basin, Atmos. Chem. Phys., 8, 7353–7366, https://doi.org/10.5194/acp-8-7353-2008, 2008.
Colarco, P., da Silva, A., Chin, M., and Diehl, T.: Online simulation of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth, J. Geophys. Res., 115, D14207, https://doi.org/10.1029/2009JD012820, 2010.
Download
Short summary
This paper introduces (i) WRF-Chem/DART – a state-of-the-art chemical transport/data assimilation system, and (ii) compact phase space retrievals (CPSRs). WRF-Chem/DART is NCAR's regional chemical weather forecasting prototype. Such systems require assimilation of chemical composition observations, such as trace gas retrievals. Retrievals are expensive to assimilate. CPSRs reduce those assimilation costs (~ 35 % for MOPITT CO) without loss in forecast skill by removing redundant information.