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Abstract. This paper introduces the Weather Research and

Forecasting Model with chemistry/Data Assimilation Re-

search Testbed (WRF-Chem/DART) chemical transport fore-

casting/data assimilation system together with the assimila-

tion of compact phase space retrievals of satellite-derived

atmospheric composition products. WRF-Chem is a state-of-

the-art chemical transport model. DART is a flexible soft-

ware environment for researching ensemble data assimila-

tion with different assimilation and forecast model options.

DART’s primary assimilation tool is the ensemble adjust-

ment Kalman filter. WRF-Chem/DART is applied to the as-

similation of Terra/Measurement of Pollution in the Tro-

posphere (MOPITT) carbon monoxide (CO) trace gas re-

trieval profiles. Those CO observations are first assimilated

as quasi-optimal retrievals (QORs). Our results show that

assimilation of the CO retrievals (i) reduced WRF-Chem’s

CO bias in retrieval and state space, and (ii) improved the

CO forecast skill by reducing the Root Mean Square Er-

ror (RMSE) and increasing the Coefficient of Determination

(R2). Those CO forecast improvements were significant at

the 95 % level.

Trace gas retrieval data sets contain (i) large amounts of

data with limited information content per observation, (ii) er-

ror covariance cross-correlations, and (iii) contributions from

the retrieval prior profile that should be removed before as-

similation. Those characteristics present challenges to the

assimilation of retrievals. This paper addresses those chal-

lenges by introducing the assimilation of compact phase

space retrievals (CPSRs). CPSRs are obtained by preprocess-

ing retrieval data sets with an algorithm that (i) compresses

the retrieval data, (ii) diagonalizes the error covariance, and

(iii) removes the retrieval prior profile contribution. Most

modern ensemble assimilation algorithms can efficiently as-

similate CPSRs. Our results show that assimilation of MO-

PITT CO CPSRs reduced the number of observations (and

assimilation computation costs) by ∼ 35 %, while providing

CO forecast improvements comparable to or better than with

the assimilation of MOPITT CO QORs.

1 Introduction

There is increased international interest in chemical weather

forecasting (Kukkonen et al., 2012; MACC-II Final Report,

2014). Such forecasts rely on coupled forecast model–data

assimilation systems that ingest a combination of remotely

sensed and in situ atmospheric composition observations to-

gether with conventional meteorological observations. Gen-

erally the remotely sensed observations come in the form

of trace gas retrievals. Examples include carbon monoxide

(CO) total and partial column or profile retrievals from the

Terra/Measurement of Pollution in the Troposphere (MO-

PITT) and Metop/Infrared Atmospheric Sounding Interfer-

ometer (IASI) instruments. The associated data sets are char-

acterized by large numbers of observations with limited in-

formation per observation. Such remotely sensed data have
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been assimilated in various settings (e.g. Bei et al., 2008;

Herron-Thorpe et al., 2012; Klonecki et al., 2012; Gaubert

et al., 2014), but there have been only a few papers address-

ing data compression strategies. Two such papers were Joiner

and da Silva (1998) and Migliorini et al. (2008). This article

is inspired by their research and introduces an efficient as-

similation strategy that reduces the number of MOPITT CO

retrieval observations by∼ 35 %. Greater reductions are pos-

sible, for example, with IASI CO and ozone (O3) retrievals,

and depend on the number of (i) levels in the retrieval pro-

file and (ii) linearly independent pieces of information in the

retrieval profile.

Joiner and da Silva (1998) first proposed the idea of us-

ing information content to reduce the number of retrieval

observations. They suggested projecting retrievals onto the

eigenvectors of the observation error covariance matrix and

zeroing those coefficients with little or no information. Their

approach evolved from one-dimensional retrieval algorithms

(e.g. Twomey, 1974; Smith and Woolf, 1976; Thompson,

1992).

Retrievals are often obtained using the optimal estimation

method of Rodgers (2000) to obtain solutions to the retrieval

equation

yr = Ayt+ (I−A)ya+ ε, (1)

where yr is the retrieval profile, A is the averaging kernel,

yt is the true atmospheric profile (unknown), I is the identity

matrix, ya is the retrieval prior profile, and ε is the measure-

ment error in retrieval space with error covariance Em – the

measurement error covariance in retrieval space. Joiner and

da Silva (1998) proposed projecting Eq. (1) onto the trailing

left singular vectors from the singular value decomposition

(SVD) of (i) (I−A) (their method 1) or (ii) the smoothing

error Es = (A− I)Pp(A− I)T , where Pp is the retrieval prior

error covariance (their method 2). Those projections removed

the components of the retrieval that the instrument could not

measure with sufficient sensitivity. They called that approach

null-space filtering.

Joiner and da Silva (1998) recognized that when the re-

trieval was strongly constrained by the retrieval prior pro-

file, the assumptions underlying null-space filtering were in-

valid. For such retrievals, they proposed filtering based on

an eigen-decomposition of Em (their PED (partial eigen-

decompostion) retrievals). Their analysis showed that PED

retrievals were well conditioned and independent of the re-

trieval prior profile.

Migliorini et al. (2008) noted that the Joiner and DaSilva

(1998) filtering depended on their truncation criteria and was

therefore somewhat arbitrary. They also showed it was pos-

sible to achieve similar filtering results with an alternative

approach that used a more well-defined truncation criterion.

Migliorini et al. (2008) rearranged Eq. (1) to obtain

yr− (I−A)ya = Ayt+ ε. (2)

Following their terminology, we call the left side of Eq. (2) a

quasi-optimal retrieval (QOR). Migliorini et al. (2008) noted

that Em was unlikely to be diagonal and likely to be poorly

conditioned. To address those issues, they applied a SVD

transform to Eq. (2) based on the leading left singular vec-

tors of Em (similar to that proposed by Anderson, 2003) –

this step provided diagonalization of Em and used a well-

determined truncation cutoff. They also applied a scaling

based on the inverse square root of the associated singular

values – this step improved numerical conditioning.

Migliorini et al. (2008) continued to reduce the dimen-

sion of Ayt (i.e., the number of observations) by neglecting

those elements whose variability was smaller than the mea-

surement error standard deviation (unity in their rotated and

scaled system). They proposed identifying those elements

with an eigen-decomposition of the covariance of Ayt. Since

that covariance is generally unknown, they replaced it with

the forecast error covariance and showed that the resulting

dimension was approximately equal to the number of inde-

pendent linear functions that could be measured to better than

noise level.

A more recent paper (Migliorini 2012) shows that re-

trievals can be transformed to represent only the portion of

the state that is well constrained by the original radiance

measurements when two requirements are satisfied: (i) the

radiance observation operator is approximately linear in a re-

gion of state space centered on the retrieval and with a radius

on the order of the retrieval error, and (ii) the prior infor-

mation used to constrain the retrieval does not underrepre-

sent the variability of the state. Migliorini (2012) proves that

when those conditions are met the assimilation of radiances

is equivalent to the assimilation of retrievals. The Miglior-

ini (2012) analysis shows that it is possible to use informa-

tion from the retrieval algorithm to compress information in

the transformed retrievals

In this paper, we propose an approach that achieves results

similar to (i) Migliorini et al. (2008) without needing to ap-

proximate the covariance of Ayt, and (ii) Migliorini (2012)

without needing information about the retrieval algorithm.

Our goal is to compress the retrievals and remove those

components that are not dependent on the measurements.

In so doing we expect to make the assimilation of retrievals

more computationally efficient. The rest of this paper is or-

ganized as follows: Sect. 2 introduces compact phase space

retrievals, and Sect. 3 introduces the WRF-Chem/DART re-

gional chemical weather forecast/data assimilation system.

Section 4 discusses our experimental design including the

study period, model domain, initial/boundary conditions, and

relevant WRF-Chem/DART parameter settings. Section 5

discusses the observations that were assimilated in the var-

ious experiments described in Sect. 6. The results from those

experiments are presented in Sect. 7, and we end with a sum-

mary of our thoughts and conclusions in Sect. 8.
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2 Assimilation of compact phase space retrievals

We can rewrite Eq. (2) as

yr− (I−A)ya− ε = Ayt. (3)

In Eq. (3) the averaging kernel A is singular and has low

rank. Therefore the information content for each component

of Ayt is relatively small, and the assimilation is inefficient

because one must assimilate the entire profile to get the same

information as can be compressed into a number of processed

observations equal to the rank of A. To compress Eq. (3), we

propose transforming it with the leading left singular vectors

from a SVD of the averaging kernel; i.e., A= USVT . We

denote the truncated system with the subscript zero so that

A0 = U0S0VT0 ; the truncated averaging kernel is obtained by

setting the trailing singular values (i.e., singular values that

were less than 1.0× 10−4) and vectors to zero. The trans-

formed system has the form

UT0 (yr− (I−A)ya− ε)= S0VT0 yt. (4)

Migliorini et al. (2008) showed that subtracting (I−A)ya

from Eq. (3) removes all contribution from the retrieval prior

profile. Equations (3) and (4) confirm their result because the

leading left singular vectors of A span its range, so the left

side of Eq. (3) should project completely onto UT0 . Follow-

ing that transform Em becomes UT0 EmU0, which may still be

non-diagonal and poorly conditioned. Therefore, we apply

an SVD transform and inverse scaling similar to that used by

Migliorini et al. (2008). If the SVD of UT0 EmU0 has the form

UT0 EmU0 =869
T , the transformed and conditioned form

of Eq. (4) is

6−1/28TUT0 (yr− (I−A)ya− ε)=6−1/28T S0VT0 yt. (5)

Our approach compresses Eq. (3) so that the dimension

of the compact phase space retrieval (CPSR) profile on the

left side of Eq. (5) is identical to the number of indepen-

dent linear functions of the atmospheric profile to which the

instrument is sensitive. This method is different from that

of Migliorini et al. (2008) because it compresses the quasi-

optimal retrieval observations based on a linear indepen-

dence analysis and relies on the assimilation system to decide

how much weight to give the observations. The approach of

Migliorini et al. (2008) reduces the number of observations

based on an uncertainty analysis independent of the assimila-

tion system. Our approach identifies all linearly independent

information contained in the QOR profile (through projec-

tion of the QOR profile onto the left non-zero singular vec-

tors of the averaging kernel). The approach of Migliorini et

al. (2008) may (i) discard some linearly independent infor-

mation because the left non-zero singular vectors of the ob-

servation error covariance are not necessarily a basis for the

space of QORs, and (ii) discard some linearly independent

information through their uncertainty analysis. Finally, our

approach relies on two transforms: (i) a compression trans-

form (based on the left non-zero singular vectors of the av-

eraging kernel, and (ii) a diagonalization transform (based

on the left non-zero singular vectors of the compressed ob-

servation error covariance). The approach of Migliorini et

al. (2008) uses two diagonalization transforms – the first

based on the observation error covariance and the second

based on the transformed forecast error covariance in ob-

servation space. Our diagonalization transform is analogous

to their first diagonalization transform except we apply it to

the compressed observation error covariance, and they apply

it to the untransformed observation error covariance. As in

Migliorini et al. (2008), the final form of our observation er-

ror covariance is the truncated identity matrix.

The assimilation of CPSRs should produce results similar

to the assimilation of QORs except for (i) the effect of as-

similation sub-processes like horizontal localization and in-

flation, and (ii) differences in the observation error due to the

CPSR compression transform. The QOR and CPSR observa-

tion errors are different because the compression transform

projects the errors onto the leading left singular vectors of

the averaging kernel and retains only those components that

lie in the range of the averaging kernel.

In summary the steps for obtaining CPSRs from trace-gas

retrievals are as follows (assuming the retrieval equation has

the same form as Eq. 2):

– Obtain the retrieval and retrieval prior profiles, the aver-

aging kernel, and the observation error covariance for a

particular horizontal location.

– Subtract the retrieval prior term (I−A)ya from the re-

trieval profile yr. This yields the QOR as defined by

Eq. (3).

– Perform a SVD of the averaging kernel. Form a trans-

form matrix from the left singular vectors associated

with the non-zero singular values. Left multiply the

QOR by the transpose of the transform matrix. This

yields the truncated QOR profile as defined by Eq. (4).

– Left multiply the observation error covariance by the

transpose of the transform matrix. Right multiply that

matrix product by the transform matrix. This yields the

truncated observation error covariance.

– Perform a SVD of the truncated observation error co-

variance. Scale the left singular vectors with the inverse

square root of their respective singular values. Left mul-

tiply the truncated QOR profile by the transpose of the

scaled left singular vector matrix. This yields the CPSR

profile as defined by Eq. (5).

– As a check, left multiply the truncated observation error

covariance by the transpose of the scaled left singular

vector matrix. Right multiply that matrix product by the

scaled left singular vector matrix. The result should be
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an identity matrix with rank equal to the number of non-

zero CPSRs from the previous step.

– Assimilate the non-zero CPSRs with unitary error vari-

ance.

3 WRF-Chem/DART – a regional chemical

transport/data assimilation system

The Weather Research Forecasting Model with chem-

istry/Data Assimilation Research Testbed (WRF-

Chem/DART) system is the WRF-Chem chemical transport

model (www2.acd.ucar.edu/wrf-chem) coupled with the

DART (www.image.ucar.edu/DAReS/DART) ensemble

adjustment Kalman filter (Anderson, 2001, 2003) data

assimilation system. WRF-Chem/DART is an extension of

WRF/DART (www.cawcr.gov.au and references therein).

WRF-Chem is the National Center for Atmospheric Re-

search (NCAR) regional Weather Research and Forecasting

(WRF) model (www.wrf-model.org) with chemistry. WRF-

Chem is a regional model that predicts conventional weather

together with the emission, transport, mixing, and chemical

transformation of atmospheric trace gasses and aerosols.

WRF-Chem is collaboratively developed and maintained by

the National Oceanic and Atmospheric Administration/Earth

System Research Laboratory (NOAA/ESRL), Pacific North-

west National Laboratory (PNNL), and NCAR/Atmospheric

Chemistry Observation and Modeling Laboratory (ACOM).

WRF-Chem is documented in Grell et al. (2005), discussed

in Kukkonen et al. (2012), and has been applied in various

research settings (e.g., Pfister et al., 2011, 2013).

DART (Anderson et al., 2009) is a community resource

for ensemble data assimilation (DA) research developed and

maintained by the NCAR/Data Assimilation Research Sec-

tion (DAReS). DART is a flexible software environment for

studying the interaction between different assimilation meth-

ods, observation platforms, and forecast models. WRF-Chem

and DART are state-of-the-art tools for studying the impact

of assimilating trace gas retrievals on conventional and chem-

ical weather analyses and forecasts.

4 Study period, domain, initial conditions, boundary

conditions, emissions, and initial ensemble

generation

We conducted continuous cycling experiments with WRF-

Chem/DART for the period of 00:00 UTC, 1 June 2008 to

00:00 UTC, 1 July 2008 with 6 h cycling (00:00, 06:00,

12:00, and 18:00 UTC). To facilitate a large number of ex-

periments, we used a reduced ensemble of 20 members and

a horizontal resolution of 100 km (101× 41 grid points). We

used 34 vertical levels with a model top at 10 hPa and ∼ 15

levels below 500 hPa. WRF-Chem ran with the Model for

Ozone and Related Chemical Tracers (MOZART-4) chem-

istry and Goddard Chemistry Aerosol Radiation and Trans-

port (GOCART) model aerosol options (Colarco et al., 2009;

Emmons et al., 2010). Ideally for chemical transport fore-

cast experiments we would like an ensemble size of at least

40 members, a horizontal resolution of no larger than 20 km,

and a vertical grid with at least 50 levels. We expect our small

ensemble/coarse-resolution cycling results, as they pertain to

the assimilation of QORs and CPSRs, will apply to larger en-

sembles with higher resolutions. However, as the vertical res-

olution increases, the sensitivity to vertical localization may

increase (because as the model’s vertical resolution increases

(i) the vertical solution becomes less smooth and may ex-

hibit greater vertical variability and (ii) the fidelity of vertical

localization becomes greater) so that tuning of the vertical

localization length may be necessary. For our experiments

we used a three-dimensional Gaspari–Cohn type localization

with a localization radius half-width of 3000 km in the hori-

zontal and 8 km in the vertical. We conducted sensitivity ex-

periments to determine the appropriate localization settings.

Results from the horizontal tests are not discussed. Results

from selected vertical localization tests are discussed briefly

in Sect. 7.5.

We used NCEP Global Forecast System (GFS) 0.5◦

six-hour forecasts for the WRF-Chem initial/boundary con-

ditions. Our model domain extends from ∼ 176 to ∼ 50◦W

and from ∼ 7 to ∼ 54◦ N. We used the WRF preprocessing

system (WPS) to interpolate the GFS forecasts to our

domain and generate the deterministic boundary conditions.

We used the WRF data assimilation system (WRFDA)

(http://www2.mmm.ucar.edu/wrf/users/wrfda/Docs/user_

guide_V3.7/WRFDA_Users_Guide.pdf) to generate the

initial meteorology ensemble.

For the chemistry initial and lateral boundary conditions,

we used global simulations from the NCAR MOZART-

4 model. The fire emissions came from the Fire Inven-

tory from NCAR (FINNv1; Wiedinmyer et al., 2011), and

the Model of Emissions of Gases and Aerosols from Na-

ture (MEGAN; Guenther et al., 2012) calculated the bio-

genic emissions as part of the WRF-Chem forecast. The

anthropogenic emissions were based on the US Environ-

mental Protection Agency’s (EPA’s) 2005 National Emis-

sions Inventory (NEI-2005). We used or adapted existing

ACOM/WRF-Chem utilities (https://www2.acom.ucar.edu/

wrf-chem/wrf-chem-tools-community) to generate the ini-

tial chemistry ensembles with a Gaussian distribution from

a specified mean and standard deviation. That distribution

was truncated at the tails to include 95 % of the distribution.

Similar utilities were used to generate the emission ensem-

bles. We excluded the distribution tails to avoid the potential

for the extreme values to cause numerical problems in the

chemistry algorithms. Although we recognize that the assim-

ilation cycling results may be sensitive to the emission per-

turbation horizontal correlation lengths (e.g. Pagowski and

Grell, 2012), this was not particularly relevant to our study
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so we set the horizontal and vertical correlation lengths to

zero.

5 Meteorology observations and satellite trace

gas retrievals

At each cycle time, depending on the experiment we assim-

ilated meteorology and/or chemistry observations with the

DART ensemble adjustment Kalman filter (EAKF) and then

advanced the analysis ensemble to the next cycle time with

WRF-Chem. The 6 h forecast ensemble was then used as the

first guess for the next ensemble DA step.

We assimilated conventional meteorological observations

and CO trace gas retrievals from MOPITT. The meteoro-

logical observations were NCEP automated data processing

(ADP) upper air and surface observations (PREPBUFR ob-

servations). They included air temperature, sea level pres-

sure, surface winds, dew point temperature, sea surface tem-

perature, and upper level winds from various observing plat-

forms. We refer to those observations as the MET OBS.

We also assimilated MOPITT partial column/profile CO

retrievals. MOPITT is an instrument flying on NASA’s Earth

Observing System Terra spacecraft. MOPITT’s spatial reso-

lution is 22 km at nadir, and it sees the earth in 640 km wide

swaths. MOPITT uses gas correlation spectroscopy to mea-

sure CO in a thermal-infrared (TIR) band near 4.7 µm and

a near-infrared (NIR) band near 2.3 µm. TIR radiances are

sensitive to CO in the middle and upper troposphere while

NIR measures the CO total column. Worden et al. (2010),

Deeter (2011), and Deeter et al. (2012, 2013) showed that

the sensitivity to CO in the lower troposphere is significantly

greater for retrievals exploiting simultaneous TIR and NIR

than for retrievals based on TIR alone. MOPITT started data

collection in March 2000. We used the MOPITT v5 TIR/NIR

products described in Deeter et al. (2013). We refer to the

MOPITT observations as the CHEM OBS.

The retrieval error covariance Er associated with each

MOPITT CO retrieval profile is provided as part of the data

product. That error covariance is derived by the retrieval pro-

cess based on a specified a priori error covariance Ea. Under

the optimal estimation theory of Rodgers (2000) Er is related

to Ea through the averaging kernel A by Er = (I−A)Ea. The

measurement error in retrieval space Em is also related to

Ea and A by Em = (I−A)EaAT . Generally for retrieval data

sets, Ea, Er, and Em are non-diagonal.

6 Experimental design

We conducted two basic experiments: (i) a control experi-

ment where we assimilated only MET OBS (MET DA); and

(ii) a chemical data assimilation experiment where we assim-

ilated MET OBS and MOPITT CO partial column retrievals

in the form of QORs (MOP QOR). In addition we conducted

an experiment where we converted the CHEM OBS to CP-

SRs and assimilated the CPSRs (MOP CPSR). We also con-

ducted sensitivity experiments where we (i) zeroed the obser-

vation error covariance cross-correlations (MOP NROT) – as

opposed to using a SVD transformation for diagonalization,

and (ii) applied vertical localization (MOP LOC). The suite

of experiments is summarized in Table 1.

For all experiments we used (i) DART horizontal and

vertical localization – Gaspari–Cohn localization with a lo-

calization radius half-width of 3000 km in the horizontal

and 8 km in the vertical, (ii) DART prior adaptive inflation,

(iii) no posterior inflation, (iv) full interaction between all

observations and all state variables – i.e., MET OBS update

chemistry state variables and CHEM OBS update meteorol-

ogy state variables (joint assimilation of MET and CHEM

OBS), (v) DART clamping (i.e., the imposition of a mini-

mum threshold) on chemistry state variables to constrain the

posterior ensemble members to be positive, and (vi) the re-

ported MOPITT retrieval error covariance as the observation

error covariance to account for unrepresented error sources

such as representativeness error.

For the MOP QOR experiment, the MOPITT CO retrievals

were converted to QORs using an algorithm similar to that

described by Migliorini et al. (2008) except we did not per-

form their second forecast error covariance-based filtering.

7 Results

7.1 The control and chemical data assimilation

experiments

The MET DA and MOP QOR experiments are intended to

identify the impact of assimilating chemistry observations.

Figure 1a shows shaded contours of CO in parts per billion

(ppb) at∼ 1000 hPa from the 6 h forecast valid at 00:00 UTC,

29 June 2008 and compares the MET DA and MOP QOR ex-

periments. It shows that over the course of MOP QORs the

assimilation of CO retrievals reduced the (i) positive CO bias

found in polluted areas of MET DA (i.e., metropolitan ar-

eas with high-CO emissions – San Francisco, Los Angeles,

Chicago, and the northeast USA), and (ii) negative CO bias

found in nonpolluted areas in MET DA (Hawaii, east Pacific,

southeast USA, and Baja). The MET DA biases could result

from model errors such as (i) emission errors – CO emis-

sions too high in polluted areas and too low in nonpolluted

areas, (ii) transport errors – insufficient CO transport away

from polluted areas and insufficient transport toward nonpol-

luted areas, and/or (iii) chemistry errors – CO destruction too

weak in polluted areas and too strong in nonpolluted areas.

The MET DA biases could also result from initial/boundary

condition errors that were corrected by the assimilation of

MOPITT CO in MOP QORs.

Figure 1b shows the assimilated CO retrievals for the

18:00 UTC, 28 June 2008 update cycle in the upper panel and

the corresponding increments in the lower panel. Compari-
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Table 1. Summary of the WRF-Chem/DART Forecast/Data Assimilation Experiments.

Experiment Assimilate Assimilate Assimilate Use error Use

meteorology MOPITT MOPITT covariance vertical

observations CO QORs CO CPSRs zeroing localization

MET DA Yes No No No No

MOP QOR Yes Yes No No No

MOP CPSR Yes No Yes No No

MOP NROT Yes Yes No Yes No

MOP LOC Yes Yes No No Yes

Figure 1. (a) Shaded contours of CO in ppb for the MOP QOR (upper panel) and MET DA (middle panel) experiments for the first model level

above the surface (∼ 1000 hPa) from the 6 h forecast valid on 18:00 UTC, 28 June 2008. The lower panel shows the difference contours for

those experiments (MOP QOR – MET DA). The shaded area represents the WRF-Chem domain. (b) The upper panel shows the assimilated

MOPITT CO retrievals between the surface and 900 hPa for 18:00 UTC, 28 June 2008. The lower panel shows the associated assimilation

increment.

son of those panels shows that the assimilation step adjusted

the CO concentrations primarily along the satellite observa-

tion paths, which is a consequence of assimilating sparse ob-

servations. The DA adjustments in Fig. 1b are generally con-

sistent with the differences between MOP QORs and MET

DA in Fig. 1a (CO increases in nonpolluted areas – east of

San Francisco, the southeast USA, and Baja). However, that

is a general statement because the MOP QOR – MET DA

differences are partially related to the impact of assimilat-

ing CO observations during the preceding assimilation cycle

and partially related to the impact of assimilating all the CO

observations since the beginning of the cycling experiment

(∼ 100 cycles). Consequently, there are locations where the

signs of the MOP QOR – MET DA differences are differ-

ent from the signs of the increments (e.g. southwest of lakes

Michigan and Huron and over the Ohio River valley and San

Francisco Bay). The sense of those sign differences is not an

indication of relative forecast accuracy but that the (i) im-

pact from assimilating CO during the preceding cycle was

similar to that from assimilating CO throughout the cycling

experiment (same signs), and (ii) impact from assimilating

CO during the preceding cycle was different to that from as-
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similating CO throughout the cycling experiment (different

signs).

Figure 2 shows time series of the domain average CO

from the MET DA and MOP QOR experiments in retrieval

and state space. The dots represent the retrieval space results

where the cool colors (blue and black) show the forecasts,

and the warm colors (red and magenta) show the analyses.

The green dots represent the MOPITT retrievals. The solid

lines show state-space results. Figure 2 has several interest-

ing results. First, MET DA had a negative bias of ∼ 10 ppb

in retrieval space. Second, assimilation of MOPITT CO re-

duced that bias by ∼ 5 ppb. Finally, in state space MOP

QORs increased the mean CO by ∼ 5 ppb. As discussed be-

low, those results are consistent with Fig. 1, which shows a

large number of nonpolluted areas in MET DA with a nega-

tive bias and a small number of polluted areas with a positive

bias.

Figure 3 shows vertical profiles of the time (00:00 UTC,

25 June 2008 to 00:00 UTC, 29 June 2008) and horizontal

domain average CO in retrieval space. It shows that the MO-

PITT profile had greater vertical variability (moderate CO

near the surface, low CO in the middle troposphere: 500–

400 hPa, high CO in the upper troposphere: 300–200 hPa,

and low CO near the tropopause: 200–100 hPa) than the MET

DA and MOP QOR profiles. It also shows that the assimi-

lation of MOPITT CO had positive impacts throughout the

troposphere with the greatest improvement in the upper tro-

posphere. Figure 3 shows that there were differences in the

MOP QOR/MET DA bias reduction between: (i) the upper

and lower troposphere (greater magnitude negative bias re-

duction in the upper troposphere and lesser magnitude posi-

tive bias reduction in the lower troposphere), and (ii) the fore-

cast and the analysis (greater bias reduction in the analysis

than in the forecast). Those results expand our understanding

of the bias in Figs. 1 and 2. In Fig. 3 the forecast and anal-

ysis show greater bias reduction in the upper troposphere.

That suggests that the domain averages in Fig. 2 were dom-

inated by bias reductions in the upper troposphere. Figure 3

also suggests that bias reductions in the lower troposphere

were dominated by the reduction of the positive bias in the

polluted areas of Fig. 1. Those results suggest that the fol-

lowing model errors (as opposed to initial/boundary condi-

tion errors) caused the biases: (i) the near-surface biases were

likely caused by the CO emissions being too high in polluted

areas and too low in nonpolluted areas, (ii) the positive bi-

ases in the lower middle troposphere (∼ 600 hPa) were likely

caused by erroneously large vertical CO fluxes from the near

surface to the lower middle troposphere and/or too little CO

destruction, and (iii) the negative biases in the upper tropo-

sphere were likely caused by erroneously small vertical CO

fluxes and/or too much CO destruction. We reach the conclu-

sion regarding model error versus initial/boundary condition

(IC/BC) error because Fig. 3 shows that the bias reduction

in the lower troposphere is greater for the analyses than for

the forecasts. That suggests that following the assimilation of

Figure 2. Time series of the domain average CO from the MOP

QOR and MET DA experiments. The red and magenta dots show

the domain average CO in retrieval space for the MOP QOR and

MET DA analyses denoted in the legend by “A”. The blue and

black dots show the domain average CO in retrieval space for the

MOP QOR and MET DA forecasts denoted in the legend by “F”.

The green dots show the domain average MOPITT CO retrievals.

They are the same in both panels and are included for reference.

The solid lines show the domain average CO in model space with

the same color scheme as used for the analyses and forecasts in re-

trieval space. The solid lines are the same in both panels are also

included for reference.

MOPITT CO in MOP QOR, the CO IC/BCs have improved

relative to MET DA. Then during the course of model in-

tegration the bias increases. Thus, we conclude that model

error is a more likely cause of the bias.

Lastly, we tested the null hypothesis that the difference be-

tween the MET DA and MOP QOR time series results was

zero (H0: MOP QOR−MET DA= 0) against an alterna-

tive hypothesis that the difference was not zero (HA: MOP

QOR−MET DA 6= 0). We used the retrieval-space time se-

ries from Fig. 2 and the large sample parametric test for the

difference between two means from a normal distribution.

The test statistic was Z = Y 1−Y 2√
σ 2

1 /n1−σ
2
2 /n2

where Y 1, σ 2
1 , and

n1 denote the sample mean, sample variance, and number of

samples for the MOP QOR experiment, respectively; Y 2, σ 2
2 ,

and n2 denote the analogous sample statistics for the MET

DA experiment; and n1 = n2 = 104. The rejection criteria
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Figure 3. Vertical profiles of time/horizontal domain average CO

from the MOP QOR and MET DA experiments for 00:00 UTC, 25–

29 June 2008. The results are in MOPTT retrieval space. The red

profiles represent the MOPITT retrievals. Otherwise the color of the

lines corresponds to the legend. forecast is the assimilation prior,

and analysis is the assimilation posterior.

was Cannot handle ” as spaceZCannot handle ” as space>

zα/2, where α = 0.05 and zα/2 = 1.96 for a two-tailed test

at the 95 % confidence level. We were able to reject the null

hypothesis. Based on that result, we conclude that assimi-

lation of MOPITT CO retrievals significantly changed the

WRF-Chem/DART CO forecasts and analyses. When mea-

sured against MOPITT, those changes were a significant im-

provement.

7.2 Assimilation of compact phase space retrievals

Next we study the assimilation of CPSRs as described in

Sect. 2 but first review some CPSR attributes. Figure 4a

shows vertical profiles of CPSR characteristics averaged for

the MOPITT retrieval domain at 18:00 UTC, 28 June 2008.

The blue curves represent the MOPITT CO retrievals (MOP-

Rets). Those curves have reduced vertical structure due to

the units (log10(VMR) as opposed to VMR). After conver-

sion from log10(VMR) to VMR, MOP-Rets has greater ver-

tical structure and resembles the MOPITT profiles in Fig. 3.

The black curves represent the MOPITT CO QORs (MOP-

QOR) as defined by Eq. (3). MOP-QORs differs from MOP-

Rets in that they have maxima near the surface and upper

troposphere and a minimum in the middle troposphere. The

green curves represent the truncated profiles, which are ob-

tained by (i) projecting the full retrieval profile or the QOR

profile onto the leading left singular vectors of the associ-

ated averaging kernel to get the projection coefficients (e.g.,

cr = UT0 yr, where cr is the projection coefficient vector for

the full retrieval and cqor = UT0 (yr−(I−A)ya−ε)= UT0 yqor,

where cqor is the coefficient vector for the QOR profile – see

Eq. 4 in Sect. 2), and (ii) performing the inverse projection

by multiplying the leading singular vectors by their respec-

tive projection coefficients and summing those dot products

(e.g., ŷr = U0cr is the truncated retrieval profile – denoted

MOP-Trc and ŷqor = U0cqor is the truncated QOR profile –

denoted QOR-Trc). The forward transform in (i) is analo-

gous to the first part of the CPSR transform in Eq. (4). The

inverse transform in (ii) brings the result of forward trans-

form in (i) back to state space. The inverse transform is not

part of the CPSR algorithm.

In Fig. 4a the residuals are defined as the difference be-

tween the full and truncated profiles (e.g., yr− ŷr is the

full retrieval residual – denoted MOP-Res and yqor− ŷqor

is the QOR residual – denoted QOR-Res). If the full pro-

files project completely onto the leading singular vectors, the

residuals are zero. The upper panel of Fig. 4a shows that

the transform in (i) has the greatest impact near the surface

and the upper troposphere and the least impact in the mid-

dle troposphere. When the truncation residuals are nonzero,

the original profiles contain components that are not in the

range of the averaging kernel. That always indicates a con-

tribution from the retrieval prior term (A− I)ya. However, a

zero residual does not always indicate that the contribution

from the retrieval prior term has been removed. For QOR

residuals, the retrieval prior term contribution is completely

removed. For the retrieval residuals, the retrieval prior term

contribution may not be completely removed. When compo-

nents of the retrieval prior term lie in the range of the av-

eraging kernel, they cannot be removed by the transform in

(i) and are therefore not included in the residual. For example

in the upper panel of Fig. 4a the similarity between MOP-Trc

and QOR-Ret shows that the MOPITT retrieval was strongly

influenced by the retrieval prior and that most of the prior

contribution was removed by the transform in (i). That also

shows that most of the prior contribution was not in the range

of the averaging kernel. However, not all was outside the

range, and the difference between MOP-Trc and QOR-Ret
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Figure 4. (a) Horizontal domain average of the full and truncated terms in the retrieval equation for 18:00 UTC, 28 June 2008. MOP-Ret,

MOP-Trc, and MOP-Res are the MOPITT retrieval, truncated retrieval, and residual profiles, respectively. QOR-Ret is the MOPITT QOR

profile, QOR-Trc is the truncated MOPITT QOR profile, and QOR-Res is the MOPITT QOR residual profile. (b) Horizontal domain average

of the MOPITT averaging kernel profiles in the upper panel and leading left singular vectors of those averaging kernels in the lower panel

for 18:00 UTC, 28 June 2008.

shows that most was inside the range. This analysis shows

that the influence of the retrieval prior term cannot be com-

pletely removed by projecting the retrieval onto the range of

the averaging kernel. The results show that it is necessary to

use the Migliorini et al. (2008) quasi-optimal subtraction in

Eq. (2) to remove the retrieval prior contribution. Compari-

son of QOR-Ret and QOR-Trc in the lower panel of Fig. 4a

shows that QOR-Ret lies completely within the range of the

averaging kernel. That result was expected from the discus-

sion of Eqs. (3) and (4).

In summary Fig. 4a shows the state space impacts from

applying the Migliorini et al. (2008) quasi-optimal subtrac-

tion and the CPSR transform in (i). It also shows that the

quasi-optimal subtraction was necessary to remove the influ-

ence of the retrieval prior. Thus, in CPSRs the quasi-optimal

subtraction removes the influence of the retrieval prior, and

projection onto the leading singular vectors of the averaging

kernel provides the data compression.

In Fig. 4a the average number of leading singular vec-

tors was ∼ 2.3. CPSRs reduced the number of observations

by ∼ 7.7 per MOPITT profile. After thinning there were

∼ 30 000 MOPITT profiles per assimilation cycle. That im-

plies a CPSR reduction of∼ 281 000 retrievals or∼ 80 % per

cycle. On application the actual reduction was less because

the number of non-retrieval observations was not reduced. As

an example when assimilating MET OBS and CHEM OBS

we found a reduction of∼ 35 % in the computation cost. That

is a wall clock time reduction based on NCAR’s 1.5-petaflop

high-performance IBM Yellowstone computer with 32 tasks,

and 8 tasks per node. We expect similar reductions for other

computing configurations.

In Fig. 4b we examine the vertical structure of the CP-

SRs. The upper panel shows the retrieval domain average

of the MOPITT averaging kernel profiles from 18:00 UTC,

28 June 2008. The lower panel shows the domain average

of the leading left singular vectors from SVDs of the aver-

aging kernel profiles in the upper panel. Comparison of the

upper and lower panels shows that while the singular vector

and averaging kernel profiles are similar it is not possible to

associate a specific singular vector profile with a specific av-

eraging kernel profile or with a group of profiles. However,

the averaging kernel of singular vectors show the sensitiv-
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Figure 5. (a) Same as Fig. 1a except for the MOP CPSR experiment and the middle panel from Fig. 1a, the MET DA experiment is not

plotted. (b) Same as Fig. 1b except for the MOP CPSR experiment.

ity of the associated CPSR to the true CO profile. The first

singular vector shows positive sensitivity to the entire CO

profile with greater sensitivity in the lower and middle tro-

posphere and greatest sensitivity in the upper middle tropo-

sphere. The second singular vector shows positive sensitivity

in the lower troposphere and negative sensitivity in the upper

troposphere. Lastly, the third singular vector resembles the

first singular vector with greatest positive sensitivity in the

upper middle troposphere but with negative sensitivity in the

lower and upper troposphere. Those characteristics are con-

sistent with the MOPITT TIR and NIR joint sensitivities doc-

umented by Worden et al. (2010), Deeter (2011), and Deeter

et al. (2012, 2013). It should be noted that the sign of the

singular vectors in the Fig. 4b is arbitrary because the left

and right singular vectors can be jointly multiplied by nega-

tive one and still qualify as singular vectors. However, when

multiplied by one sign the singular vector may have physi-

cal meaning, and when multiplied by the other it may not.

For our application, the sign that made the vertical structure

of the singular vectors most similar to that of the averaging

kernel had physical meaning. Therefore, in Fig. 4b we chose

the sign that made the singular vector profile most consistent

with the averaging kernel profiles.

To test the benefit of assimilating CPSRs we converted

the MOPITT CO retrievals to CPSRs and repeated the MOP

QOR experiment (called MOP CPSR). Those results are

shown in Figs. 5–7. Conceptually the MOP CPSR results

should be similar to the MOP QOR results in Figs. 1–3. Prac-

tically, the results are different due to (i) the effect of DA

sub-processes like horizontal localization and inflation, and

(ii) differences in the observation error caused by the CPSR

compression transform. Comparison of the contour maps in

Figs. 1a and 5a shows that MOP CPSR provided similar ad-

justments to MOP QOR but they were of greater magnitude

and larger area (the MET DA result was not plotted in Fig. 5a

because it would be the same as in Fig. 1a). The general

trend from Fig. 1a that the assimilation of CO retrievals re-

duced the positive CO bias in polluted areas and the negative

bias in nonpolluted areas appears in Fig. 5a. Comparison of

Figs. 1b and 5b shows that MOP CPSR generally assimi-

lated the same CO retrievals as MOP QOR, but the CPSR

increments were of greater magnitude and more widely dis-

persed. Comparison of the time series plots in Figs. 2 and

6 shows that there were slightly greater bias reductions for

MOP CPSR than MOP QOR. MOP CPSR reduced the CO

negative bias in retrieval space by ∼ 8 ppb and increased the

mean CO in state space by ∼ 10 ppb. Those improvements

are also seen from a comparison of the vertical profiles in

Figs. 3 and 7, which shows that MOP CPSR produced greater

bias reductions for the forecast and analysis throughout the

troposphere. As in MOP QOR the MOP CPSR improvements

were greater in the upper troposphere than in the lower tropo-

sphere. The MOP CPSR results from Fig. 7 provide further

support for our suggestion that the domain average bias re-
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Figure 6. Same as Fig. 2 except for the MOP CPSR experiment.

ductions in Figs. 2 and 6 were due to bias reductions in the

upper troposphere because the greater bias reductions in the

upper troposphere of Fig. 7 (compared to Fig. 3) provided

greater bias reductions in Fig. 6 (compared to Fig. 2). In sum-

mary Figs. 5–7 confirm our analysis of Figs. 1–3 and show

that assimilation of CPSRs produced results that were simi-

lar to or better than those from the assimilation of QORs at

two-thirds the computational cost. We also conducted signif-

icance testing for MOP CPSR similar to that for MOP QOR

and were able to reject the null hypothesis that there was no

difference between the MOP CPSR and MET DA time series

in Fig. 6.

7.3 Verification against MOPITT retrievals

We calculated verification statistics (bias, root mean square

error (RMSE), and coefficient of determination (R2)) for the

6 h forecasts from all experiments based on the time series

results in Figs. 2 and 6. Those statistics are plotted in Fig. 8.

Generally, Fig. 8 shows that the assimilation of MOPITT CO

improved model performance for all metrics when compared

against the MOPITT retrievals. Figure 8 also shows that

RMSE was dominated by the bias and that the differences in

the statistics for the different treatments (assimilating QORs,

CPSRs, cross-covariance zeroing, and vertical localization)

were generally negligible except for cross-covariance zero-

Figure 7. Same as Fig. 3 except for the MOP CPSR experiment.

ing. We now discuss the cross-covariance zeroing and verti-

cal localization experiments.

7.4 Observation error covariance diagonalization

through zeroing of the cross-correlations

One method used to diagonalize the observation error covari-

ance is zeroing of the cross-correlations (see the Introduction

to Migliorini et al., 2008). The uncertainty of the error co-

variance and the practice of adjusting the observation error

variance to tune ensemble DA strategies are used to justify

the zeroing. As noted by Anderson (2001) and applied by

Migliorini et al. (2008), a more aesthetic and mathematically

correct approach is to apply a variance maximizing rotation

based on a SVD of the error covariance. In this section we

compare those two error covariance diagonalization meth-

ods. Recall that MOP QOR used an SVD-based rotation to

diagonalize the error covariance. We conducted a companion

experiment MOP NROT where we used cross-correlation ze-

roing. The assimilation/forecast plots are not shown because
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Figure 8. Verification statistics for all experiments in MOPITT re-

trieval space. The blue curve is the bias (model – observation), the

red curve is the root mean square error (RMSE), and the magenta

curve is the coefficient of determination. The experiments are de-

scribed in the text and summarized in Table 1.

it is not a central theme of this paper. However, we include

the verification statistics in Fig. 8. Significance testing and

scores from assimilation of MOPITT CO show that SVD-

based diagonalization produced significantly greater forecast

skill compared to cross-correlation zeroing. Based on that re-

sult we conclude that the second SVD-based rotation is a nec-

essary step in our definition of CPSRs.

7.5 Vertical localization and phase space retrievals

Ensemble data assimilation generally uses localization to

remove spurious correlations that may occur from under-

sampling. Localization limits the horizontal and vertical spa-

tial scales on which the observations impact the posterior.

Vertical localization may be inappropriate when assimilating

phase space retrievals because ∼ 80 % of the vertical varia-

tion in the retrieval is described by the first leading singu-

lar vector of the averaging kernel (the basis function for the

phase space transform) and that vector is nearly independent

of height (see Fig. 4b). Nevertheless, if vertical localization is

appropriate then the question becomes how to do it because

phase space retrievals are not associated with a unique verti-

cal location. One solution assumes that phase space retrievals

are associated with the level of maximum sensitivity in the

transformed averaging kernel, i.e., the averaging kernel af-

ter applying the compression and diagonalization transforms

discussed in Sect. 2. We applied such localization to MOP

QOR (in the MOP LOC experiment) and found that results

from the two experiments were similar. Therefore, we do not

present the assimilation/forecast plots but include the veri-

fication statistics in Fig. 8. Comparison of the verification

scores in Fig. 8 for MOP LOC with those from the other ex-

periments (MOP QOR and MOP CPSR) shows that vertical

localization did not substantially alter the results. We experi-

mented with different vertical localization lengths and found

similar results. We are unsure whether this is a general result

and are continuing to investigate vertical localization.

8 Summary and conclusions

In this paper we incorporated WRF-Chem into DART and

assimilated MOPITT CO trace gas retrievals. We also in-

troduced the assimilation of compact phase space retrievals

(CPSRs). CPSRs are preprocessed trace gas retrievals that

have (i) the influence of the retrieval prior removed, (ii) data

compression, (iii) SVD-based error covariance diagonaliza-

tion, and (iv) unit error variance scaling. We showed that as-

similation of CPSRs is an efficient alternative to assimilation

of quasi-optimal retrievals (QORs) that provided substantial

reductions in computation time (∼ 35 %) without degrading

the analysis fit or forecast skill.

We presented results from month-long (00:00 UTC,

1 June 2008 to 18:00 UTC, 31 June 2008) cycling experi-

ments where we assimilated conventional meteorology and

MOPITT CO retrievals. For MOP QOR the time series plots

in Fig. 2 showed that MET DA had a negative bias of

∼ 10 ppb. The assimilation of MOPITT CO in MOP QOR

reduced that bias by ∼ 5 ppb. The vertical profile plots in

Fig. 3 showed that assimilation of MOPITT CO improved

the CO analysis fit and forecast skill throughout the tropo-

sphere when compared to MET DA. We also used traditional

skill metrics (bias, RMSE, and R2) to quantify the impact

of assimilating CO retrievals. Those results showed that bias

dominated the RMSE and that assimilation of CO retrievals

improved WRF-Chem performance. Specifically, MOP QOR

significantly improved the WRF-Chem CO forecast skill for

all three metrics.

Next we focused on making the assimilation of retrievals

computationally efficient and introduced compact phase

space retrievals. CPSRs advance the work of Joiner and

DaSilva (1998) and Migliorini et al. (2008) by describing

an easily applied methodology to achieve data compression

for phase space retrievals. Conceptually, the assimilation of

QORs and CPSRs should yield similar results except for the

effects of (i) assimilation sub-processes like localization and

inflation and (ii) different observation errors due to the CPSR

compression transform. Nevertheless, our CPSR approach is

different from that of Migliorini et al. (2008): (i) we perform

two transforms – a compression transform and a diagonaliz-

tion transform, they perform two diagonalization transforms;
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(ii) we identify and assimilate all linearly independent infor-

mation observed by the instrument, they may discard linearly

independent information – some because their transform vec-

tors are not necessarily a basis for the space of QORs and

some because their uncertainty analysis discards some in-

formation that lies in the range of their transformed averag-

ing kernel; (iii) our diagonalization transform is analogous

to their first diagonalization transform except we diagonalize

the compressed observation error covariance and they diag-

onalize the untransformed observation error covariance; and

(iv) we rely on the assimilation system to decide how much

weight to give the transformed observations and require no

information from the forecast ensemble, and they use the

forecast ensemble to decide which observations to discard.

MOP CPSR maps in Fig. 5 showed that assimilation of

CPSRs placed CO hot spots in the same locations as MOP

QOR but they were of greater magnitude and larger area. The

time series and vertical profile plots showed that those differ-

ences generally represented analysis and forecast improve-

ments. Skill metrics for MOP CPSR showed that when com-

pared to MOP QOR, the assimilation of CPSRs slightly im-

proved the forecast skill for all metrics, and when compared

to MET DA it significantly improved the forecast skill for all

metrics. Based on those results we conclude that the assimi-

lation of CPSRs performed as well or better than the assimi-

lation of QORs at a substantially reduced computational cost

(∼ 35 % reduction in computation time).

Collectively our analysis of the MOP QOR and CPSR re-

sults in Figs. 1–3 and 5–7 suggested that (i) in the lower tro-

posphere MET DA had a negative CO bias in polluted areas

and a positive bias in nonpolluted areas (Figs. 1 and 5) and

(ii) bias reductions in the domain average retrieval space CO

were due to reductions in the negative CO bias in the upper

troposphere (Figs. 2, 3, 6, and 7). We proposed three causes

for the CO biases: (i) emission errors – overestimation of

CO emissions in polluted areas and underestimation in non-

polluted areas, (ii) transport errors – too much CO transport

from the near surface to the lower troposphere and too little

transport from the lower to upper troposphere, and (iii) chem-

istry errors – too little CO destruction in the near surface and

lower troposphere and too much destruction in the upper tro-

posphere.

We expect that CPSRs have the potential for broad oper-

ational application. CPSRs can be easily obtained from re-

trievals derived from any optimal estimation algorithm. They

can be used to assimilate retrievals with correlated or uncor-

related errors for any sequential assimilation methodology

(both Kalman filter and variational-based algorithms). Due

to their ease of derivation, flexibility, and potential for large

reductions in assimilation computation time, CPSRs should

facilitate the efficient assimilation of dense geostationary ob-

servations.
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