Articles | Volume 9, issue 1
https://doi.org/10.5194/gmd-9-77-2016
https://doi.org/10.5194/gmd-9-77-2016
Development and technical paper
 | 
18 Jan 2016
Development and technical paper |  | 18 Jan 2016

Towards convection-resolving, global atmospheric simulations with the Model for Prediction Across Scales (MPAS) v3.1: an extreme scaling experiment

D. Heinzeller, M. G. Duda, and H. Kunstmann

Related authors

The Common Community Physics Package (CCPP) Framework v6
Dominikus Heinzeller, Ligia Bernardet, Grant Firl, Man Zhang, Xia Sun, and Michael Ek
Geosci. Model Dev., 16, 2235–2259, https://doi.org/10.5194/gmd-16-2235-2023,https://doi.org/10.5194/gmd-16-2235-2023, 2023
Short summary
The WASCAL high-resolution regional climate simulation ensemble for West Africa: concept, dissemination and assessment
Dominikus Heinzeller, Diarra Dieng, Gerhard Smiatek, Christiana Olusegun, Cornelia Klein, Ilse Hamann, Seyni Salack, Jan Bliefernicht, and Harald Kunstmann
Earth Syst. Sci. Data, 10, 815–835, https://doi.org/10.5194/essd-10-815-2018,https://doi.org/10.5194/essd-10-815-2018, 2018
Short summary

Related subject area

Climate and Earth system modeling
The ensemble consistency test: from CESM to MPAS and beyond
Teo Price-Broncucia, Allison Baker, Dorit Hammerling, Michael Duda, and Rebecca Morrison
Geosci. Model Dev., 18, 2349–2372, https://doi.org/10.5194/gmd-18-2349-2025,https://doi.org/10.5194/gmd-18-2349-2025, 2025
Short summary
Presentation, calibration and testing of the DCESS II Earth system model of intermediate complexity (version 1.0)
Esteban Fernández Villanueva and Gary Shaffer
Geosci. Model Dev., 18, 2161–2192, https://doi.org/10.5194/gmd-18-2161-2025,https://doi.org/10.5194/gmd-18-2161-2025, 2025
Short summary
Synthesizing global carbon–nitrogen coupling effects – the MAGICC coupled carbon–nitrogen cycle model v1.0
Gang Tang, Zebedee Nicholls, Alexander Norton, Sönke Zaehle, and Malte Meinshausen
Geosci. Model Dev., 18, 2193–2230, https://doi.org/10.5194/gmd-18-2193-2025,https://doi.org/10.5194/gmd-18-2193-2025, 2025
Short summary
Historical trends and controlling factors of isoprene emissions in CMIP6 Earth system models
Ngoc Thi Nhu Do, Kengo Sudo, Akihiko Ito, Louisa K. Emmons, Vaishali Naik, Kostas Tsigaridis, Øyvind Seland, Gerd A. Folberth, and Douglas I. Kelley
Geosci. Model Dev., 18, 2079–2109, https://doi.org/10.5194/gmd-18-2079-2025,https://doi.org/10.5194/gmd-18-2079-2025, 2025
Short summary
Investigating carbon and nitrogen conservation in reported CMIP6 Earth system model data
Gang Tang, Zebedee Nicholls, Chris Jones, Thomas Gasser, Alexander Norton, Tilo Ziehn, Alejandro Romero-Prieto, and Malte Meinshausen
Geosci. Model Dev., 18, 2111–2136, https://doi.org/10.5194/gmd-18-2111-2025,https://doi.org/10.5194/gmd-18-2111-2025, 2025
Short summary

Cited articles

Amdahl, G. M.: Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities, AFIPS Conference Proceedings, 30, 483–485, 1967.
Borkar, S. and Chien, A. A.: The future of microprocessors, Commun. ACM, 54, 67–77, 2011.
Brömmel, D., Frings, W., and Wylie, B.: Technical Report Juqueen Extreme Scaling Workshop 2015, Tech. rep., Jülich, Germany, available at: http://hdl.handle.net/2128/8435 (last access: 25 August 2015), 2015.
Caron, J.-F.: Mismatching perturbations at the lateral boundaries in limited-area ensemble forecasting: a case study, Mon. Weather Rev., 141, 356–374, https://doi.org/10.1175/MWR-D-12-00051.1, 2013.
Caya, D. and Biner, S.: Internal variability of RCM simulations over an annual cycle, Clim. Dynam., 22, 33–46, https://doi.org/10.1007/s00382-003-0360-2, 2004.
Download
Short summary
We present an in-depth evaluation of the Model for Prediction Across Scales (MPAS) with regards to technical aspects of performing model runs and scalability for medium-size meshes on several HPCs. We also demonstrate the model performance in terms of its capability to reproduce the dynamics of the West African monsoon and its associated precipitation in a pilot study. Finally, we conduct extreme scaling tests on a global 3km mesh with 65,536,002 horizontal grid cells on up to 458,752 cores.
Share