Articles | Volume 9, issue 2
Geosci. Model Dev., 9, 765–777, 2016
https://doi.org/10.5194/gmd-9-765-2016
Geosci. Model Dev., 9, 765–777, 2016
https://doi.org/10.5194/gmd-9-765-2016
Development and technical paper
25 Feb 2016
Development and technical paper | 25 Feb 2016

New developments in the representation of Saharan dust sources in the aerosol–climate model ECHAM6-HAM2

Bernd Heinold et al.

Related authors

Important role of stratospheric injection height for the distribution and radiative forcing of smoke aerosol from the 2019–2020 Australian wildfires
Bernd Heinold, Holger Baars, Boris Barja, Matthew Christensen, Anne Kubin, Kevin Ohneiser, Kerstin Schepanski, Nick Schutgens, Fabian Senf, Roland Schrödner, Diego Villanueva, and Ina Tegen
Atmos. Chem. Phys., 22, 9969–9985, https://doi.org/10.5194/acp-22-9969-2022,https://doi.org/10.5194/acp-22-9969-2022, 2022
Short summary
On the application and grid-size sensitivity of the urban dispersion model CAIRDIO v2.0 under real city weather conditions
Michael Weger, Holger Baars, Henriette Gebauer, Maik Merkel, Alfred Wiedensohler, and Bernd Heinold
Geosci. Model Dev., 15, 3315–3345, https://doi.org/10.5194/gmd-15-3315-2022,https://doi.org/10.5194/gmd-15-3315-2022, 2022
Short summary
ICONGETM v1.0 – flexible NUOPC-driven two-way coupling via ESMF exchange grids between the unstructured-grid atmosphere model ICON and the structured-grid coastal ocean model GETM
Tobias Peter Bauer, Peter Holtermann, Bernd Heinold, Hagen Radtke, Oswald Knoth, and Knut Klingbeil
Geosci. Model Dev., 14, 4843–4863, https://doi.org/10.5194/gmd-14-4843-2021,https://doi.org/10.5194/gmd-14-4843-2021, 2021
Short summary
An urban large-eddy-simulation-based dispersion model for marginal grid resolutions: CAIRDIO v1.0
Michael Weger, Oswald Knoth, and Bernd Heinold
Geosci. Model Dev., 14, 1469–1492, https://doi.org/10.5194/gmd-14-1469-2021,https://doi.org/10.5194/gmd-14-1469-2021, 2021
Short summary
Modelling mineral dust emissions and atmospheric dispersion with MADE3 in EMAC v2.54
Christof G. Beer, Johannes Hendricks, Mattia Righi, Bernd Heinold, Ina Tegen, Silke Groß, Daniel Sauer, Adrian Walser, and Bernadett Weinzierl
Geosci. Model Dev., 13, 4287–4303, https://doi.org/10.5194/gmd-13-4287-2020,https://doi.org/10.5194/gmd-13-4287-2020, 2020
Short summary

Related subject area

Climate and Earth system modeling
FOCI-MOPS v1 – integration of marine biogeochemistry within the Flexible Ocean and Climate Infrastructure version 1 (FOCI 1) Earth system model
Chia-Te Chien, Jonathan V. Durgadoo, Dana Ehlert, Ivy Frenger, David P. Keller, Wolfgang Koeve, Iris Kriest, Angela Landolfi, Lavinia Patara, Sebastian Wahl, and Andreas Oschlies
Geosci. Model Dev., 15, 5987–6024, https://doi.org/10.5194/gmd-15-5987-2022,https://doi.org/10.5194/gmd-15-5987-2022, 2022
Short summary
Assessment of the Paris urban heat island in ERA5 and offline SURFEX-TEB (v8.1) simulations using the METEOSAT land surface temperature product
Miguel Nogueira, Alexandra Hurduc, Sofia Ermida, Daniela C. A. Lima, Pedro M. M. Soares, Frederico Johannsen, and Emanuel Dutra
Geosci. Model Dev., 15, 5949–5965, https://doi.org/10.5194/gmd-15-5949-2022,https://doi.org/10.5194/gmd-15-5949-2022, 2022
Short summary
The Earth system model CLIMBER-X v1.0 – Part 1: Climate model description and validation​​​​​​​​​​​​​​
Matteo Willeit, Andrey Ganopolski, Alexander Robinson, and Neil R. Edwards
Geosci. Model Dev., 15, 5905–5948, https://doi.org/10.5194/gmd-15-5905-2022,https://doi.org/10.5194/gmd-15-5905-2022, 2022
Short summary
Cloud-based framework for inter-comparing submesoscale-permitting realistic ocean models
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022,https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
swNEMO_v4.0: an ocean model based on NEMO4 for the new-generation Sunway supercomputer
Yuejin Ye, Zhenya Song, Shengchang Zhou, Yao Liu, Qi Shu, Bingzhuo Wang, Weiguo Liu, Fangli Qiao, and Lanning Wang
Geosci. Model Dev., 15, 5739–5756, https://doi.org/10.5194/gmd-15-5739-2022,https://doi.org/10.5194/gmd-15-5739-2022, 2022
Short summary

Cited articles

Allen, C. J. T., Washington, R., and Engelstaedter, S.: Dust emission and transport mechanisms in the central Sahara: Fennec ground-based observations from Bordj Badji Mokhtar, June 2011, J. Geophys. Res. Atmos., 118, 6212–6232, https://doi.org/10.1002/jgrd.50534, 2013.
Ashpole, I. and Washington, R.: An automated dust detection using SEVIRI: A multi-year climatology of summertime dustiness in the central and western Sahara, J. Geophys. Res., 117, D08202, https://doi.org/10.1029/2011JD016845, 2012.
Baker, J. B., Southard, R. J. and Mitchell, J. P.: Agricultural Dust Production in Standard and Conservation Tillage Systems in the San Joaquin Valley, J. Environ. Qual., 34, 1260–1269, https://doi.org/10.2134/jeq2003.0348, 2005.
Banks, J. R. and Brindley, H. E.: Evaluation of MSG-SEVIRI mineral dust retrieval products over North Africa and the Middle East, Remote Sens. Environ., 128, 58–73, https://doi.org/10.1016/j.rse.2012.07.017, 2013.
Banks, J. R., Brindley, H. E., Flamant, C., Garay, M. J., Hsu, N. C., Kalashnikova, O. V., Klüser, L., and Sayer, A. M.: Intercomparison of satellite dust retrieval products over the west African Sahara during the Fennec campaign in June 2011, Remote Sens. Environ., 136, 99–116, https://doi.org/10.1016/j.rse.2013.05.003, 2013.
Download
Short summary
In the aerosol-climate model ECHAM6-HAM2, dust source activation (DSA) observations from MSG satellite are used to replace the current Saharan source map. The new setup provides more realistically distributed, up to 20 % higher annual Saharan emissions. Modeled dust AOT is partly improved in the Sahara-Sahel region, as is the spatial variability. As a comparison to sub-daily MSG DSAs and a regional model shows, the representation of meteorological drivers of dust uplift remains a critical issue.