Articles | Volume 9, issue 12
https://doi.org/10.5194/gmd-9-4313-2016
https://doi.org/10.5194/gmd-9-4313-2016
Model evaluation paper
 | 
05 Dec 2016
Model evaluation paper |  | 05 Dec 2016

Parameter interactions and sensitivity analysis for modelling carbon heat and water fluxes in a natural peatland, using CoupModel v5

Christine Metzger, Mats B. Nilsson, Matthias Peichl, and Per-Erik Jansson

Related authors

CO2 fluxes and ecosystem dynamics at five European treeless peatlands – merging data and process oriented modeling
C. Metzger, P.-E. Jansson, A. Lohila, M. Aurela, T. Eickenscheidt, L. Belelli-Marchesini, K. J. Dinsmore, J. Drewer, J. van Huissteden, and M. Drösler
Biogeosciences, 12, 125–146, https://doi.org/10.5194/bg-12-125-2015,https://doi.org/10.5194/bg-12-125-2015, 2015
Short summary

Related subject area

Biogeosciences
Satellite-based modeling of wetland methane emissions on a global scale (SatWetCH4 1.0)
Juliette Bernard, Elodie Salmon, Marielle Saunois, Shushi Peng, Penélope Serrano-Ortiz, Antoine Berchet, Palingamoorthy Gnanamoorthy, Joachim Jansen, and Philippe Ciais
Geosci. Model Dev., 18, 863–883, https://doi.org/10.5194/gmd-18-863-2025,https://doi.org/10.5194/gmd-18-863-2025, 2025
Short summary
Systematic underestimation of type-specific ecosystem process variability in the Community Land Model v5 over Europe
Christian Poppe Terán, Bibi S. Naz, Harry Vereecken, Roland Baatz, Rosie A. Fisher, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 18, 287–317, https://doi.org/10.5194/gmd-18-287-2025,https://doi.org/10.5194/gmd-18-287-2025, 2025
Short summary
Lambda-PFLOTRAN 1.0: a workflow for incorporating organic matter chemistry informed by ultra high resolution mass spectrometry into biogeochemical modeling
Katherine A. Muller, Peishi Jiang, Glenn Hammond, Tasneem Ahmadullah, Hyun-Seob Song, Ravi Kukkadapu, Nicholas Ward, Madison Bowe, Rosalie K. Chu, Qian Zhao, Vanessa A. Garayburu-Caruso, Alan Roebuck, and Xingyuan Chen
Geosci. Model Dev., 17, 8955–8968, https://doi.org/10.5194/gmd-17-8955-2024,https://doi.org/10.5194/gmd-17-8955-2024, 2024
Short summary
An improved model for air–sea exchange of elemental mercury in MITgcm-ECCOv4-Hg: the role of surfactants and waves
Ling Li, Peipei Wu, Peng Zhang, Shaojian Huang, and Yanxu Zhang
Geosci. Model Dev., 17, 8683–8695, https://doi.org/10.5194/gmd-17-8683-2024,https://doi.org/10.5194/gmd-17-8683-2024, 2024
Short summary
BOATSv2: new ecological and economic features improve simulations of high seas catch and effort
Jerome Guiet, Daniele Bianchi, Kim J. N. Scherrer, Ryan F. Heneghan, and Eric D. Galbraith
Geosci. Model Dev., 17, 8421–8454, https://doi.org/10.5194/gmd-17-8421-2024,https://doi.org/10.5194/gmd-17-8421-2024, 2024
Short summary

Cited articles

Alexandersson, H., Karlström, C., and Larsson-McCann, S.: Temperaturen och nedercörden i sverige 1961–1990 (Swedish), Temperature and Precipitation in Sweden 1961–1990, Reference Normals Meteorologi 81, Swedish Meteorological and Hydrological Institute (SMHI), Norrköping, Sweden, 1991.
Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken, T., Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, C., Clement, R., Elbers, J., Granier, A., Grünwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., and Vesala, T.: Estimates of the Annual Net Carbon and Water Exchange of Forests: The EUROFLUX Methodology, Advances in Ecological Research, 30, 113–175, https://doi.org/10.1016/S0065-2504(08)60018-5, 1999.
Aurela, M.: The timing of snow melt controls the annual CO2 balance in a subarctic fen, Geophys. Res. Lett., 31, L16119, https://doi.org/10.1029/2004GL020315, 2004.
Baird, A. J., Morris, P. J., and Belyea, L. R.: The DigiBog peatland development model 1: Rationale, conceptual model, and hydrological basis, Ecohydrol., 5, 242–255, https://doi.org/10.1002/eco.230, 2012.
Download
Short summary
Many interactions between various abiotic and biotic processes and their parameters were identified by global sensitivity analysis, revealing strong dependence of a certain model output (e.g. CO2 or heat fluxes, leaf area index, radiation, water table, soil temperature or snow depth) to model set-up and parameterization in many different processes, a limited transferability of parameter values between models, and the importance of ancillary measurements for improving models and thus predictions.
Share