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Abstract. In contrast to previous peatland carbon dioxide
(CO2)model sensitivity analyses, which usually focussed on
only one or a few processes, this study investigates interac-
tions between various biotic and abiotic processes and their
parameters by comparing CoupModel v5 results with multi-
ple observation variables.

Many interactions were found not only within but
also between various process categories simulating plant
growth, decomposition, radiation interception, soil temper-
ature, aerodynamic resistance, transpiration, soil hydrology
and snow. Each measurement variable was sensitive to up to
10 (out of 54) parameters, from up to 7 different process cat-
egories. The constrained parameter ranges varied, depending
on the variable and performance index chosen as criteria, and
on other calibrated parameters (equifinalities).

Therefore, transferring parameter ranges between models
needs to be done with caution, especially if such ranges were
achieved by only considering a few processes. The identified
interactions and constrained parameters will be of great inter-
est to use for comparisons with model results and data from
similar ecosystems. All of the available measurement vari-
ables (net ecosystem exchange, leaf area index, sensible and
latent heat fluxes, net radiation, soil temperatures, water ta-
ble depth and snow depth) improved the model constraint. If
hydraulic properties or water content were measured, further
parameters could be constrained, resolving several equifinal-
ities and reducing model uncertainty. The presented results
highlight the importance of considering biotic and abiotic
processes together and can help modellers and experimen-
talists to design and calibrate models as well as to direct ex-

perimental set-ups in peatland ecosystems towards modelling
needs.

1 Introduction

Understanding and quantification of interactions between
different processes and between different parameters is re-
quired for reducing uncertainty in prognostic modelling in
carbon (C) cycle research. Undisturbed peatlands act as car-
bon sinks and have accumulated at least 550 Gt of C, which
is equivalent to twice the C stock in the forest biomass of
the world (Gorham, 1991; Parish, 2008). A more recent es-
timate for exclusively northern peatlands amounts to 436 Gt
of C (Loisel et al., 2014). Management or climate change can
cause this carbon to be released as CO2 emissions as has been
shown from measurements (Maljanen et al., 2010; Drösler et
al., 2013; Petrescu et al., 2015). Process oriented models are
necessary to transfer the knowledge gained from measure-
ments to different locations, management or future climate
scenarios. Furthermore, such models can help to understand
the processes underlying the observations. Although only a
few of the parameters used in process models are known
as site-independent, unambiguous constants from laboratory
experiments. All others need to be either assumed, or gained
from calibration procedures (e.g. Kennedy and O’Hagan,
2001; Wang and Chen, 2012), but not all parameters have
a strong impact on model output and performance (i.e. fit
between modelled and measured variables, whereas in this
manuscript, variable always refers to a time series that is ei-
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ther the output of the model or the measurement to which
the model output is compared). Monte Carlo-based sensitiv-
ity analyses are used to identify key parameters for both the
performance and the impact on various major model outputs
(e.g. Verbeeck et al., 2006; Van Oijen et al., 2011; Santaren
et al., 2014).

Many studies investigated single processes and their pa-
rameters, whereas only a few consider different biotic and
abiotic processes and multiple calibration variables; several
modelling studies have explored peatland hydrology (e.g.
Dimitrov et al., 2010; Dettmann et al., 2014) and heat fluxes
in peatlands (e.g. Granberg et al., 1999; Keller et al., 2004),
whereas others concentrate on carbon fluxes and pools (e.g.
Frolking et al., 2002; Verbeeck et al., 2006; Wu et al., 2013)
where the focus is sometimes only on heterotrophic res-
piration (e.g. Abdalla et al., 2014). However, many pro-
cesses are involved in the C cycle of peatlands; net ecosys-
tem exchange (NEE) is the balance of photosynthesis and
autotrophic respiration from plants as well as heterotrophic
respiration from microbes. All NEE component fluxes are
strongly inter-connected in several ways with the amount of
plant biomass, temperature, radiation, nutrients and moisture
availability (e.g. Clymo, 1984; Lindroth et al., 2007). Photo-
synthesis, soil temperature (Ts) and moisture depend, among
others, on incoming radiation, transpiration and plant cover-
age. Heterotrophic respiration further depends on quality and
quantity of plant litter (e.g. Yeloff and Mauquoy, 2006). In
addition, phenological events such as the timing of snowmelt
are important for soil temperature dynamics, biologic activity
and peatland CO2 fluxes (Aurela, 2004; Peichl et al., 2015).
Different biotic and abiotic processes are realized in some
modelling studies on peatlands, though, only the sensitivity
to carbon fluxes or pools was tested (e.g. Yurova et al., 2007;
St-Hilaire et al., 2010; Quillet et al., 2013; Webster et al.,
2013; Wu and Blodau, 2013; Kim et al., 2014). Also, mod-
els are continuously extended or coupled with other models
(e.g. Wang et al., 2005; Prentice et al., 2007; Giltrap et al.,
2010; Hidy et al., 2012; Jansson, 2012; Tang et al., 2015),
developing into more and more holistic models, accounting
for plant and soil carbon processes, water and energy flows
and biochemistry. However, often only parameters of the new
module are tested (e.g. Belassen et al., 2010; Wania et al.,
2010; Zhu et al., 2014; Tang et al., 2015), ignoring possible
interactions between processes.

Another limitation of previous peatland modelling stud-
ies is the use of local sensitivity analyses, changing only
one parameter or one input driver at a time (e.g. Hilbert et
al., 2000; Yu et al., 2001; Zhang et al., 2002; Wania et al.,
2009; Frolking et al., 2010; Tang et al., 2010; St-Hilaire et
al., 2010). This approach does not account for possible in-
teractions and non-linearity in equations (e.g. Saltelli et al.,
2008; Quillet et al., 2013), but peatland processes are often
non-linear and interact in many ways (Belyea, 2009). There-
fore, we performed a global sensitivity analysis, calibrating
parameters simultaneously and accounting for interactions.

This allows for inter-correlation between the different pa-
rameters, which complicates the parameter constraint to an
unambiguous solution; several combinations of different pa-
rameter values can lead to a similar good fit of model out-
put to measured variables, which is defined as equifinality
(Beven and Freer, 2001). The model sensitivity to such pa-
rameters might be hidden if equifinalities are not consid-
ered. Constraining a model based on multiple observation
variables can help to resolve or reduce equifinalities (Carval-
hais et al., 2010). The profit of using multiple constraints for
model calibration and the importance of interactions between
parameters and across different processes has been shown by
sensitivity analyses on, e.g., forest ecosystems (Carvalhais
et al., 2010; Santaren et al., 2014; Tian et al., 2014). Un-
like previous modelling studies on peatlands, we therefore
investigate the sensitivity to parameters from several differ-
ent modules simultaneously, in their effect on not only on
NEE but also on latent heat flux (LE), sensible heat (H ), net
radiation (Rn), leaf area index (LAI), Ts, water table (WT)
and snow, and identify parameter interactions.

However, criteria based on multiple variables imply a
subjective weighting of variables and performance indices.
Fitting the model to a certain variable might improve or
worsen the performance in another variable (Carvalhais et
al., 2010) and might therefore have implications for the pa-
rameter range judged as valid (e.g. Schulz and Beven, 2003).
In this study, the effects of selecting a certain criteria on the
resulting parameter range will be investigated. We avoided
using a Bayesian approach, which was tested by Van Oijen
et al. (2011), with several models including the CoupModel,
using a data set of more than one variable. The single proba-
bility of the model as the summation of many different vari-
ables requires a detailed understanding of an error model that
is typically not available in field measurements that represent
many different errors for each set of variables.

The detailed ecosystem model CoupModel (Jansson and
Karlberg, 2010) was used in this study for the following rea-
sons; it is a well-established and widely used model (Jans-
son, 2012). Its structure is flexible and allows for simula-
tion of different abiotic and biotic processes based on well-
established physical equations, which can be selected by
the user. The CoupModel includes all main components ex-
pected to have an impact on the carbon cycle: (i) a detailed
module for simulation of heat and water fluxes in the soil
and at the interface to the atmosphere; (ii) plant growth from
photosynthesis, limited by water availability and tempera-
ture; (iii) plant respiration and litter fall; and (iv) a module
for soil organic carbon (SOC) decomposition. A user-defined
time step allows one to use the full information contained in
measurements with high temporal resolution (i.e. hourly) on
site scale.
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Objectives

The aim was to identify and explore the connections within
and between biotic and abiotic processes and parameters that
are relevant for modelling NEE in a natural open peatland.
Therefore, 54 parameters of the CoupModel v5 from differ-
ent plant, decomposition, energy and water flux processes
were calibrated to several different output variables, and sev-
eral different sets of criteria for selecting acceptable runs
were tested. The specific objectives were

1. to identify which processes impact which measured
variable, by testing the sensitivity of model performance
to the parameters of the different processes;

2. to evaluate the dependence of model performance and
resulting parameter ranges on the performance index,
the measured variable and the time period of the vari-
able that are chosen as criteria;

3. to identify and describe equifinalities between parame-
ters from different processes simulating carbon, energy
and water fluxes;

4. to test the potential of all available observation data for
model constrain and identify missing measurement vari-
ables by identifying sensitive or interacting parameters
that cannot be constrained by the available data.

The answers to these questions will be crucial for model de-
velopment and future calibrations of carbon models on peat-
lands: they will represent the most valuable information for
selecting processes that need to be taken into account, for se-
lecting parameters and their value ranges and considering pa-
rameter connections, as well as selecting sites and observed
variables. They further help experimentalists to decide on the
measurement of variables to make their site suitable for mod-
elling.

2 Materials and methods

2.1 Site description

Degerö Stormyr (64.182016◦ N, 19.55663◦ E) is an
oligotrophic, minerogenic mire located on a highland
(270 m a.s.l) in the county of Västerbotten, Sweden. A
detailed description of the site and the measurements can be
found in Peichl et al. (2014) and references therein. “The
mire catchment is predominantly drained by the small creek
Vargstugbäcken in the north-west. The depth of the peat
is generally between 3 and 4 m, but depths up to 8 m have
been measured. [...] The micro-topography is dominated
by mainly carpets and lawns, with only sparse occurrences
of hummocks” (Peichl et al., 2014). The plant community
of the mire is dominated by cotton grass (Eriophorum
vaginatum L.), tufted bulrush (Trichophorum cespitosum L.

Hartm.) and Sphagnum mosses (Nilsson et al., 2008; Laine
et al., 2012). Total above-ground biomass (moss capitula
and vascular plants) is 141± 45 g m−2 (Laine et al., 2012).
Seasonal maximum leaf area index of vascular plants was
estimated at 0.8 m2 m−2 in 2012 (Peichl et al., 2015).

The 30-year (1961–1990) mean annual precipitation and
air temperature are 523 mm and +1.2 ◦C, respectively, while
the mean air temperatures in July and January are +14.7
and −12.4 ◦C, respectively (Alexandersson et al., 1991).
The snow cover normally reaches a depth of up to 0.6 m
and lasts for approximately 6 months (Peichl et al., 2014).
The peatland was continuously a sink for atmospheric CO2
during 12 years of eddy covariance (EC) measurements,
with a 12-year average (± standard deviation) NEE of
−58± 21 g C m−2 yr−1 (Peichl et al., 2014).

2.2 Data used in this study

Hourly values of global radiation, air temperature, relative
humidity, precipitation and wind speed were used as mete-
orological input data (Table 1). They were measured at the
same tower on which the EC sensors were mounted. For gap
filling (due to instrument failure) of the input data, as well as
for the pre-evaluation period 1991–2000, daily data from the
nearby (13 km away) standard climate station at the Svartber-
get field station were obtained. In the case of air temperature
and relative humidity, seasonal regression relationships were
applied to account for temperature and humidity differences
between the site and the standard climate station.

An overview of the data used for calibration can be found
in Table 2, a more detailed description is provided by Peichl
et al. (2014) and references therein. Measured carbon con-
centrations per soil layer were used for estimation of pool
sizes as described in Sect. 2.3.5. The model was calibrated
based on measured NEE, LE, H , WT, Rn, soil temperatures
in−2 cm (Ts1) and−42 cm (Ts2) depth, snow depth and LAI
of vascular plants (Table 2). NEE, LE and H were measured
using the eddy covariance technique, and details for data pro-
cessing were previously described in Peichl et al. (2014).
In this study, only the measured values of NEE, LE and H
were used for calibration (i.e. gap-filled values were omit-
ted). Negative NEE values indicate net CO2 uptake by the
ecosystem from the atmosphere while positive NEE values
indicate emission from the ecosystem to the atmosphere. All
calibration data were averaged to hourly values, except snow
depth and LAI values, which had a daily and biweekly to
monthly resolution.

2.3 Model description and application to Degerö
Stormyr

The CoupModel v5 from 12 December 2014 was used for
simulations. The current version can be downloaded from the
CoupModel home page (CoupModel, 2015). A detailed de-
scription can be found in Jansson and Karlberg (2010). The
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Table 1. Measurement data used as model input.

Variable Period Resolution as used for model inputa Methodb Measurement
height

Global
radiation

1991–2013 Hourly; 1991–2000: hourly values cal-
culated from daily values by assuming
a sinusoidal distribution between 07:30
and 19:30 CET.

2001–2013: Li200sz sensor (LI-COR,
Lincoln, NE, USA)

3 m

Air
temperature

1991–2013 Hourly MP100 temperature and moisture
sensor (Rotronic AG, Bassersdorf,
Switzerland) equipped with a ventilated
radiation shield

3 m

Relative
humidity

Hourly; 1991–2000: hourly values cal-
culated from daily values by assuming
equally distribution during each day

MP100 temperature and moisture
sensor (Rotronic AG, Bassersdorf,
Switzerland) equipped with a ventilated
radiation shield

3 m

Precipitation 1991–2013 Hourly; 1991–2000 and November to
April: the total daily precipitation was
assumed to fell at 12:00 CET each day

Rainfall tipping bucket (ARG 100,
Campbell Scientific, Logan, UT, USA).

1 m

Wind speed 1991–2013 Hourly; 1991–2000: hourly values cal-
culated from daily values by assuming
equally distribution during each day

2001–2013: three-dimensional (3-D)
wind anemometer (Gill Instruments
Ltd., Hampshire, UK)

1.8 m

C content per
soil layer

1994 One time in 1994 Every 4 cm between 0 and −32 cm, and
every 12 cm between −60 and −338 cm

0 to −338 cm

a Measurement resolution was the same or higher, except where mentioned differently. b The method description of meteorological input data applies to the climate station at
the site. For gap-filling and for the pre-evaluation period, the data were obtained from the nearby standard climate station (Svartberget field station).

CoupModel allows the user to select between different sub-
models, different equations and different complexities of the
used equations. The following sections describe the config-
uration as applied in this study. The model represents the
ecosystem with a description of C and N fluxes in the soil and
in the plants. It includes the main abiotic fluxes, such as soil
heat and water fluxes that represent the major drivers for reg-
ulation of the biological components of the ecosystem. For
application to Degerö Stormyr, the vegetation canopy was
defined as two layers: vascular plants and mosses. The soil
profile was divided into 16 layers with an increasing layer
depth from 4 cm for the upper 9 layers to 60 cm in the lowest
layer, resulting in a total depth of 3.4 m. The model internal
time step was half-hourly for abiotic processes and hourly
for nitrogen and carbon-related processes. The simulations
were started 10 years prior to the evaluation period, so the
system could adapt to the site conditions and become more
independent of initial values.

The most important equations and the corresponding cali-
brated parameters can be found in Tables S1 and S2 in the
Supplement. The major model assumptions related to the
model application of the peatland are described below. De-
tailed assumptions with respect to fixed parameter values can
be found in Table S3 in the Supplement.

2.3.1 Radiation interception, evapotranspiration and
snow

An interception model for radiation and precipitation, a snow
model and a surface pool model was used to provide bound-
ary conditions at the soil surface. Cloud fraction was calcu-
lated from global radiation input and latitude. Incoming radi-
ation was partitioned between one part, which was absorbed
by the plant canopy and another part, which reached the soil
according Beer’s law (see Impens and Lemeur, 1969). Ra-
diation absorbed by the canopy was partitioned between the
two plant layers (Fig. 1), depending on their height and sur-
face cover, whereas it was assumed that leaves are uniformly
distributed within the total height of the canopy. Interception
and plant evaporation depended on the simulated leaf area in-
dex of the vegetation as well as the degree of area coverage.
Transpiration depended additionally on the simulated plant
water uptake. Soil evaporation was derived from an iterative
solution of the soil surface energy balance of the soil sur-
face, using an empirical parameter for estimating the vapour
pressure and temperature at the soil surface. Vapour pres-
sure deficit was calculated from the relative humidity input.
Snow fall was simulated from precipitation and air temper-
ature, while snowmelt was estimated from global radiation,
air temperature and simulated soil heat flux.

Geosci. Model Dev., 9, 4313–4338, 2016 www.geosci-model-dev.net/9/4313/2016/
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Table 2. Measurement data used for model calibration.

Variable Period Resolution as used Method Measurement
for calibration height

NEE 2001–2012 hourly EC system, consisting of a three-dimensional (3-D) sonic
anemometer (1012R3 Solent, Gill Instruments, UK; heated
during winter months) and a closed path infrared gas
analyser (IRGA 6262, LI-COR, Lincoln, Nebraska USA).
Fluxes were calculated by the EcoFlux software (In Situ
Flux AB, Ockelbo, Sweden) according to the EUROFLUX
methodology (Aubinet et al., 1999; Sagerfors et al., 2008;
Nilsson et al., 2008)

1.8 m

LE and H 2001–2009 hourly Same EC system as above (Peichl et al., 2014) 1.8 m

Water table 2001–2009 daily Float and counterweight system attached to a potentiometer
(Roulet et al., 1991)

Soil
temperature

2001–2012 hourly TO3R thermistors mounted in sealed, waterproof, stainless
steel tubes (TOJO Skogsteknik, Djäkneboda, Sweden) in a
lawn community 100 m north-east of the flux tower

−2 cm, −42 cm

Net
radiation

2001–2011 NR-Lite sensor (Kipp and Zonen, Delft, the Netherlands) 4 m

Snow depth 2001–2012 daily Sr-50 ultrasonic sensor (Campbell Scientific, Logan, UT,
USA) nearby the flux tower

LAI of vas-
cular plants

May–Sept-
ember 2012

biweekly Destructive sampling (Peichl et al., 2015)

Figure 1. Energy flux partitioning and related soil water flows in the
CoupModel as applied to a peatland using two plant canopies and
root systems. Rn: Incoming radiation; LE: latent heat fluxes (sum of
actual transpiration, interception evaporation and soil evaporation);
H : sensible heat fluxes.

2.3.2 Soil temperatures and heat fluxes

Surface temperature was simulated based on an energy bal-
ance approach, where the radiation reaching the soil equals
the sum of sensible and latent heat flux to the air and heat flux
to the soil. The same approach was used for the snow surface

temperature. Heat flow between adjacent soil layers were cal-
culated based on thermal conductivity functions accounting
for the content of ice and water. The heat flow equation is
based on a coupled equation also accounting for freezing and
thawing in the soil (Jansson and Halldin, 1979). Convection
heat flows were not accounted for. The lower boundary tem-
perature was calculated based on a sine variation including
parameters for the annual mean temperature and amplitude
at the site.

2.3.3 Soil hydrology

Soil water flows and water contents were calculated for each
of the 16 soil layers. Soil water depended on infiltration to
the soil, soil evaporation, water uptake by plants and ground-
water flow. Soil moisture represented as liquid water content
was calculated based on the water storage and temperature
in the corresponding soil layer. Water flows between adja-
cent soil layers were calculated based on Richards’ equation
(Richards, 1931), considering hydraulic conductivity, water
potential gradient and vapour diffusion. Saturation conduc-
tivity was assigned depending on mean-measured dry bulk
density values of the corresponding layers (see Päivänen,
1973).

With respect to hydrologic characteristics, the soil profile
was divided in two horizons representing the acrotelm and
the catotelm (see Ivanov et al., 1981), whereas the boundary
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between these horizons was positioned at −30 cm as sug-
gested for Degerö Stormyr, based on visual differences in the
soil profile and water table depth measurements (Granberg
et al., 1999). The soil water characteristics were described
by the Brooks and Corey equation (Brooks and Corey,
1964) and unsaturated conductivity by the Mualem function
(Mualem, 1976). When the current simulated groundwater
table is above the assumed drainage level, outflow of satu-
rated layers above that level was simulated, based on a linear
model.

Surface runoff was controlled by a surface pool of water
that covers various fractions of the soil surface. During peri-
ods of a fully saturated soil profile the flow of water in the
upper soil compartment could be directed upwards, towards
the surface pool. Surface runoff was calculated as a function
of the amount of water in the surface pool.

2.3.4 Vegetation

Two plant layers were simulated, representing vascular plants
and mosses. They differed in their parameters for size, shape,
carbon allocation, litter fall and temperature response for as-
similation and respiration. A detailed description of the car-
bon pools of the two plant types and the partitioning of as-
similates to the pools can be found in the Supplement. Vascu-
lar plants additionally had a pool for mobile reserves, which
was filled during litter fall. They were assumed to have a
maximal height of 50 cm compared to 2 cm for mosses.

Plant development was temperature-sum and day-length
dependent. Senescence and litter fall for vascular plants de-
pended on growth stage, temperature sum and day length. In
the case of mosses, litter fall was proportional to assimila-
tion. Litter from above-ground carbon pools went through a
surface litter pool and then to the upper soil litter pool, and
litter from below ground to the corresponding soil layer. In
the case of mosses, litter fall occurred only in below-ground
parts. For both plant types, assimilation was simulated us-
ing the light-use efficiency approach (see Monteith, 1972),
where total plant growth is proportional to the net of global
radiation absorbed by the canopy but limited by unfavourable
temperature and limited soil water. The response to soil wa-
ter was defined from the ratio of actual to potential transpi-
ration. Potential transpiration depended on vapour pressure,
temperature, wind speed and aerodynamic resistance of the
plant. Actual transpiration was assumed to equal water up-
take from soil layers, depending on the relative amount of
roots, the specific response to soil water potential and the soil
temperature of each layer. Both plant layers were assumed to
be well adapted to wet conditions (see Keddy, 1992; Steed
et al., 2002) and therefore experiencing water stress only due
to dry conditions, which was supported by pre-study mod-
elling results. Plant respiration was assumed to be propor-
tional to assimilation (growth respiration) and to the amount
of biomass (maintenance respiration), whereas maintenance
respiration also depended on temperature through a simple

Q10 (constant factor changing the rate with a 10 ◦C increase
in temperature) approach.

2.3.5 SOC decomposition

The organic substrate was represented by three C and N
pools for each of the 16 soil layers: one representing more
stable, partly decomposed material (SOMs), one represent-
ing fresh or little decomposed moss litter (SOMm) and one
representing fresh or little decomposed litter from vascu-
lar plants (SOMv). Initial conditions were selected to ful-
fil the measured total carbon per layer and partitioned into
the pools in a way that they were approximately in equi-
librium for a certain parameter combination that produces a
reasonable fit to NEE (prior calibration). Decomposition fol-
lowed first-order kinetics with pool-specific rates that were
reduced under unfavourable soil temperature and moisture
conditions. Temperature dependence was described by the
Ratkowsky function, which was originally developed for
bacteria (Ratkowsky et al., 1982) but has also been applied to
fungal growth by Bazin and Prosser (1988). Soil moisture re-
sponse was zero at moisture contents below the wilting point,
rising to 100 % between two threshold moisture contents and
falling to a certain level under saturated conditions.

Decomposition products from the SOMm and SOMv pools
were partitioned into CO2 that was released to the atmo-
sphere and C that is partly moved to the SOMs pools and
partly returned to the SOMm and SOMv pools. Decompo-
sition products from the SOMs pools were partly released
as CO2 and partly returned to the SOMs pools. Under sat-
urated conditions, carbon could leave the pools as methane
(CH4), which was later oxidized to CO2 or transported to the
atmosphere via plants or through ebullition. Nitrogen- and
methane-related processes were considered by a model in-
cluding the most important pathways and fluxes, but no em-
phasize on the calibration of these processes were made in
this study.

Peat depth growth during the simulation period was con-
sidered by the following; the initial organic concentration
was preserved for each layer except for the lowest in the
profile. Instead, the difference in the total amount of C in
all pools in one layer between the beginning and end of
each year was moved to or from the layer below, to simu-
late growth or decrease the peat depth. Thereby, carbon was
taken from the different pools according to the relative abun-
dance of each pool in the source layer and inserted to the
corresponding pool in the target layer to allow for dynamic
changes in litter quality. The lowest layer (−2.8 to −3.4 m
below the surface) represented the entire depth change of the
whole profile, but was excluded from a constant concentra-
tion to avoid adjustments of the number of layers.

Geosci. Model Dev., 9, 4313–4338, 2016 www.geosci-model-dev.net/9/4313/2016/
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2.4 Calibration procedure

A Monte Carlo calibration including acceptance criteria was
performed to identify process and parameter interactions.
The resulting parameterizations were analysed for correla-
tions between different parameters, between parameters and
model performance and between performances in different
variables. A total of 50 000 runs were performed to calibrate
54 parameters from different processes. Parameter values
were randomly assigned from a uniform distribution within
assumed prior ranges (i.e. all values had the same probabil-
ity of being used). The parameters were selected as candi-
dates to demonstrate the role of various regulating processes,
which we group into eight different process categories that
describe (1) plant growth, (2) decomposition, (3) radiation
interception, (4) soil temperature, (5) aerodynamic resis-
tance, (6) transpiration, (7) soil hydrology and (8) snow. Prior
ranges for calibrated parameters were selected according to
literature values or experiences from previous model runs, in
most cases a certain range around the default value (Table S1
in the Supplement). Many parameters were still considered
with fixed single values (Table S3 in the Supplement). Model
outputs were compared with measured field data including
many variables in high temporal resolution, spanning up to
12 years of observations (Table 2). Several combined cri-
teria were defined to select runs (behavioural models) with
an acceptable performance (see Sect. 2.4.2) in different vari-
ables. Resulting parameter value ranges of the accepted runs
were then compared with the prior ranges and between the
different criteria selections to examine the effect of the cri-
teria selection. Correlations between parameter values and
model performance in the different measurement variables
were analysed, as well as between accepted values of dif-
ferent parameters. Parameters were ranked on their effect on
model performance, their correlation with other parameters
and their constraint ability from the available data.

2.4.1 Splitting of calibration variables into sub-periods

Additional to the calibration data for the whole period, we
introduced further sub-variables for certain sub-periods and
times of the day. NEE was separated into night-time values
(22:30–02:30 CET), representing ecosystem respiration, and
daytime values (09:30–15:30 CET), representing the sum of
the respiration component and the assimilation component.
Additionally, springtime values were considered separately
for NEE and snow depth, and spring- and wintertime values
for Rn, Ts,H and LE. This is justified as low values with few
dynamics during winter, and the critical transition of plant
emerge and snowmelt in spring might not be properly ac-
counted for if only the whole period was considered. WT
was calibrated and analysed in the whole profile and addi-
tionally in lower soil layers (one sub-variable for WT depths
>−0.15 m and one for >−0.2 m). This was encouraging be-
cause as WT in the upper soil layers showed high fluctuations

in the modelled and also partly the measured WT, and while
our interest was to achieve a good overall water table with
good representations of dry summer periods.

2.4.2 Performance indices

The selection of runs and evaluation of model performance
were based on three indices: coefficient of determination
(R2) assess how well the dynamics in the measurement-
derived values are represented by the model; mean error
(ME) is the difference between the average of the simulated
compared to the average in the measured (i.e. it shows the
error in the magnitude); and the Nash–Sutcliffe efficiency
(NSE) (Nash and Sutcliffe, 1970) accounts for both devia-
tion of dynamics and magnitude (i.e. it ranges from−∞ to 1,
whereas 1 means the best fit of modelled to measured data).
Values < 0 indicate that the mean-measured value is a better
predictor than the simulated value (Moriasi et al., 2007). As
the NSE may be understood as a combination of the coeffi-
cient of determination (R2) and ME, it was only evaluated if
the R2 and ME alone did not narrow the parameter range.

The decoupling of turbulent transport and biological ac-
tivity during night-time may introduce spike-type fluxes in
NEE, LE and H if accumulated concentrations during calm
night-time conditions are released during the onset of turbu-
lence in the morning hours. To attenuate the effect of these
spikes, the simulated and measured values were transformed
to cumulated total amounts, starting from the beginning of
the observation period. An additional R2 value was calcu-
lated for the cumulated values (AR2).

2.4.3 Criteria for posterior selection

Criteria were applied in two steps. In the first step, a basic set
of 1285 behavioural models was selected. Out of these, sev-
eral sets of 50 runs each were selected in the second step in
two different ways: one for sensitivity analyses and parame-
ter ranges, which was based on single criteria, and the other
for identification of equifinalities, based on multiple criteria.

Basic selection

The basic selection was applied, as the lowest summer wa-
ter levels and a reasonable representation of the plant was
assumed to be crucial for most of the processes of interest.
Criteria were on performance in WT and vascular plant LAI
(Table 3). The criteria on water level below 0.2 m was cho-
sen, as a correct representation of summer drought condi-
tions was of higher interest in this study than a correct water
level during, e.g., frozen conditions in winter, causing the
water table to drop down to 0.15 m. The criteria on LAI ME
of ±0.2 m2 m−2 was a relatively wide range, as the mean
of measured values was 0.4 m2 m−2; i.e. a underestimation
of LAI by −0.2 m2 m−2 would result in a maximum LAI of
0.2–0.4, which was close to the minimum for being able to
re-establish new biomass after a low productive year. A wide
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Table 3. Different criteria sets for the selections of accepted runs.

Main component Variable R2 Mean error (ME)

Basic selection (these criteria are applied WT <−0.2 m ≥ 0.40 ±0.02 m
additionally in all following criteria sets) LAI vascular plants ≥ 0.40 ±0.02 m2 m−2

Daytime NEE ±2 g CO2-C m−2 day−1

NEE Accumulated NEE ≥ 0.98
Daytime NEE ±0.02 g CO2-C m−2 day−1

Night-time NEE ±0.07 g CO2-C m−2 day−1

Sensible heat H ±3× 105 J m−2 day−1

Accumulated H ≥ 0.97

Latent heat LE ±1× 105 J m−2 day−1

Accumulated LE ≥ 0.98

Net radiation Net radiation ≥ 0.82 ±4× 104 J m−2 day−1

Soil temperature Temperature −2 cm ≥ 0.95 ±0.22 ◦C
Temperature −42 cm ±0.22 ◦C

Snow Snow depth ≥ 0.76

Water table WT <−0.15 m ≥ 0.51

range of daytime NEE ME was additionally applied to ex-
clude outliers due to numerical problems, which reached an
ME in NEE up to 8× 1027 g CO2–C day−1 m−2 in the prior.

Single criteria to identify parameter range

For sensitivity analyses and to test if, and how, parame-
ter ranges depend on the selected criteria, the best 50 be-
havioural models for each performance index of each vari-
able were selected out of the basic selection. Thereby, best
means highest in the case of the R2 and NSE, but closest to
zero in the case of ME. We defined posterior parameter range
as the interval between the 5th and the 95th percentile of the
distribution of parameter values of the runs selected. Poste-
rior parameter ranges were compared with the ranges result-
ing from the basic selection. If the upper or lower limit of a
posterior parameter range of the final selections differed by
≥ 10 % from the upper or lower limit of the posterior range
of the basic selection, the parameter was assumed to be sen-
sitive to the selected criteria and further analysed.

The same was done for each of the best 200 behavioural
models, but as the results were similar, they were only plot-
ted with respect to parameter ranges. Furthermore, all pa-
rameters were plotted against all performance indices of each
variable and checked visually for discrepancies with the re-
sulting ranges (results are not shown).

Multiple criteria to identify parameter correlations

For identification of equifinalities, a set of multiple criteria
for each variable (Table 3) was applied to select sets of 50 be-
havioural models each. Again, these selections were based on

the basic selection. Parameter ensembles of these accepted
behavioural models were then analysed to identify covari-
ance between parameters. A pair of parameters was consid-
ered to interact if their values correlated with a R2 of at least
0.1 in the basic selection, respectively, 0.2 in the final selec-
tion. If a pair showed correlations in several criteria sets, the
highest R2 value was reported in the results.

2.4.4 Evaluation and measures

To rank the parameters in their concern, several measures
were used to quantify parameter sensitivities and constrain-
abilities, as well as equifinalities. The sensitivity (S) of a
parameter to each performance index of each variable was
quantified by the sum of the differences between the poste-
rior range and prior range (range reduction). If a parameter
was sensitive to more than one period of each variable, the
highest value for each variable was chosen for further anal-
ysis. To identify trade-offs and supporting effects between
different criteria, correlations of the performances between
different variables and indices were plotted and visually anal-
ysed. Due to limited computer capacity, this was based on a
random set of 3200 runs. Furthermore, the parameter value
ranges resulting from the different criteria were compared
with each other and determined how well they were over-
lapping, i.e. how unambiguously they could be constraint.
Overlap (O) for each parameter was defined as the differ-
ence between the minimum of the upper limits of the pos-
terior ranges of the different criteria minus the maximum of
the lower limits of posterior ranges and, therefore, become
negative if ranges were not overlapping. Furthermore, it was
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compared how well overlapping ranges differed between per-
formance indices within the same variable and between dif-
ferent variables. The overlapping range of each parameter
was normalized by dividing it by the average of the poste-
rior ranges of this parameter; therefore, a value of 1 would
be reached if all posterior ranges of that parameter would be
identical for all performance indices and variables. Equifi-
nalities were quantified by the R2 value of a simple linear
regression through the values of the interacting parameter
pair in the accepted runs. Parameter concern (P) was defined
based on three components: the sensitivity of the parameter,
how unambiguously it could be constraint and the sum of
correlation coefficients of equifinalities with other parame-
ters:

P =
(
SR2 + SME

)
× (1−O)+

∑
2×

210×R2
equi

10
. (1)

Thereby, sensitivity was the sum of the range reduction for
the R2 and for ME, respectively NSE in case where no sen-
sitivity was detected for the R2 and ME but for the NSE.
The sensitivity was multiplied by the factor 1 minus the nor-
malized overlapping range, so that the sensitivity of param-
eters, which could be unambiguously constrained are down
weighted; therefore, with high uncertainty due to different
results for different performances, indices or variables are up
weighted. Equifinalities were considered by the sum of the
R2 values for each correlation of that parameter with another
parameter, displayed in exponential form and weighted so
that strong correlations were emphasized and the contribu-
tion of equifinalities were in a comparable scale to the sensi-
tivity measures.

3 Results

Processes as well as parameters were strongly interacting,
which was reflected in sensitivities of each variable to sev-
eral different process categories, correlations between the
performance in different variables, and in equifinalities be-
tween parameters of different process categories. About half
of the parameters were sensitive to model performance in
one or more variables, but only a few had a distinct range
(Sect. 3.1). Instead they affected several processes, causing
trade-offs not only in model performance between the dif-
ferent measurement variables and between the different per-
formance indices, but also several supporting effects could
be identified (Sect. 3.2). A lot of equifinalities were identi-
fied between parameters. Parameters were correlated with up
to seven other parameters, often from different process cat-
egories. Therefore, a good performance often requires cer-
tain combinations of parameter values, rather than specific
parameter values (Sect. 3.3). Each of the available measure-
ment variables (NEE, LAI, sensible and latent heat fluxes,
net radiation, soil temperatures, water table depth and snow
depth) constrained parameters from several different process

categories, without any variable being redundant (Sect. 3.4).
Nevertheless, large uncertainty remained in especially the
unsaturated water distribution (ψa) in the soil (Fig. 2), which
affected all considered processes and hindered further param-
eter constrain. This might be solved by additional measure-
ments of, e.g., soil hydraulic properties. Other important pa-
rameters that could not be constrained were the following:
define aerodynamic resistance, radiation interception (in par-
ticular moss albedo), timing of snowmelt, and in the case of
NEE mostly the leaf-litter fall rate of vascular plants during
the growing season (Fig. 2). A detailed description of the key
parameters for each process and the detected interactions can
be found in Sect. 3.5. Results for model fits to the different
variables can be found in Fig. S1 in the Supplement.

3.1 Parameter sensitivity

Model performance was sensitive to parameters across the
different process categories: out of 27 sensitive parameters
21 affected model performance in more than one variable.
For 15 of the sensitive parameters, resulting value ranges dif-
fered strongly (less than 50 % overlapping range), depending
on both, the variable and the performance index (Fig. S2 in
the Supplement). Performance in Ts and WT was determined
by 12 key parameters belonging to seven and six different
process categories, respectively (Fig. 3). In contrast, snow
depth and LAI depended mainly on parameters from their
own process categories. Radiation and LAI refer to the sim-
plest processes with respect to number of connected param-
eters (Fig. 3). However, radiation, together with snow depth,
was the variable with the strongest average disagreement in
parameter value ranges between the different selection crite-
ria (Fig. 4). Four parameters were sensitive to at least half
of the considered variables (Fig. 2); the parameter defining
the water retention curve and unsaturated soil hydraulic con-
ductivity (ψa) affected model performance in variables of all
eight considered variables. The moss transpiration coefficient
(gmax,moss), vascular plant respiration coefficient (kgresp,vasc)

and litter fall rate (lLc1) were important parameters for not
only LAI and NEE, but also H , LE and WT. Furthermore,
gmax,moss and kgresp,vasc were also important for Ts. The sen-
sitivities of the single parameters are described in more detail
in Sect. 3.5. The full table of the correlation coefficients be-
tween parameters and performance can be found in the Sup-
plement (Table S4).

3.2 Confounding and supporting effects of interacting
processes

The performances of several variables were connected in
supporting and co-founding ways (Figs. 5 and 6). Trade-offs
existed not only between the performances of different vari-
ables but also within a variable, depending on chosen per-
formance index or sub-period. This was also reflected in the
large differences in resulting accepted ranges. On average,
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Figure 2. Parameter concern is shown on the y axis as sum of equifinalities (hatched) and sensitivities that could not be constrained unam-
biguously (solid). The x axis shows the parameters that belong to the process category of the background colour.
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accepted value ranges overlapped with 35 % between differ-
ent performance indices and between different sub-periods of
the same variable, and additionally with 6 % if the differences
between different variables were considered (Fig. 4). In the
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Figure 4. Average overlap of accepted ranges per parameter within
each process and between processes, i.e. how unambiguously the
parameters could be constrained. Negative values indicate the dis-
tance between accepted ranges when ranges did not overlap at all.

case of 11 parameters, the accepted ranges did not overlap at
all (Fig. S2 in the Supplement).

Strong connections existed especially between ME of LE
and WT, but also the ME of LAI had an impact on the per-
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Figure 5. Correlations between performance indices in the prior distribution (3200 random runs): R2 vs. R2 (upper panel); mean error (ME)
vs. ME (lower panel). Each of the dots represents a parameter set. Grey lines indicate the axes through zero.

formance in many other variables; the magnitude of vascu-
lar plant LAI was strongly correlated with magnitude of LE,
WT, H and NEE, especially if daytime and night-time val-
ues were considered (Fig. 5). Thereby the lowest ME in day-
time and night-time NEE, as well as the ME and dynamics
of H , went along with a slight underestimation, and for LE
and WT with a slight overestimation of vascular plant LAI.
The best performance for WT dynamics was reached if the
magnitude of vascular plant LAI was correct (Fig. 6). A no-
ticeable existence of the vascular plants (LAI ME >−0.4) in-
creased the fit in the NEE R2 to at least 0.2, but this was not a
necessary precondition for good NEE performance (Fig. 6).
The highest performance in dynamics of WT, H and Ts in
the upper layer coincided with a good fit in NEE magnitude
(Fig. 6). This relationship was even stronger if these variables
were compared to ME in NEE night-time and NEE daytime.
A correct representation of WT dynamics and depth coin-
cided with high performance in H dynamics and a correct or
slightly underestimated H (Figs. 5 and 6). A small ME in H
correlated with high performance in WT dynamics. Perfor-
mances in soil temperatures of different layers were strongly
correlated with each other in both dynamics and magnitude.

Underestimation of LE was connected to an overestimation
ofH , but also to better dynamics inH (Fig. 5). The ME in net
radiation was positively correlated with the ME inH . A good
fit between modelled and observed snow depth did not cor-
relate with the performance in any other variable. The only
exception was a negative correlation between the dynamics
in snow depth and H if performance during springtime ex-
clusively was considered (Fig. S3 in the Supplement).

Especially for snow, Rn and in the case of some parameters
also for Ts, accepted ranges were contradictory depending on
whether theR2 or ME was chosen. In the case of moss albedo
(apve,moss) and aerodynamic resistance dependency on LAI
(ralai), the ranges also strongly depended on the season dur-
ing which the variable was considered. For two aerodynamic
resistances and one soil parameter (z0M,snow, cH0,canopy, sk)
ranges differed between theR2 of actual values and theR2 of
accumulated values. In addition to the uncertainty from un-
ambiguous parameter ranges, further uncertainty results from
equifinalities between parameters.
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Figure 6. Correlations between performance indices in the prior distribution (3200 random runs): R2 (columns) vs. mean error (ME) (rows).
Each of the dots represents a parameter set. Grey lines indicate the axes through zero.

3.3 Equifinalities

Parameters were strongly inter-correlated, often with sev-
eral parameters, and often across different process categories.
Equifinalities can hinder the identification of sensitivities,
which was especially true for the basic selection; despite re-
ducing the number of runs by 97.5 %, posterior and prior
ranges hardly differed (Table S5 in the Supplement). Instead
certain-value triples for photosynthetic efficiency (εL,vasc)

with the respiration coefficient (kgresp,vasc) and with the stor-
age fraction for plant regrowth in spring (mretain) were cru-
cial for the survival of the vascular plant layer. Certain-value
pairs for the moss transpiration coefficient (gmax,moss) with
the shape parameter of soil water retention (ψa) were crucial
for a reasonable water table depth.

Equifinalities existed not only between parameters from
the same process categories, but even more often between
parameters from different process categories (Fig. 7). Pa-
rameters defining radiation interception, soil temperature,
aerodynamic resistance, transpiration, and soil hydrology ex-
clusively correlated with parameters from different process
categories. Parameters defining radiation interception were
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Figure 7. Process category belonging to parameters that correlated
with parameters of a certain process category.
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mostly correlated with parameters defining aerodynamic re-
sistance. Only in the case of plant and SOC decomposition
parameters, equifinalities existed mainly between parameters
of the same process category.

Except for ρsmin, all sensitive parameters and other further
parameters were detected to correlate with up to five other
parameters in the final selections, ψa correlated with even
seven others (Fig. 2). Two parameters had very strong cor-
relations (R2

≥ 0.3) with two other parameters each, which
belong to different process categories (ψa with cH0,canopy and
gmax,moss and apve,moss with z0M,snow and ralai) (Table S6 in
the Supplement).

3.4 Usefulness of measurement variables

All available measured variables (NEE, LAI, LE, H , Rn,
Ts, WT and snow depth) were helpful in constraining pa-
rameter ranges (Fig. 2). None of the supporting effects was
strong enough, to allow one variable to be fully replace-
able by another. Even for the strongest correlation between
soil temperatures of the different layers, the remaining un-
certainty in one temperature when knowing the other would
be of the magnitude of 0.5 ◦C, which corresponds to more
than 25 % of the total uncertainty resulting from the tested
parameter ranges (Fig. 5). In the case of 15 variables, the
usage of several variables revealed that constrained ranges
were not robust. In total, 12 parameters could be unambigu-
ously constrained to a more narrow range, as their resulting
ranges had at least 50 % overlap, or affected only one vari-
able (Fig. S2 in the Supplement). Each variable constrained
parameters from several different process categories (Fig. 3).
The highest number of correlations was detected for the per-
formance in WT and Ts, which constrained 12 parameters
from different process categories. Also the available data for
LE,H and NEE constrained many parameters. Nevertheless,
large uncertainty remained due to equifinalities and differ-
ences in accepted ranges; the largest uncertainty was caused
by a parameter defining the shape of the water retention curve
(air entry, ψa). As this was the only calibrated parameter of
the water retention curve, it determined the unsaturated hy-
draulic conductivity of the soil. ψa was sensitive to all con-
sidered variables and had many strong interactions with other
parameters, while it was not possible to constrain it to an un-
ambiguous value range (Fig. S2 in the Supplement). There-
fore, it would be of great value to be able to deduce such
parameters from additional measurements. This also applies
to the following parameters, which could not be constrained
unambiguously; leaf-litter fall rate of vascular plants dur-
ing the growing season (lLc1) was the second most sensi-
tive parameter, affecting the performance in NEE,H , LE and
WT. Moss albedo (apve,moss), aerodynamic resistance depen-
dency on LAI (ralai) and transpiration coefficients (gmax,vasc,
gmax,moss, gmaxwin) had a similar concern, due to their equifi-
nalities to other parameters. Plant respiration (kgresp,vasc) had

strong sensitivity but could be constrained unambiguously by
the available data.

3.5 Detailed description of sensitivities and interactions
per process

Detected sensitivities, connections between performances,
and equifinalities all showed strong interactions between the
different processes and parameters of different process cat-
egories. Connections existed between all variables and pro-
cess categories, but most strongly inter-linked were LE with
WT and Rn withH and Ts (Fig. 2).H , LE and WT were also
linked to each other and to NEE. The impact of the plant is
further reflected in the correlations between performances in
LAI with performances in many other variables (Fig. 5). The
implications on the performance for each considered variable
will be described in the following sections.

3.5.1 Water level depth and soil moisture conditions

Performance in water level depth was determined by 12 key
parameters (Table S4 in the Supplement). It was most
strongly connected to the shape of the soil water reten-
tion curve (ψa) as well as to the transpiration coefficients
for mosses and winter transpiration (gmax,moss, gmaxwin).
The transpiration coefficient from vascular plants played a
smaller role due to the high sensitivities of parameters defin-
ing the growth and therefore the magnitude of the vascular
plant (i.e. kgresp,vasc, mretain, lLc1). Equifinalities existed be-
tween several of these parameters. ψa had a strong effect on
the performance of all variables and several strong equifi-
nalities, in particular with parameters defining aerodynamic
resistance and transpiration. On the other hand, ψa could
not be constrained to an unambiguous range and was there-
fore the parameter causing the largest overall uncertainty
(Fig. 2). Performance in WT was further sensitive to parame-
ters defining aerodynamic resistance, i.e. ralai and cH0,canopy.
Both parameters had equifinalities with ψa and moss albedo
(apve,moss) as well as with timing of snowmelt (mT) and ther-
mal conductivity of snow (sk). In addition, the distance be-
tween drainage (dp) showed some sensitivity.

3.5.2 Transpiration and evaporation

The nine most important parameters for WT performance
were also key parameters for LE (ψa, gmax,vasc, gmax,moss,
gmaxwin, kgresp,vasc, mretain, lLc1, ralai, cH0,canopy). This ex-
plains the strong correlation between the performance in WT
and LE ME (Fig. 5) and shows the connections with plants,
WT and H . Another parameter, sensitive to LE was the
roughness length of snow (z0M,snow), belonging to the aero-
dynamic resistance process category and correlating with
moss albedo, hinting to the connections between LE- and
R-associated processes. Dynamics in WT and LE, as well
as magnitude of H , was improved if the transpiration coef-
ficient was on its lower range in the case of mosses and on
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its upper range in the case of vascular plants (Fig. S2 in the
Supplement). Despite the lower values for mosses, transpi-
ration prior to criteria selection was dominated by mosses,
due to their higher LAI and coverage (Fig. S4 in the Sup-
plement). Crucial for LE performance was also a parameter
defining the aerodynamic resistance of the canopy under sta-
bile conditions (cH0,canopy): a very small value improved the
R2 of LE and spring LE, but downgraded the R2 of accu-
mulated LE and of winter radiation. Spring LE was overes-
timated in most of the runs (see Fig. S1 in the Supplement).
The strongest sensitivity on spring LE was by the coefficient
for winter transpiration (gmaxwin): the higher the gmaxwin the
better the R2 and ME. Together with (z0M,snow) this was also
the most important parameter for winter LE.

3.5.3 NEE and LAI

Seven of the nine parameters, which were common for LE
and WT, were also among the most effective parameters for
NEE (ψa, gmax,moss, gmax,vasc, kgresp,vasc, mretain, lLc1, ralai)

and belong to four different process categories: plant, transpi-
ration, soil hydrology and aerodynamic resistance (Table S4
in the Supplement). However, the most sensitive parameter
for NEE was the rate coefficient for heterotrophic respiration
(kl1), which was especially important for night-time NEE.
Further sensitive parameters for night-time NEE were the
growth respiration coefficient for mosses (kgresp,moss) and the
temperature dependency coefficient for heterotrophic respi-
ration (tmin. The rates of photosynthesis and its temperature
dependence (εL,vasc, εLmoss, pmn,vasc) were key parameters
for LAI, NEE magnitude or temporal NEE dynamics, respec-
tively. Many strong interactions existed between plant pa-
rameters, which were especially visible in the basic selection
(see Sect. 3.3). The rate of leaf-litter fall during the growing
season lLc1 was one of the parameters with the highest con-
cern, due to its sensitivity on many different processes, its
equifinalities and as it could not be constrained to an unam-
biguous solution (Fig. 2). Resulting ranges for lLc1 differed
not only between the different performance indices within
NEE and within LAI, but also between NEE and LAI (Fig. S2
in the Supplement).

3.5.4 Sensible heat fluxes, soil temperatures and net
radiation

Many inter-connections existed betweenH , Ts and Rn but all
three were also linked with LE, WT, snow and NEE. A snow
parameter, determining the timing of snowmelt (mT) was the
most crucial parameter for heat fluxes, not only in springtime
but also for the whole year period. Furthermore, mT was im-
portant for Ts in springtime (see Sect. 3.5.5). The shape of
the soil water retention curve (ψa) was the second most sen-
sitive parameter for both variables. The aerodynamic resis-
tance dependency factor on LAI (ralai) was the most sensi-
tive parameter for Ts, and affected also LE, WT and night-

time NEE, while it strongly correlated with moss albedo
(apve,moss), the third most sensitive parameter forH and most
sensitive parameter for Rn. The accepted ranges for ralai con-
tradicted within the soil temperature variables, depending on
the chosen performance index and considered season; high
values were important for the Ts ME and R2 during winter,
but low ones improved the Ts R2 during spring and during
the whole period. Therefore, ralai was the parameter causing
the largest overall uncertainty after ψa. This was followed by
apve,moss, which had low values for accepted ranges in the
case of H , Rn and Ts during the whole period but high val-
ues in the case of winter H and Rn. It further showed strong
equifinalities with the roughness length of snow (z0M,snow),
which was the second most sensitive parameter for Rn, but
also affected H and LE. The coefficient for thermal con-
ductivity of snow (sk) affected Rn and Ts but not H . The
thermal conductance coefficient of soil organic material (h2),
the lower boundary mean temperature (Tamean), the snowmelt
dependency to radiation coefficient (mRmin) and the density
of new and old snow (ρsmin, Sdw) affected only soil temper-
atures, the latter two also snow depth. Parameters defining
moss and winter transpiration (gmax,moss, gmaxwin) and the
growth respiration coefficient of vascular plants with its ef-
fect on vascular plant biomass and LAI (kgresp,vasc) were sen-
sitive to Ts, gmax,moss and kgresp,vasc as well as toH . The most
important parameter for LE, cH0,canopy was another key pa-
rameter for Rn and H .

3.5.5 Snow

The temperature coefficient in the snowmelt function (mT)

was the most important parameter for ME in snow and deter-
mined the timing of snowmelt. However, resulting parame-
ter ranges did not overlap between the different performance
indices within the snow-depth variable and between differ-
ent other variables. A longer lasting snow cover (lowmT < 3)
was crucial for spring H and reduced mean error in snow
depth, but lowered R2 values in spring Ts and snow depth.
mT interacted with another snow parameter (TRainL) as well
as with parameters from the temperature and transpiration
process category (Tamean, gmaxwin). The density coefficients
for old (Sdw) and new snow (ρsmin) had medium effect on
snow-depth performance and also affected spring and winter
soil temperatures in all layers, but the latter could be unam-
biguously constrained by the available data.

4 Discussion

Unlike many previous sensitivity studies for carbon mod-
elling that often focus on only one or a few calibration vari-
ables and parameters of the associated process category, we
considered many different abiotic and biotic measurements
(NEE, LAI, Rn, Ts, H , LE, WT and snow depth) to in-
vestigate the interactions between various process categories
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(SOC decomposition, plant growth-related processes, radia-
tion interception, soil temperature, aerodynamic resistance,
transpiration, soil hydrology and snow) in a peatland ecosys-
tem. Similar to results from a forest modelling study using
the DRAINMOD-Forest model (Tian et al., 2014) and a N2O
study using the CoupModel on a drained peatland forest (He
et al., 2016), we found that processes were sensitive to pa-
rameters from several different process categories. Together
with the discovered supporting effects between model per-
formances in different variables, this confirms the connec-
tions and dependencies between different processes as im-
plemented in the model (see “Model description and equa-
tions”, Sect. 2.3, Table 2 in the Supplement and Janson and
Karlberg, 2010). The many equifinalities within and between
different process categories reveal the dependency of con-
strained parameter ranges as well as parameter sensitivities
to model structure, calibration set-up and parameters with
fixed values; a deviation in one of these factors leads to dif-
ferent optimal value ranges, whereas a non-sensitive param-
eter might become sensitive if an interacting parameter is set
constant. This implies a limited transferability of parameter
values between models in general and even between studies
using the same model in a different configuration. Resulting
parameter ranges were moreover affected by the applied cri-
teria for selecting runs. Yet, it is quite common practice to
adopt at least some parameter values from other modelling
studies (e.g. Frolking et al., 2002, Yurova et al., 2007; St-
Hilaire et al., 2010; Wania et al., 2010; Gong et al., 2013;
Kim et al., 2014; Kurnianto et al., 2014; Zhu et al., 2014),
which includes the usage of model default values that were
estimated under a different model configuration.

The strong interactions across different process categories
also emphasize the importance of measurements of ancillary
data additionally to the variable of interest and model input
data (meteorological and SOC data). Measurements of NEE,
LAI, LE,H , Rn, Ts, WT and snow were all found to be valu-
able for constraining parameters from several different pro-
cess categories and can therefore reduce uncertainty in model
predictions. Further constraint of the parameters in this study
would be possible if especially additional water content or
soil hydraulic properties were measured.

Beside parameter uncertainty, also uncertainty in model
structure and in measured input and calibration data con-
tribute to model uncertainty (Thorsen et al., 2001; Beven and
Freer, 2001). This was tested for other peatland models (e.g.
model structure: Tang et al., 2015; input drivers: Wania et al.,
2009; St-Hilaire et al., 2010; Grant et al., 2011; Kim et al.,
2014), but goes beyond the scope of this study. Here, only
one model and one site were investigated. A previous study
using CoupModel investigated the differences of parameter
ranges between several different peatland sites (Metzger et
al., 2015).

4.1 Parameter sensitivity

The sensitivity of variables to parameters from many dif-
ferent processes revealed the importance of process interac-
tions. Especially abiotic processes were strongly inter-linked,
but also biotic variables showed sensitivities to parameters
from up to seven different process categories, suggesting that
parameter sensitivities and model performance of a certain
process depend on which other process categories are con-
sidered in a model and in a calibration. This is an important
finding, as many studies investigate the sensitivity of often
only a few parameters from mainly the same process cate-
gory as the output variable (e.g. Yu et al., 2001; Frolking et
al., 2002; Belassen et al., 2010; Wania et al., 2010; Morris et
al., 2012; Wu and Blodau, 2013; Zhao et al., 2014; Zhu et al.,
2014), which might lead to sensitivities and resulting ranges
that are not robust. The identified interactions can help mod-
ellers to develop or select an appropriate model including the
parameters, processes and process categories that need to be
considered together, depending on the variable of interest.

Parameter sensitivity analyses can also help to simplify
future calibrations (Saltelli et al., 2000), by focussing on
the most striking parameters and narrowing the ranges for
parameter that could be successfully constrained. Although
while the existence of interactions between the processes and
their parameters is supposed to be less dependent on site con-
ditions and model structure, the exact shape of the connec-
tions, constraint parameter ranges, as well as the relevance
of the specific processes and the specific interactions might
strongly depend on these factors. Still, one or more of the fol-
lowing parameters that we identified as most influential, cor-
respond to key parameters in other studies using other mod-
els and partly different ecosystems; the respiration rate coef-
ficients, radiation use efficiency, transpiration coefficients or
the soil water retention capacity were among the most sen-
sitive parameters for NEE, its components or yield, respec-
tively, in, e.g., the PCARS (Frolking et al., 2002) and the
GUESS-ROMUL (Yurova et al., 2007) model on peatland,
the SiB v2.5 model on a forest area including some wetlands
(Prihodko et al., 2008), the LPJ-GUESS model on forest and
herbaceous vegetation (Pappas et al., 2013), the EPIC model
on cropland (Wang et al., 2005), the BIOME-BGC model for
different tree species (Tatarinov and Cienciala, 2006), or the
ACASA (Staudt et al., 2010), the 3-PG (Esprey et al., 2004;
Xenakis et al., 2008), the FORUG (Verbeeck et al., 2006) or
the DRAINMOD-FOREST (Tian et al., 2014) model on for-
est. These sensitivities seem to be therefore quite indepen-
dent of model structure, included processes and parameters
used for calibration and apply to different types of ecosys-
tems. The resulting value ranges of these parameters should
be compared between ecosystems and models to find out to
what extent they can be related to site conditions and there-
fore used for predictions and upscaling. They might be con-
nected to the environmental scenario (Hidy et al., 2012; Ben
Thouhami et al., 2013; Sulman et al., 2013) and the chosen
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prior distributions of the parameters (e.g. Tatarinov and Cien-
ciala, 2006). Furthermore, our results have shown that the pa-
rameter ranges depend on model structure, on the selection
of parameters for calibration and on the selected acceptance
criteria. Thereby, not only the selected variable but also the
selected sub-period was relevant, as has been shown by other
studies as well (e.g. Prihodko et al., 2008; Van Huisteden et
al., 2009; Safta et al., 2015).

4.2 Confounding and supporting effects of interacting
processes

Criteria selection is a subjective choice of the modeller if
multiple output variables are available. The identified sup-
porting effects and trade-offs between the performances in
different variables allow modellers to assess the implica-
tions of a certain criteria on model performance and param-
eter ranges and to choose criteria according to the processes
of interest; however, some of them might be ecosystem or
model specific. Trade-offs existed not only between differ-
ent variables but also within the same variable, depending
on whether ME, R2 of actual or R2 of accumulated values
were chosen and which season was considered. This implies
that the problems of a subjective criteria selection also exist
if only one time series variable is considered. Even if a stan-
dardized multi-criteria optimization algorithm like Bayesian
calibration or a more sophisticated performance index com-
bining several performance measures is used, the choices and
the corresponding weightings are moved to the developer of
the algorithm or index, but still remain subjective.

More than half of the sensitive parameters in this study
could not be constrained to an unambiguous range. Con-
straining such a parameter by only one variable and one in-
dex would result in a range that is not robust. Using sev-
eral measurement variables and several indices can therefore
help to test the robustness of calibrated parameters. A pa-
rameter that is robust might better represent a physical con-
stant, whereas controversial resulting ranges might hint at a
not well represented system; there is no value for this pa-
rameter that leads simultaneously to the best performance
for dynamics and magnitude in all variables and during all
periods. Instead of a physical constant this parameter might
correspond to a dynamic process. Beside model inadequacy,
mismatching ranges could be caused in some cases by an in-
appropriate performance index (see discussion in Sect. 4.5.4)
or measurements that do not truly represent the modelled
variable. For example, with the EC technique, NEE is not di-
rectly measured as the CO2 exchange between biosphere and
atmosphere at a certain point, but rather results from calcu-
lations of the turbulent exchange of vertical fluxes measured
several metres above the ground. Moreover, fluxes may orig-
inate from a footprint area that changes diurnally and sea-
sonally and thus may include different soil conditions and
vegetation.

Usually, LE is assumed to be closely connected to NEE
due to the coupling of transpiration and carbon assimilation
in vascular plants (e.g. Schulze, 2006), but has also been
shown to correlate for mosses (e.g. Robroek et al., 2009).
Our study reveals much stronger relations between parame-
ters defining H and NEE, than between LE and NEE. Trade-
offs between performance in LE and NEE were also found
by Staudt et al. (2010) and Prihodko et al. (2008) in a forest
and a forest complex including wetlands. However, only the
effect of parameters, not the effect of model input (i.e. mete-
orological input data), on these processes were tested in both
studies, as well as in ours. Such a confounding effect might
also result from a parameter value compensating for a pro-
cess not implemented in the model. For example, parameter
values that lead to an overestimation of NEE in spring result
in higher transpiration and therefore better LE, whereas the
reason for the underestimated LE during mid-April to mid-
June (Fig. S1 in the Supplement) might in fact be caused by
evaporation from open water bodies that form on the peatland
during spring and early summer, a process not implemented
in the applied version of CoupModel.

The detected supporting effects indicate that some mea-
surement variables can partly compensate absence or low res-
olution of a connected variable, even though they were not
strong enough to make one variable fully redundant. For ex-
ample, LAI measurements could reduce uncertainty in model
predictions of the magnitudes of NEE, LE, H and WT on
locations where these variables are not available. Tight re-
lationships between plant and LAI, soil hydrology, C fluxes
and soil temperatures have been found by other model sensi-
tivity studies as well (e.g. Ben Thouhami et al., 2013; Quillet
et al., 2013; Tian et al., 2014; Sándor et al., 2016) and strong
correlations between LAI and NEE (Lund et al., 2010) and
between NEE and water availability (Reichstein et al., 2007)
have also been found by data syntheses of eddy covariance
sites. These relationships can be explained by the many de-
pendencies between LAI and, e.g., photosynthesis, transpi-
ration, heat insulation and water uptake (Schulze, 2006), of
which several are also implemented in the model (see model
description and equations, Sect. 2.3, Table S2 in the Supple-
ment and Jansson and Karlberg, 2010). Other examples for
detected supporting effects indicate that ifH fluxes are avail-
able, the model is constrainable to produce improved WT
dynamics, even if WT measurements were missing. High
temporal resolution of soil temperature measurements in one
layer are sufficient to model good temperatures if just the
magnitude of soil temperature in an upper and a lower layer
is known, e.g., due to short-time or low-resolution measure-
ments. The knowledge on supporting effects helps modellers
in their site selection and in uncertainty estimation of model
predictions depending on available ancillary data. It further
can help experimentalists to decide which variables should
and which need to be measured if the site should be usable
for model constraint.
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4.3 Equifinalities

The fit of model output to measured data in complex models
is often not driven by a particular parameter but instead by
interactions among parameters (e.g. Beven and Freer, 2001),
which was also the case for several parameters in our study,
hindering the constraint of parameters to a more narrow
range. Furthermore, other carbon modelling studies found
that parameter values and sensitivities depend on the val-
ues of other parameters (e.g. Tatarinov and Cienciala, 2006;
Verbeeck et al., 2006; Quillet et al., 2013). This implies that
especially if only a few parameters and processes are cali-
brated (as in e.g. Yu et al., 2001; Wania et al., 2010, Zhu
et al., 2014; Kim et al., 2014, Tang et al., 2015), resulting
constrained ranges might not be comparable and transferable
between models differing in their constant parameter values.
Many equifinalities were identified, not only between param-
eters from the same process category but also across differ-
ent process categories. This means that the problem of lim-
ited transferability also applies if parameters from only one
process category are calibrated (as e.g. in Wang et al., 2005;
Belassen et al., 2010; Wania et al., 2010; Sándor et al., 2016)
or if models differ in the structures and implementations of
their modules. The knowledge on equifinalities is needed for
a better parameter constraint in future calibrations as it al-
lows for calibration of the connected parameters dependent
on each other. Another way to respond to identified equifi-
nalities is to calibrate only one of the connected parameters.
However, the resulting range will then not be transferable to
other models using different values for connected, constant
parameters.

Some equifinalities included several parameters, making
their visualization impossible and simple regression an in-
sufficient tool for fully detecting and describing them (see
Saltelli et al., 2008). These equifinalities need to be further
investigated in additional calibrations that incorporate those
parameter interactions and constrained ranges, which were
unambiguous, to achieve a higher number of acceptable runs.
This is needed, because the numbers of accepted runs in the
final selections (50) did not allow for a much more detailed
analysis in such a complex model, as was apparent in com-
parison with the basic selection; a R2 threshold value of 0.1
was sufficient to identify equifinalities in the basic selection
of 1286 accepted runs, but with just 50 accepted runs in the
final selections; this threshold value could easily be exceeded
by a random distribution, even when a higher threshold value
of 0.15 was used. A threshold of 0.15 was, on the other hand,
already too high to detect, for example, the strong relation-
ships between the plant parameters that were only clearly vis-
ible in the basic selection. Nevertheless, the six equifinalities
with a R2 of higher than 0.30 are unambiguous in this appli-
cation of the CoupModel and those with lower values are still
very useful to design future calibrations to further investigate
and describe these equifinalities.

4.4 Usefulness of measurement variables

Models can be improved and their uncertainty reduced by
calibrating their parameters to measurement data (e.g. Friend
et al., 2007; Wang et al., 2009; Williams et al., 2009). We
tested the potential of several measurement variables (NEE,
LAI, LE, H , Rn, Ts, WT and snow depth) and found that all
contributed to a better parameter constraint.

Thereby none of the variables could be fully replaced by
another. Due to the strong interactions and as parameters of
each process category were constrained by several different
variables, ancillary variables are valuable even if only one
certain process is of interest. In the case of snow, our results
suggest that data on snow cover might be sufficient if snow
depth is not available.

In a forest site simulation with the ORCHIDEE model, H
and Rn were found to be redundant for constraining energy
balance parameters if NEE and LE were available (Santaren
et al., 2007). In contrast, some energy balance-related pa-
rameters in our study were constrained exclusively by Rn
and H , or additionally by LE, but with different resulting
ranges. This reveals the usefulness of Rn and H measure-
ments for model constraints, and shows that variables which
might have been identified as redundant in one study could
be of high importance on another ecosystem or for another
model calibrating a different parameter selection.

Several influential parameters could not be unambigu-
ously constrained or showed equifinalities and need addi-
tional measurements to be further investigated. This includes
soil water content or soil water retention properties, as well
as canopy albedo and leaf-litter fall during the growing sea-
son. Except for water retention properties these variables are
needed as time series throughout the year. A more detailed
discussion of the benefit of such measurements can be found
in the following sections.

4.5 Detailed discussion of sensitivities and interactions
per process

The parameters that were identified as most influential or
that showed the strongest equifinalities were related to soil
hydrology and water content, to a stable representation of
the plant, to radiation, temperature and heat fluxes or to
snow. As only one parameter per equation was calibrated,
a high sensitivity to this parameter means a high sensitivity
to the corresponding process. Some of such process sensi-
tivities might also be interesting for other models and similar
ecosystems. The introduced index to measure parameter con-
cern includes subjective choices such as weighting factors,
the choice of considered calibration variables and their sub-
periods as well as the chosen performance indices. However,
several tested variations in especially the weighting did not
noticeably change the results; ψa was always the most im-
portant parameter, followed by the group of parameters with
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medium importance, which differed slightly in their ranking
among each other.

4.5.1 Unsaturated water distribution and soil moisture
conditions

Our results suggest that model uncertainty could be greatly
reduced if data for either soil hydraulic properties, water con-
tent or plant transpiration characteristics were available; de-
spite available data of detailed WT and LE in our study,
large uncertainty remained in simulated water content due
to the combined uncertainty in estimates of soil hydraulic
properties (ψa) and plant water uptake (gmax,vasc, gmax,moss,
gmaxwin). Their sensitivity to many variables and the high
number of equifinalities hindered the constraint of other pa-
rameters and therefore the uncertainty reduction in all in-
volved processes. For example this might explain why the
water response functions for neither plant assimilation nor
soil respiration could be constrained. The shape parameter of
the water retention curve (ψa) was among the top two most
sensitive parameters for NEE, WT, LE, H , Ts, and the third
and fifth most sensitive parameter in the case of Rn and snow.
That confirms the importance of the implemented interac-
tions of soil moisture with water and heat fluxes, soil tem-
perature, assimilation and respiration processes, as reported
from empirical studies (Kim and Verma, 1996; Bridgham et
al., 1999; Tezara et al., 1999; Kellner, 2001; Flangan and
Johnson, 2005; Lafleur et al., 2005; Schulze, 2006; Belyea,
2009). Furthermore, the transpiration coefficients (gmax,vasc,
gmax,moss, gmaxwin) were among the top 10 most important
and influential parameters. In the case of vascular plants, they
correspond to the stomatal conductance parameter in other
models, which was shown to be crucial for modelling NEE,
biomass, LE or H in other studies (Esprey et al., 2004, for
forest stand volume; Tatarinov and Cienciala, 2006, for NEE
and carbon pools; Staudt et al., 2010, for NEE, LE and H ;
Hidy et al., 2012, for carbon fluxes and LE; Bonan et al.,
2011, and Tian et al., 2014, for LE and H ). The control
of stomatal conductance on transpiration and photosynthe-
sis has also been emphasized by several empiric studies (e.g.
Jarvis and Morison, 1981; Quick et al., 1992; Tezara et al.,
1999; Yordanov et al., 2000). The strong sensitivity of ψa,
gmax,vasc, gmax,moss, gmaxwin for many processes is especially
remarkable as parameters and parameter combinations could
only vary to such an extent that the water level fit the mea-
surements as restricted by the basic selection.

The importance of the water table on NEE fluxes has been
widely mentioned (e.g. Silvola et al., 1996; Yurova et al.,
2007; Kurbatova et al., 2009; Dušek et al., 2012) but our re-
sults point out that the knowledge on WT alone is not suffi-
cient for model calibration and reliable predictions. In addi-
tion, also measurements of soil hydraulic properties are cru-
cial for model calibration. The usefulness of water retention
properties for modelling carbon dynamics was also found by
other sensitivity analyses on peatlands as well as on min-

eral soils (e.g. Wang et al., 2005; Pappas et al., 2013; Quillet
et al., 2013). Nevertheless, many of the available peatland
sites in current databases (e.g. European Fluxnet Database
Cluster, http://gaia.agraria.unitus.it) still do not contain in-
formation on water retention properties or water content. We
strongly recommend experimentalists to include water reten-
tion measurements in their experimental set-up. Thereby, the
horizontal and vertical variability in peat hydraulic properties
needs to be accounted for (Baird et al., 2012; Waddington et
al., 2015). Such measurements might also help to resolve the
strong equifinalities of ψa with transpiration coefficients and
a parameter in the calculation of aerodynamic resistance of
the plant canopy, defining the minimum exchange under sta-
bile conditions (cH0,canopy).

4.5.2 C balance of vascular plants

A stable vascular plant that establishes a reasonable amount
of biomass every year throughout the simulation period could
only be achieved by certain-value combinations for the pho-
tosynthetic efficiency (εL,vasc), the respiration coefficient
(kgresp,vasc) and the storage fraction for plant regrowth in
spring (mretain). Despite their high impact in the basic se-
lection, neither equifinalities nor sensitivities of these pa-
rameters reached high measures in final selections, probably
because several parameters were interacting simultaneously.
This indicates the need for either calibrating these parameters
dependent on each other or setting at least one of them to a
constant value, as the available data were not sufficient to re-
solve these equifinalities. Many studies on other ecosystems
have found NEE or biomass to be strongly sensitive to a pa-
rameter corresponding to photosynthetic efficiency (εL,vasc)

(Esprey et al., 2004; Verbeeck et al., 2006; Prihodko et al.,
2008; Staudt et al., 2010; Bonan et al., 2011; Pappas et al.,
2013; Tian et al., 2014; Xenakis et al., 2008), but were per-
formed without a simultaneous calibration of parameters re-
lated to plant respiration and storage for regrowth. Pappas et
al. (2013) discussed a possible overestimation of model sen-
sitivity to photosynthetic efficiency due to processes that are
not implemented like the active simulation of plant growth
including growth limitations. A strong negative correlation
between two of the parameters (plant respiration and pho-
tosynthetic efficiency) was also found in a sensitivity analy-
sis using the LPJ model (Zaehle et al., 2005). Despite their
effect on model performance, εL,vasc, kgresp,vasc and mretain
had a low rank in parameter concern, as ranges for these pa-
rameters could be narrowed unambiguously due to well over-
lapping ranges between the different variables. Nevertheless,
these parameters would be of high importance for predictions
if none of the constraining variables are available.

Compared to a previous application of the CoupModel on
five different open peatlands including different management
intensities (Metzger et al., 2015), vascular plants had to have
a much more effective C household to produce the measured
leaf area given a limited amount of assimilates. This can be
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realized by low respiration and litter fall losses and a large
storage pool for regrowth in spring. Even if respiration losses
from vascular plants were 1/10 of the ones used at the sites in
Metzger et al. (2015), the model tended to either underesti-
mate vascular plant LAI or overestimate CO2 uptake (Fig. 2).
A possible explanation for the differences in parameter value
combination of vascular plants might lie in the vegetation
communities. Although Metzger et al. (2015) included sev-
eral different types of treeless peatland vegetation commu-
nities, none of these sites had a similar vegetation commu-
nity typical for nutrient poor habitats, consisting of mainly
mosses and Eriophorum vaginatum, as at Degerö Stormyr.
Eriophorum vaginatum is known to be much more effec-
tive in maintaining C compared to other sedges and having a
highly efficient remobilization from senescing leaves (Shaver
and Laundre, 1997; Jonasson and Chapin, 1985). Uncertain-
ties in measurements and the distribution of modelled res-
piration over the hours of the day might accelerate or dimin-
ish this effect. Explanations by differences in model structure
can be excluded, as the same effect was observed when using
exactly the same structure (unpublished data). To identify the
difference between the sites, which causes the deviations in
the combined parameter value ranges, the model needed to
be applied to further open peatland sites differing in vegeta-
tion community, nutrient status and plant productivity. This
might allow for finding trends in parameter ranges, which is
a necessary precondition for estimation and reducing model
uncertainty in predictions on other peatland sites.

Another plant parameter, which was important for a sta-
ble vascular plant layer, and was ranked as one of the overall
most important parameters was the rate coefficient for the
leaf-litter fall during the growing season (lLc1). Probably due
to the high number of correlations with other parameters,
these correlations did not exceed the threshold value. lLc1
is directly connected to the filling of the storage pool, but
also for maintaining C in the leaves. The strong sensitivity of
LAI to lLc1 affects transpiration and thereby water uptake,
which explains the strong sensitivity to WT depths below
−0.2 m and the equifinalities with a transpiration parame-
ter and a parameter describing the response of heterotrophic
respiration to water. In Metzger et al. (2015), a value of
lLc1 = 0.01 day−1 could be used site independent. This con-
tradicts the much lower ranges of lLc1 in our study, neces-
sary for acceptable performance in several variables, in par-
ticular the R2 of LAI, WT depths below −0.2 m and ME of
springtime NEE. However, species in nutrient-poor habitats
are associated with longer-lived leaves than those of nutrient-
rich habitats (Ryser, 1996) and fast growing species (Reich
et al., 1992), whereas Eriophorum vaginatum in particular is
known for long-lived leaves and therefore have a very low
litter-fall rate (Jonassson and Chapin, 1985). Less complex
models such as the GUESS-ROMUL model, which was also
applied to this site, use annual accumulated NEE as esti-
mate for litter fall (Yurova et al., 2007) which is therefore
directly dependent on site productivity. Only one site in Met-

zger et al. (2015) had lower annual NEE compared to Degerö
Stormyr, but this is probably a result of the shorter vegetation
period at that site, whereas a site with similar annual NEE
was formerly drained, so that the soil respiration contribu-
tion to NEE is much larger, compensating for the larger pro-
ductivity. A high sensitivity of litter fall rate to plant biomass
and soil carbon pools was also found by Xenakis et al. (2008)
using the 3-PG model on forest.

Further investigations including model applications to ad-
ditional sites are needed to resolve the differences in result-
ing ranges and equifinalities with other parameters. Thereby,
measurements of leaf-litter fall throughout the year would be
of high value.

4.5.3 Sensible heat fluxes, soil temperatures and net
radiation

The large number of strong connections between H , Ts and
Rn and the equifinalities between their determining parame-
ters indicate the importance to consider, model and calibrate
the related processes together. However, the constraint of two
of the most important parameters (aerodynamic resistance
dependency on LAI, ralai and moss albedo, apve,moss) failed
not due to different ranges between variables but due to the
differences depending on which performance index and sea-
son was considered. This emphasizes the importance of the
subjective criteria choice, even if only one variable is consid-
ered.

Accepted values for ralai were exceptionally high
(200 s m−1 for the Ts R2 and 550 to 800 s m−1 for Ts1
ME, whereas a ralai of 200 multiplied with the moss LAI
of 1.8 leads to an aerodynamic resistance of 360 s m−1).
Mosses might form a well-insulating layer, but still the values
are much higher than the aerodynamic resistance estimates
for this site (approximately 50 s m−1, Peichl et al., 2013)
or of a bog in southern Sweden (60 s m−1, Kellner, 2001).
Price (1991) reported very high resistance when moss sur-
face moisture is low, e.g., during dry periods, but these values
were still lower than ours. A possible explanation might be
an interaction with a non-calibrated, fixed parameter. A high-
aerodynamic resistance causes better temperature insulation
leading to higher summer soil temperatures with lower diur-
nal oscillations. Furthermore, it leads to strongly reduced soil
evaporation and therefore reduced LE, even though this is
partly compensated for by slightly higher transpiration from
mainly mosses, which profit from the higher water contents
in the upper soil layers. This explains the sensitivities to WT
and LE, which also supported a higher ralai value. The main
cause for the much lower optimum range for dynamics in
Ts compared to magnitude in Ts is probably an overestima-
tion of the diurnal amplitude. A lower moss LAI can reduce
this overestimation, but the corresponding parameter was not
calibrated to avoid further equifinalities: ralai showed already
strong interactions with apve,moss and z0M,snow. The correla-
tions of the conductivity of organic material (h2) with plant,
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LE and WT parameters might be explained by the depen-
dency of thermal conductivity from peat wetness (Kellner,
2001).

Seasonal differences in moss albedo (apve,moss) could be
expected as their radiation reflection properties vary with
moss water content (Graham et al., 2006). However, higher
values would be expected in summer, when the moss surface
is dry and lighter, but our calibration resulted in higher val-
ues during spring and winter. These values were much higher
(> 22 %) compared to literature values (11–16.5 %, Berglund
and Mace, 1972; 16.4 %, Zhao et al., 1997; 11 %, Kellner,
2001) and therefore rather compensate for values of interact-
ing parameters (in particular z0M,snow and ralai) or not im-
plemented processes. Especially the effect on winter H and
Rn might result from the strong interaction with z0M,snow, as
the mosses in winter are covered with a thick snow cover, so
that their albedo should not show any sensitivity in winter.
Furthermore, H in spring tended to be overestimated, which
would be compensated by a high albedo during this time,
but might be caused in the real world by open water over
frozen soil, which was not realized in the model. Interest-
ingly, albedo of vascular plants did not show any sensitivi-
ties, neither during vegetative stage (apve,vasc) nor after start
of senescence (apgrain) when a higher value would have been
expected due to leaf yellowing. Direct measurements of plant
albedo were not available in this study. A time series obser-
vation of those would be very helpful for clarification, as this
parameter is known to vary substantially within and between
peatlands (Belyea, 2009).

4.5.4 Snow

The model performance in simulating snow depth was not
connected to performance in any other variable, except to
performance inH if exclusively springtime values were con-
sidered. This was surprising, as the uncertainty for timing
of snowmelt ranged for about 2 weeks but determined the
start of temperature rise, water table dropping and biotic ac-
tivity. A possible explanation might be the poor ability of
the snow-depth R2 and ME to assert a good fit in duration
of snow cover. This is supported by the fact that the most
important parameter for timing of snowmelt (mT) strongly
affected performance in dynamics of H , NEE and Ts during
springtime. Parameters defining timing of snow depth might
be better constrained if future calibrations include an addi-
tional variable with a stronger conclusiveness to the timing of
snowmelt, e.g., by a Boolean time series indicating if snow
cover is present or not. It needs to be tested if this could also
help to solve the disagreements in value ranges between the
performance indices in the case of the density coefficient of
old snow (Sdw), which in combination with mT caused the
low average overlap within snow-depth sensitive parameters.

According to Jansson and Karlberg (2010), a high value
for mT (4–6 kg ◦C−1 m−2 day−1) could be expected for open
fields. A possible explanation for the low accepted values

(< 3 kg ◦C−1 m−2 day−1) of mT in the case of criteria on H
in contrast to the high values if criteria were on Ts could be
that high values compensate for overestimated springtime H
(see Fig. S1 in the Supplement). However, the overestima-
tion of spring H might be connected to different reflection
properties of mosses during springtime or to missing consid-
eration of radiation reflection and evaporation from open wa-
ter, which might be formed during snowmelt on still frozen
soils. The latter is further supported by the underestimation
of LE during April and May (Fig. S1 in the Supplement),
which cannot be connected to underestimated plant transpi-
ration, as the model even tended to overestimate CO2 uptake
during this period.

5 Conclusions

CO2 models are commonly calibrated on NEE as only mea-
surement variable. Here, we investigated the interactions be-
tween different abiotic and biotic processes and their pa-
rameters, as well as the implications and usefulness of data
on not only NEE but also LAI, sensible and latent heat
fluxes, radiation, water table depth, soil temperatures and
snow depth for model calibration on a boreal peatland. Pro-
cesses and model performance in the different observation
variables were strongly interlinked across process categories.
This means parameter ranges that result from calibration de-
pend on model structure, included processes, other parame-
ter values and calibration set-up, and might therefore not be
transferable between studies. It further implies that a study
aiming to understand and interpret parameter values needs
to calibrate processes and parameters of many different pro-
cess categories, using a wide range and multiple criteria on
various observation variables.

The key parameters identified will help to simplify future
model calibrations by selecting only the most influential pa-
rameters for the variable of interest and using a narrower
range for the constrained parameters. This means a simpler
calibration and faster computation and, in turn, allows for
the inclusion of a more detailed investigation of a process
of certain interest. Furthermore, it helps model developers to
include the most sensitive processes for simulating a certain
variable.

Parameter interactions were found to be more important
than parameter value ranges, revealing the need for account-
ing for equifinalities, also across different biotic and abiotic
processes: either by calibrating correlated parameters depen-
dent on each other or by calibrating only one of the correlated
parameters. The latter will lead to a narrower constrained
range, but this range might not be transferable to other sites
and other models.

The gained knowledge on trade-offs will be useful to avoid
modelling studies with too many purposes and helps model
users assessing the implications of their criteria choice. The
validity of calibrated models is always restricted and robust-
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ness of obtained parameter ranges should be questioned. The
identified supporting effects between some variables indi-
cated that some measurement variables can partly compen-
sate absence or low resolution of the connected variable. This
information tells experimentalists which measurement vari-
ables are helpful and which are obligatory if a certain process
should be understood from the underlying regulating princi-
ples. It further helps modellers to decide if a site has enough
available data for model calibration and to estimate uncer-
tainties in model predictions depending on available ancillary
data.

All observed calibration variables (NEE, LAI, sensible and
latent heat fluxes, net radiation, soil temperatures, water ta-
ble depth and snow depth) helped for model constraint and
interpretation. Ancillary variables are in particular important
for evaluating the robustness of calibrated parameter ranges.
They should therefore be measured on sites used for calibra-
tion of complex process oriented models. Additional mea-
surements of, in particular, soil hydraulic properties or water
content would largely reduce uncertainty and help for a better
parameter constraint.

6 Code and data availability

The model and extensive documentation can be downloaded
from the CoupModel home page http://www.coupmodel.
com/ (CoupModel, 2015). The source code can be re-
quested for non-commercial purposes from Per-Erik Janson
(pej@kth.se). The simulation files including the model and
calibration set-up, the used parameterization and correspond-
ing input and validation files can be requested from Chris-
tine Metzger (cmetzger@kth.se). They cannot be made pub-
licly available, as they include climate and site data that re-
quire authorization from the data owners.

The flux data and ancillary data are available from the Eu-
ropean Flux Database Cluster (http://www.europe-fluxdata.
eu/ (Nilson et al., 2014); site name: Degerö; site code: SE-
Deg), with open data access for the years 2001–2006, and
restricted data access (the principal investigator of the site
has to authorize the data request) for the years 2007–2015.

The Supplement related to this article is available online
at doi:10.5194/gmd-9-4313-2016-supplement.
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