Articles | Volume 9, issue 11
https://doi.org/10.5194/gmd-9-3933-2016
https://doi.org/10.5194/gmd-9-3933-2016
Model experiment description paper
 | Highlight paper
 | 
08 Nov 2016
Model experiment description paper | Highlight paper |  | 08 Nov 2016

Accounting for model error in air quality forecasts: an application of 4DEnVar to the assimilation of atmospheric composition using QG-Chem 1.0

Emanuele Emili, Selime Gürol, and Daniel Cariolle

Related authors

Modelling the volcanic ash plume from Eyjafjallajökull eruption (May 2010) over Europe: evaluation of the benefit of source term improvements and of the assimilation of aerosol measurements
Matthieu Plu, Guillaume Bigeard, Bojan Sič, Emanuele Emili, Luca Bugliaro, Laaziz El Amraoui, Jonathan Guth, Beatrice Josse, Lucia Mona, and Dennis Piontek
Nat. Hazards Earth Syst. Sci., 21, 3731–3747, https://doi.org/10.5194/nhess-21-3731-2021,https://doi.org/10.5194/nhess-21-3731-2021, 2021
Short summary
Impact of Infrared Atmospheric Sounding Interferometer (IASI) thermal infrared measurements on global ozone reanalyses
Emanuele Emili and Mohammad El Aabaribaoune
Geosci. Model Dev., 14, 6291–6308, https://doi.org/10.5194/gmd-14-6291-2021,https://doi.org/10.5194/gmd-14-6291-2021, 2021
Short summary
Estimation of the error covariance matrix for IASI radiances and its impact on the assimilation of ozone in a chemistry transport model
Mohammad El Aabaribaoune, Emanuele Emili, and Vincent Guidard
Atmos. Meas. Tech., 14, 2841–2856, https://doi.org/10.5194/amt-14-2841-2021,https://doi.org/10.5194/amt-14-2841-2021, 2021
Short summary
A tropopause-related climatological a priori profile for IASI-SOFRID ozone retrievals: improvements and validation
Brice Barret, Emanuele Emili, and Eric Le Flochmoen
Atmos. Meas. Tech., 13, 5237–5257, https://doi.org/10.5194/amt-13-5237-2020,https://doi.org/10.5194/amt-13-5237-2020, 2020
Short summary
Comparison between the assimilation of IASI Level 2 ozone retrievals and Level 1 radiances in a chemical transport model
Emanuele Emili, Brice Barret, Eric Le Flochmoën, and Daniel Cariolle
Atmos. Meas. Tech., 12, 3963–3984, https://doi.org/10.5194/amt-12-3963-2019,https://doi.org/10.5194/amt-12-3963-2019, 2019
Short summary

Related subject area

Atmospheric sciences
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024,https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024,https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024,https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024,https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Impact of ITCZ width on global climate: ITCZ-MIP
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024,https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary

Cited articles

Babenhauserheide, A., Basu, S., Houweling, S., Peters, W., and Butz, A.: Comparing the CarbonTracker and TM5-4DVar data assimilation systems for CO2 surface flux inversions, Atmos. Chem. Phys., 15, 9747–9763, https://doi.org/10.5194/acp-15-9747-2015, 2015.
Beekmann, M. and Derognat, C.: Monte Carlo uncertainty analysis of a regional-scale transport chemistry model constrained by measurements from the Atmospheric Pollution Over the Paris Area (ESQUIF) campaign, J. Geophys. Res., 108, 8559, https://doi.org/10.1029/2003JD003391, 2003.
Belo Pereira, M. and Berre, L.: The Use of an Ensemble Approach to Study the Background Error Covariances in a Global NWP Model, Mon. Weather Rev., 134, 2466–2489, 2006.
Bocquet, M.: Localization and the iterative ensemble Kalman smoother, Q. J. Roy. Meteor. Soc., 142, 1075–1089, https://doi.org/10.1002/qj.2711, 2016.
Bocquet, M. and Sakov, P.: Joint state and parameter estimation with an iterative ensemble Kalman smoother, Nonlin. Processes Geophys., 20, 803–818, https://doi.org/10.5194/npg-20-803-2013, 2013.
Download
Short summary
This paper analyses methods to assimilate chemical measurements in air quality models. We developed a reduced-order atmospheric chemistry model, which was used to compare results from different assimilation algorithms. Using an ensemble variational method (4DEnVar), we exploited the dynamical information provided by hourly measurements of chemical concentrations to diagnose model biases and improve next-day forecasts for several species of interest for air quality.