Articles | Volume 9, issue 11
Geosci. Model Dev., 9, 3933–3959, 2016
https://doi.org/10.5194/gmd-9-3933-2016
Geosci. Model Dev., 9, 3933–3959, 2016
https://doi.org/10.5194/gmd-9-3933-2016

Model experiment description paper 08 Nov 2016

Model experiment description paper | 08 Nov 2016

Accounting for model error in air quality forecasts: an application of 4DEnVar to the assimilation of atmospheric composition using QG-Chem 1.0

Emanuele Emili et al.

Related authors

Estimation of the error covariance matrix for IASI radiances and its impact on the assimilation of ozone in a chemistry transport model
Mohammad El Aabaribaoune, Emanuele Emili, and Vincent Guidard
Atmos. Meas. Tech., 14, 2841–2856, https://doi.org/10.5194/amt-14-2841-2021,https://doi.org/10.5194/amt-14-2841-2021, 2021
Short summary
Modelling the volcanic ash plume from Eyjafjallajökull eruption (May 2010) over Europe: evaluation of the benefit of source term improvements and of the assimilation of aerosol measurements
Matthieu Plu, Guillaume Bigeard, Bojan Sič, Emanuele Emili, Luca Bugliaro, Laaziz El Amraoui, Jonathan Guth, Beatrice Josse, Lucia Mona, and Dennis Piontek
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-97,https://doi.org/10.5194/nhess-2021-97, 2021
Preprint under review for NHESS
Short summary
Impact of IASI thermal infrared measurements on global ozone reanalyses
Emanuele Emili and Mohammad El Aabaribaoune
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-315,https://doi.org/10.5194/gmd-2020-315, 2021
Preprint under review for GMD
Short summary
A tropopause-related climatological a priori profile for IASI-SOFRID ozone retrievals: improvements and validation
Brice Barret, Emanuele Emili, and Eric Le Flochmoen
Atmos. Meas. Tech., 13, 5237–5257, https://doi.org/10.5194/amt-13-5237-2020,https://doi.org/10.5194/amt-13-5237-2020, 2020
Short summary
Comparison between the assimilation of IASI Level 2 ozone retrievals and Level 1 radiances in a chemical transport model
Emanuele Emili, Brice Barret, Eric Le Flochmoën, and Daniel Cariolle
Atmos. Meas. Tech., 12, 3963–3984, https://doi.org/10.5194/amt-12-3963-2019,https://doi.org/10.5194/amt-12-3963-2019, 2019
Short summary

Related subject area

Atmospheric sciences
Effects of black carbon morphology on brown carbon absorption estimation: from numerical aspects
Jie Luo, Yongming Zhang, and Qixing Zhang
Geosci. Model Dev., 14, 2113–2126, https://doi.org/10.5194/gmd-14-2113-2021,https://doi.org/10.5194/gmd-14-2113-2021, 2021
Short summary
Simulation of the evolution of biomass burning organic aerosol with different volatility basis set schemes in PMCAMx-SRv1.0
Georgia N. Theodoritsi, Giancarlo Ciarelli, and Spyros N. Pandis
Geosci. Model Dev., 14, 2041–2055, https://doi.org/10.5194/gmd-14-2041-2021,https://doi.org/10.5194/gmd-14-2041-2021, 2021
Short summary
Novel estimation of aerosol processes with particle size distribution measurements: a case study with the TOMAS algorithm v1.0.0
Dana L. McGuffin, Yuanlong Huang, Richard C. Flagan, Tuukka Petäjä, B. Erik Ydstie, and Peter J. Adams
Geosci. Model Dev., 14, 1821–1839, https://doi.org/10.5194/gmd-14-1821-2021,https://doi.org/10.5194/gmd-14-1821-2021, 2021
Short summary
Evaluation of ECMWF IFS-AER (CAMS) operational forecasts during cycle 41r1–46r1 with calibrated ceilometer profiles over Germany
Harald Flentje, Ina Mattis, Zak Kipling, Samuel Rémy, and Werner Thomas
Geosci. Model Dev., 14, 1721–1751, https://doi.org/10.5194/gmd-14-1721-2021,https://doi.org/10.5194/gmd-14-1721-2021, 2021
Short summary
Influence of biomass burning vapor wall loss correction on modeling organic aerosols in Europe by CAMx v6.50
Jianhui Jiang, Imad El Haddad, Sebnem Aksoyoglu, Giulia Stefenelli, Amelie Bertrand, Nicolas Marchand, Francesco Canonaco, Jean-Eudes Petit, Olivier Favez, Stefania Gilardoni, Urs Baltensperger, and André S. H. Prévôt
Geosci. Model Dev., 14, 1681–1697, https://doi.org/10.5194/gmd-14-1681-2021,https://doi.org/10.5194/gmd-14-1681-2021, 2021
Short summary

Cited articles

Babenhauserheide, A., Basu, S., Houweling, S., Peters, W., and Butz, A.: Comparing the CarbonTracker and TM5-4DVar data assimilation systems for CO2 surface flux inversions, Atmos. Chem. Phys., 15, 9747–9763, https://doi.org/10.5194/acp-15-9747-2015, 2015.
Beekmann, M. and Derognat, C.: Monte Carlo uncertainty analysis of a regional-scale transport chemistry model constrained by measurements from the Atmospheric Pollution Over the Paris Area (ESQUIF) campaign, J. Geophys. Res., 108, 8559, https://doi.org/10.1029/2003JD003391, 2003.
Belo Pereira, M. and Berre, L.: The Use of an Ensemble Approach to Study the Background Error Covariances in a Global NWP Model, Mon. Weather Rev., 134, 2466–2489, 2006.
Bocquet, M.: Localization and the iterative ensemble Kalman smoother, Q. J. Roy. Meteor. Soc., 142, 1075–1089, https://doi.org/10.1002/qj.2711, 2016.
Bocquet, M. and Sakov, P.: Joint state and parameter estimation with an iterative ensemble Kalman smoother, Nonlin. Processes Geophys., 20, 803–818, https://doi.org/10.5194/npg-20-803-2013, 2013.
Download
Short summary
This paper analyses methods to assimilate chemical measurements in air quality models. We developed a reduced-order atmospheric chemistry model, which was used to compare results from different assimilation algorithms. Using an ensemble variational method (4DEnVar), we exploited the dynamical information provided by hourly measurements of chemical concentrations to diagnose model biases and improve next-day forecasts for several species of interest for air quality.