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Abstract. Model errors play a significant role in air qual-
ity forecasts. Accounting for them in the data assimilation
(DA) procedures is decisive to obtain improved forecasts. We
address this issue using a reduced-order coupled chemistry–
meteorology model based on quasi-geostrophic dynamics
and a detailed tropospheric chemistry mechanism, which we
name QG-Chem. This model has been coupled to the soft-
ware library for the data assimilation Object Oriented Pre-
diction System (OOPS) and used to assess the potential of
the 4DEnVar algorithm for air quality analyses and fore-
casts. The assets of 4DEnVar include the possibility to deal
with multivariate aspects of atmospheric chemistry and to ac-
count for model errors of a generic type. A simple diagnos-
tic procedure for detecting model errors is proposed, based
on the 4DEnVar analysis and one additional model forecast.
A large number of idealized data assimilation experiments
are shown for several chemical species of relevance for air
quality forecasts (O3, NOx , CO and CO2) with very different
atmospheric lifetimes and chemical couplings. Experiments
are done both under a perfect model hypothesis and including
model error through perturbation of surface chemical emis-
sions. Some key elements of the 4DEnVar algorithm such as
the ensemble size and localization are also discussed. A com-
parison with results of 3D-Var, widely used in operational
centers, shows that, for some species, analysis and next-day
forecast errors can be halved when model error is taken into
account. This result was obtained using a small ensemble
size, which remains affordable for most operational centers.
We conclude that 4DEnVar has a promising potential for op-
erational air quality models. We finally highlight areas that
deserve further research for applying 4DEnVar to large-scale
chemistry models, i.e., localization techniques, propagation

of analysis covariance between DA cycles and treatment for
chemical nonlinearities. QG-Chem can provide a useful tool
in this regard.

1 Introduction

In recent years, data assimilation (DA) of atmospheric con-
stituents has become a key tool for providing more accu-
rate forecasts and reanalyses of the atmospheric composi-
tion. The increasing availability of chemical observations
from both satellites and ground-based instruments allowed
to reduce the uncertainty of atmospheric chemistry models
in a large number of applications. Utilization of DA can be
found in the modeling of volcanic ash (Lu et al., 2016), in
operational air quality forecasts at continental scale (Maré-
cal et al., 2015) or in the reanalysis of the global atmospheric
composition at decennial scale (van der A et al., 2010; In-
ness et al., 2013). Data assimilation can also be used to infer
surface fluxes of long-lived chemical compounds (Thomp-
son and Stohl, 2014; Chevallier et al., 2005). A review of the
utilization of data assimilation for the atmospheric composi-
tion can be found in Zhang et al. (2012) and Bocquet et al.
(2015).

The main goal of DA is to reduce the uncertainties of a
model through a timely combination of model results and
observations. This is generally done by means of correct-
ing the so-called “control variables” of the given model.
The choice of the control variables should reflect the largest
source of uncertainty of the considered model. In atmo-
spheric chemistry, control variables are typically associated
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with the model initial state (Elbern et al., 1997) or chemi-
cal emissions (Chevallier et al., 2005). However, inaccurate
identification of the model uncertainty can lead to a wrong
adjustment of the model through DA, even though the spread
between model predictions and assimilated observations is
reduced (Tang et al., 2016). The choice of the control vari-
able, and the approximate knowledge of its uncertainty (also
named background error covariance), is therefore critical for
the design of an appropriate assimilation algorithm and to
ensure correct results of DA.

Principal sources of uncertainty of atmospheric chemistry
models include the model initial condition, model ancillary
data or parameters, model physical parameterization, chemi-
cal mechanism, etc. (Beekmann and Derognat, 2003; Mallet
and Sportisse, 2006). Since different chemical species can
be sensitive to different physical and chemical processes, the
main sources of uncertainties can also differ from species
to species. For example, long-lived species like CO2 or CO
are mostly sensitive to uncertainties in surface fluxes, which
can be corrected using variational algorithms in combination
with long assimilation windows of several weeks (Chevallier
et al., 2005; Koohkan and Bocquet, 2012). This is possible
since the chemical reactivity and the sensitivity to the initial
condition are negligible for long integration of the model.
Uncertainty in the transport processes is also generally ne-
glected (Babenhauserheide et al., 2015). Data assimilation of
short-lived gases like tropospheric O3 or NO2, which are en-
countered in air quality applications, is instead trickier. O3
and NO2 are involved in rapid chemical reactions and sensi-
tive to several model parameters ranging from reaction rates,
emissions of primary species, clouds and radiation, bound-
ary layer mixing, etc. It is much more difficult in this case
to identify a single and predominant source of uncertainty in
the model predictions.

In most air quality operational models a pragmatic choice
is currently made by setting the control variable to the ini-
tial state of the measured species and using short fore-
cast/assimilation cycles (e.g., 1 hour). Since ground-based
measurements are generally available at hourly frequency,
most used sequential DA algorithms, such as optimal inter-
polation (OI), 3D-Var or ensemble Kalman filters (EnKFs)
(Marécal et al., 2015), all provide a strong constraint on
model trajectories (Wu et al., 2008). This strategy gives ro-
bust results for operational analyses because chemical fields
are corrected every hour. Since the control variable corre-
spond to the assimilated observations, this also permits to
estimate the background error covariance from previous vali-
dation of the model against observations (Hollingsworth and
Loennberg, 1986) and keeps from the difficult diagnosis of
the true model uncertainties.

However, the model dynamics are neglected in OI or 3D-
Var DA schemes. Attempts of using ensembles of model
analyses to specify the background error covariance within
3D-Var dynamically did not show clear improvements over
the static case (Jaumouillé et al., 2012). Specification of cross

correlations between interacting chemical species in the 3D-
Var background error covariance matrix is also particularly
difficult, because chemical interactions depend on the local
concentrations and on meteorological conditions. As a con-
sequence, multivariate chemical DA with 3D-Var schemes
has not been yet documented in the literature. In EnKF sys-
tems, the forecast model is used to propagate and estimate
the background error covariance, but ad-hoc adjustments are
necessary to avoid the collapse of the ensemble variance and
obtain realistic covariance matrices for 1 h forecasts (Gaubert
et al., 2014; Constantinescu et al., 2007a). As a result, costly
algorithms such as EnKF or 3D-Var hardly give better re-
sults than more simple OI for chemical reanalyses (Rouil
and the MACC team, 2014). More importantly, very little
improvement is obtained, regardless of the employed DA al-
gorithm, for the next-day model forecast (Wu et al., 2008).
Forecasts of reactive gases such as O3 or NO2, but also other
pollutants such as aerosols mixtures (PM10 and PM2.5), de-
pend weakly on the initial condition and are more sensitive to
model settings such as surface emissions or physical parame-
terizations. Current operational systems can achieve accurate
reanalyses of observed chemical species through DA but pa-
rameter estimation and, more generally, model errors must
be taken into account in DA to improve chemical forecasts
of reactive gases and particles.

Some studies evaluated more advanced DA algorithms to
jointly correct surface emissions of precursor species and ini-
tial condition of observed species. For example, Elbern et al.
(2007) employed a 4D-Var scheme in combination with as-
similation windows of 24 h to assimilate O3, NOx and SO2
measurements. A similar study has been done also in the
context of a toy model experiment by Hamer et al. (2015),
where only emissions of precursor species are adjusted to
improve O3 forecasts. Results seem promising but still rely
on the assumption that the model is almost perfect, i.e., that
there are no additional sources of uncertainties in the model
forecast other than the controlled variables (the initial state
and the selected emissions). This can lead to the overcor-
rection of control variables when other non-negligible model
errors exist, for example, due to the meteorological forcing,
photochemistry coefficients, dry or wet deposition. Concern-
ing EnKF implementations, some authors also tested joint
optimization of the chemical state and precursor emissions
(Miyazaki et al., 2012; Tang et al., 2011; Constantinescu
et al., 2007b). EnKF naturally includes model uncertainties
in its formulation, which can be added through stochastic
perturbation of model parameters during the ensemble fore-
cast (Evensen, 2003). However, EnKF corrects the model
trajectories sequentially. In a typical air quality context, the
emissions of O3 precursor species (e.g., NOx and VOCs) in
the early morning or night can affect the concentration of
observed species (e.g., O3) in the early afternoon, when the
photochemistry takes place. When using EnKF, the informa-
tion made available by afternoon measurements cannot be
used to correct the model at previous hours.
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Based on above-mentioned facts, we determine that the
following capabilities are needed to further improve DA in
air quality applications:

– permit simultaneous assimilation and optimization of
multiple chemical species (multivariate DA), with pos-
sible chemical interactions and very different lifetimes;

– include model error and account for disparate sources
of model uncertainty;

– allow long assimilation windows to make best use of the
information content of frequent air quality observations.

This can be accomplished by using the so-called “weak con-
straint” 4D-Var (Trémolet, 2006), which is an extension of
the 4D-Var algorithm that accounts for the model error. On
top of the operators already needed to perform the strong
constraint 4D-Var (e.g., the tangent linear and adjoint codes
of the forecast model), the formulation of the weak constraint
4D-Var requires the definition of the model error covariances
Q, which can be difficult to estimate in real applications (Tré-
molet, 2007). Recent studies have shown that the linear oper-
ators needed in the weak constraint 4D-Var formulation can
be approximated through an ensemble of model forecasts.
For example, the 4D-Var-EnKF (Mandel et al., 2016) uses
an ensemble approach to mimic the tangent linear and ad-
joint model for the minimization of the weak constraint 4D-
Var cost function. The iterative ensemble Kalman smoother
(IEnKS, Bocquet and Sakov, 2014) is a nonlinear 4DEn-
Var formulated under perfect model assumptions, which can
also be used to estimate erroneous model parameters through
an augmented state formalism (Bocquet and Sakov, 2013).
A major asset of IEnKS for chemistry applications is that
it can also account for strong nonlinearities of the forecast
model. The 4DEnVar method (Desroziers et al., 2014) uses
an ensemble of nonlinear model trajectories to estimate both
the error covariances for the initial condition and the model
error, as well as to approximate the tangent linear and ad-
joint model. These approaches are generally referred in the
literature as ensemble variational EnVar (Lorenc, 2013), as
opposed to hybrid methods, which make use of ensembles
only to specify error covariances matrices in variational al-
gorithms (Belo Pereira and Berre, 2006). EnVar methods
have a major advantage for atmospheric chemistry applica-
tions: they avoid the construction of tangent linear and ad-
joint codes of the forecast model, which are still lacking for
most of the operational CTMs, or are becoming very diffi-
cult to be maintained due to the rapid evolution of models
and computer architectures.

The main advantage of the 4DEnVar method is that it per-
mits to account for a generic model error through the addition
of stochastic perturbations during the model integration step
(like in EnKF). Moreover, it focuses exclusively on the esti-
mation of the model state, which is the only variable that is
directly constrained by observations. This avoids the difficult

specification of Q still needed in the 4D-Var-EnKS. As all
ensemble-based methods, 4DEnVar also naturally supports
multivariate chemical DA, with the cross-covariance terms
between chemical species being automatically obtained from
the ensemble of the nonlinear model forecasts.

Variants of the 4DEnVar have been already tested in real
numerical weather prediction (NWP) applications (Lorenc
et al., 2015). The method has proven to be affordable for
large-scale operational NWP models, even though the skills
of the operational hybrid 4D-Var are not yet matched. To the
knowledge of the authors, EnVar-type methods have not yet
been implemented in air quality or atmospheric chemistry
models and only one study has already examined the po-
tential of EnVar methods for chemical DA (Haussaire and
Bocquet, 2016). Note that, operational NWPs are already
based on well-matured 4D-Var DA systems, whereas very
few atmospheric chemistry models are based on such sys-
tems. Therefore, there is more room for improvement from
the EnVar type of algorithms in air quality models than in
NWP. Hence, the main objectives of this study are

– to present a new atmospheric chemistry toy model built
for assessing and comparing performances of several
DA algorithms;

– examine the potential and limits of the 4DEnVar algo-
rithm for air quality analyses, compared to the generally
used 3D-Var;

– present a new procedure based on 4DEnVar to improve
chemical forecasts on the next day.

The purpose is to examine state-of-the-art DA algorithms in
the reactive gases/air quality context and, therefore, to guide
future developments for the operational DA systems. Four
gaseous species with very different lifetimes and chemical
mechanisms, currently well observed either from satellites or
from ground-based instruments, are considered for this study
(CO, O3, NO2 and CO2). Using a simplified model in this
context permits faster implementation of complex DA algo-
rithms, cheaper numerical experiments and more straightfor-
ward interpretation of the DA results (Fairbairn et al., 2013).
The latter is particularly true compared to DA experiments
done using real observations, with generally unknown error
statistics. Compared to already-mentioned simplified models
(Hamer et al., 2015; Haussaire and Bocquet, 2016), which
are, respectively, 0-D and 1-D, the newly proposed model
is 3-D and uses the same tropospheric chemistry scheme of
operational air quality models. This allows us to reproduce
more features of real models, for example, the complex in-
teractions of reactive chemistry and large-scale advection or
the effect of boundary conditions. This also permits to bet-
ter examine typical issues of DA within large systems, like
the emergence of sampling errors due to the finite size of the
ensemble and the consequences of localization techniques.
Additionally, the use of 3-D fields and operators eases the
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estimation of numerical costs and possible bottlenecks of the
DA algorithm in terms of operational implementation. We
remind readers that the objective of this study is to demon-
strate the applicability of a DA algorithm that could outper-
form currently implemented methods in operational centers,
but with an acceptable compromise between computational
costs and precision. Finally, the toy system has been imple-
mented using the library for data assimilation OOPS (Yan-
nick Trémolet, personal communication, 2015) to ease the
exchange of assimilation algorithms or toy models between
scientists.

The paper is outlined as follows. The developed atmo-
spheric chemistry model will be presented in Sect. 2. A sum-
mary of the data assimilation algorithms employed in this
study is given in Sect. 3. The first section of the numeri-
cal results (Sect. 4.1) presents a number of DA experiments
done under the hypothesis of the perfect model. A detailed
comparison between 4DEnVar and 3D-Var is presented, as
well as a sensitivity study on the principal parameters of the
4DEnVar algorithm, i.e., the ensemble size and the localiza-
tion choices. In Sect. 4.2, the effects of a model error are
investigated using the 4DEnVar algorithm. A statistical com-
parison of the 4DEnVar and 3D-Var performances on multi-
ple cycles of analyses and forecasts is presented in Sect. 4.3.
Finally, conclusions are given in Sect. 5.

2 Model description

A new atmospheric chemistry low-order model has been de-
veloped for this study and named QG-Chem. The objective
was to reproduce typical features of chemical fields from
large-scale chemical transport models (CTMs), but main-
taining the computational cost low enough to allow a com-
fortable usage on a personal computer. The meteorologi-
cal forcing is computed using a two-layer quasi-geostrophic
(QG) model, representative of midlatitude mesoscale dy-
namics (Pedlosky, 1992). The QG wind field is used to ad-
vect the chemical species, which makes QG-Chem a coupled
meteorological–chemistry model. This choice permits to ex-
amine the behavior of DA in the presence of complex gra-
dients of wind fields and vorticity. Since all DA algorithms
make strong assumptions on the model dynamics (Sect. 3), it
is important to test them in the presence of advection patterns
that can be found in real applications. Nevertheless, the focus
of this study remains on atmospheric chemistry. Therefore, a
detailed tropospheric chemical mechanism has been consid-
ered. Aspects of DA concerning the coupling between mete-
orology and chemistry are also left for future work, with the
present using QG-Chem in a CTM-like mode. The details of
the meteorological and chemical models are given next.

2.1 Quasi-geostrophic meteorology

The two-layer QG model is a geophysical fluid model com-
posed of two atmospheric layers of fixed depth and potential
temperature. It is a simple model of the atmosphere at midlat-
itudes, whose main forcings are represented by the Coriolis
force and the orography or surface heating. The governing
equation is the conservation

Dqi
Dt
= 0 (1)

of the potential vorticity q = (q1,q2) expressed in nondimen-
sional variables (Fandry and Leslie, 1984):

q1 =∇
2ψ1−F1(ψ1−ψ2)+βy (2)

q2 =∇
2ψ2−F2(ψ2−ψ1)+βy+Rs, (3)

where the subscripts 1 and 2 stand for the top and bot-
tom layer, respectively. ∇2 is the two-dimensional Lapla-
cian, Rs represents orography or heating, β is the (non-
dimensionalized) northward variation of the Coriolis param-
eter at a fixed latitude, F1 and F2 couple the layers together
being a function of Coriolis force, layer depths, gravity
and typical length scale. The stream function ψ = (ψ1,ψ2),
whose horizontal derivatives give the horizontal wind field
(ui,vi), can be considered as the model state vector.

The code of the QG model that is distributed with the
OOPS DA library have been used for this study. The depth of
the two layers, the resolution of the horizontal grid and the
integration time step 1t are the main model parameters that
can be set at runtime. The dimensional scaling and model
orography are fixed, as well as the extension of the domain,
which is 12 000 km in the zonal direction and 6300 km in the
meridional direction. The domain is cyclic in the east–west
direction, i.e., the model fields are periodic in this direction.
The stream function is set to climatological values at merid-
ional walls (Dirichlet boundary conditions). For all the ex-
periments presented in this study, a coarse resolution of ap-
proximately 750 km (16× 8 grid points, respectively, for the
east–west and north–south directions) has been used. We re-
mind readers that the focus of this study is to test chemical
DA algorithms in a toy model framework. Therefore, there is
no stringent requirement on the realism of the meteorological
fields and no need to reproduce a real atmospheric situation.
The only desired property is to obtain wind fields that ex-
hibit typical patterns of the complex atmospheric circulation.
A summary of the QG model parameters used in this study
is detailed in Table 1.

2.2 Tropospheric chemistry

The state vector of the QG model has been extended to in-
clude chemical species. The regional atmospheric chemi-
cal mechanism (RACM) (Stockwell et al., 1997), which de-
scribes 96 chemical species with about 300 reactions, has
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been implemented. This chemical scheme has been devel-
oped for air quality modeling and is currently used by a num-
ber of operational models in Europe (Marécal et al., 2015).
Photochemistry and its diurnal cycle are included via look-up
tables, assuming global clear-sky conditions. Surface fluxes
of chemical species (emissions and dry deposition velocities)
are assigned at runtime and are kept constant during the tem-
poral integration of the model. Chemical species are advected
by the QG wind field using the semi-Lagrangian scheme used
for solving the QG governing equation (Eq. 1).

After the advection of the species, their concentrations are
updated by addition of the chemical tendencies. They are
computed by solving the stiff ODE system that describes
the adopted chemical mechanism. The ODE system is of the
nonlinear form:

∂C/∂t = f (C)= P(C)−L(C)×C (4)

where C represents the local species concentrations, P(C)
and L(C) the production and loss terms. The stiffness of the
systems comes from the wide range of values that can take
the loss terms leading to a large range of chemical lifetimes.

The above system is integrated using the adaptative semi-
implicit scheme (ASIS). ASIS is a one-step semi-implicit
scheme with prognostic time steps. To solve the system of
linear equations associated with the semi-implicit scheme,
ASIS uses the generalized minimal residual method (Saad
and Schultz, 1986) which appears to be very competitive in
terms of computation time with good convergence proper-
ties. The ASIS solver is mass conservative and adapts its
sub-time step to the adopted tolerance errors as described
by Verwer (1994). In our application, the ASIS solver uses
a 7 s minimum sub-time step, an absolute error tolerance of
104 molecules cm−3 and a relative tolerance error of 0.01.
Therefore, a common integration time step (dt) for both
the dynamical and chemical solvers is used, which is set to
dt = 10 min to ensure reliable chemistry solutions. The dry
deposition is computed for each species before the applica-
tion of the ASIS solver, i.e., using the main model time step
dt . Concentrations are updated according to

Ci(t + dt)= Ci(t)− λiCi(t)dt, (5)

where i denotes the chemical species and λi is the corre-
sponding deposition timescale in s−1, proportional to the de-
position velocity.

The chemical field is set equal to climatological values on
the N–S boundaries, which correspond to Dirichlet-type con-
ditions. The values of surface pressure and temperature used
by the chemical mechanism are fixed globally and do not de-
pend on the QG fields. These modeling choices let this study
focus on the following main processes of air quality models:
emissions, chemistry and transport. Therefore, only the bot-
tom layer of the QG-Chem model will be analyzed through-
out this study. A summary of the configuration of QG-Chem
is given in Table 1.

Table 1. QG-Chem model parameters and nondimensional scaling
factors. The parameters marked by * are fixed globally and only
relevant for the chemical mechanism.

Characteristic Description

Geographical domain 12 000 km (E–W) ×
6300 km (N–S)

Zonal resolution 750 km (16 grid points)
Merid. resolution 790 km (8 grid points)
Top layer depth 6 km
Bottom layer depth 4 km
Typical horizontal scale 1000 km
Typical velocity 10 m s−1

Coriolis parameter F 10−4

Merid. gradient of F (β) 1.5× 10−11

Orography Gaussian hill (2 km alt.)
Chemical mechanism RACM (Stockwell et al., 1997)
Surface pressure* 1000 hPa
Temperature* 24.9 ◦C
Boundary layer thickness* 1.2 km

2.3 Description of the case study

A model run of 20 days is performed prior to DA experi-
ments, starting from the initial condition given in Table 2,
which corresponds to a homogeneous, relatively clean atmo-
sphere and zonal circulation. Emissions (Table 3) are taken
from the study of Crassier et al. (2000), FLUX case, repre-
sentative of the urban environment of Paris. Spatial hetero-
geneity of model concentrations is obtained by scaling the
reference emissions in Table 3 by 0.01, 1 and 0.25, respec-
tively, on the western, central and eastern parts of the domain
(Fig. 1). Deposition velocities from the French air quality
model MOCAGE (Marécal et al., 2015), averaged over the
Paris region during the month of July 2010, are used and
set constant over the QG-Chem domain. Values are reported
in Table 4. The chemical concentrations at the meridional
boundaries are set to the same values as in Table 2. Hence,
the presence of N–S boundaries can eventually counterbal-
ance the growth of long-lived species by advection of clean
air masses from outside the domain. This configuration re-
lates to regional air pollution modeling mainly concerning
the type and amplitude of chemical emissions, spatial het-
erogeneity of sources and presence of boundaries.

Results for four key species are considered through the
study: nitrogen dioxide (NO2), ozone (O3), carbon monoxide
(CO) and carbon dioxide (CO2). The first three are of concern
for air quality, since they have an elevated toxicity and their
concentration is strongly related to anthropogenic emissions.
The chemical reactivity and typical tropospheric lifetime of
NO2, O3 and CO is, however, very different. NO2 typically
arises from the oxidation of nitric oxide (NO) in combus-
tion processes. It is highly reactive, lasting in the atmosphere
from a few hours in summer to several days in winter, and it is
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Table 2. Initial conditions used to initialize the truth simulation. The
initial fields are constant over the QG-Chem domain. Same values
are also assigned to the meridional boundaries of QG-Chem dur-
ing all simulations. Values are equal to zero for chemical species
that are not listed below. Chemical concentrations are expressed in
volume mixing ratio units (vmr).

Variable Value

Meteorology (m s−1)

(u1,v1) (40, 0)
(u2,v2) (10, 0)

Chemistry (vmr)

O2 0.2095
O3 30× 10−9

CO2 310× 10−6

OH 1.5× 10−12

HO2 1× 10−13

H2O2 1× 10−12

N2O 310× 10−9

NO 0.2× 10−9

NO2 0.1× 10−9

HNO3 0.5× 10−9

HNO4 0.1× 10−9

CH4 1.6× 10−6

CO 150× 10−9

Cl 1× 10−12

HOCl 1× 10−13

HCl 1× 10−12

Br 1× 10−13

BrO 1× 10−13

HBr 1× 10−13

an ozone precursor. O3 is a secondary gas, mainly formed by
the reaction of nitrogen oxides and hydrocarbons under sun-
light. In the troposphere, it has a typical atmospheric lifetime
of 2–3 weeks. CO is produced by partial oxidation of carbon
compounds, which can occur in industrial or natural combus-
tion processes. It also participates in O3 chemistry and has
an atmospheric lifetime of about 1–2 months. Finally, CO2 is
of major concern for its effect on climate and has the longest
lifetime among all the considered species (> 30 years). How-
ever, CO2 fluxes are not activated in the experiments, which
makes this gas behave like a passive tracer in our study.

Averaged model fields (24 h) on day 20 are shown in
Fig. 2. We note the presence of zonal gradients of chemi-
cal concentrations for species that are strongly related to sur-
face emissions (e.g., NO2, O3 and CO), which are higher in
the central part of the domain (Fig. 1). The developed cy-
clonic circulation also allows the accumulation of longer-
living pollutants (O3, CO) in correspondence with the central
low-pressure system, whereas patterns of short-living gases
(NO2) maintain a stronger similarity with the geographical

A

B

km

km

%

0        1500     3000      4500     6000     7500     9000   10 500   12 000

Figure 1. QG-Chem horizontal domain: scaling factor for the chem-
ical surface emissions (in colors), location of the synthetic obser-
vations used in the assimilation experiments (black circles) and
locations for which time series of DA experiments are displayed
(crossed boxes A and B). The numerical grid is displayed using
white lines.

distribution of the sources. The maps also display the influ-
ence of meridional boundary conditions, which produce lo-
cal minima in O3 and CO fields in correspondence with the
advection of clean air masses from outside the domain. The
average model trajectory during 24 h shows significant dif-
ferences among all considered species. Since all species are
advected and surface fluxes are constant in time, these fea-
tures arise from the complex chemical interactions and pho-
tochemistry. Note, for example, the daylight increase of O3
as a consequence of NO2 production from NO emissions dur-
ing nighttime and daytime photolysis. In contrast, CO shows
an almost linear increase in time, due to a constant surface
emission and longer lifetime. Most of the numerical exper-
iments that are shown later in this study start on the above-
discussed day.

3 Data assimilation algorithm

We considered two data assimilation algorithms in this
study: 3D-Var and 4DEnVar. The first is the simplest type
in the family of variational DA algorithms and currently
the most used in operational chemical assimilation sys-
tems (Marécal et al., 2015). It is taken as a reference
against which the benefits of more complex (and costly)
algorithms can be assessed. 4DEnVar is an hybrid algo-
rithm that combines benefits of variational and ensemble
methods. It is already used in a number of NWP mod-
els (Buehner et al., 2010; Lorenc et al., 2015) and was tested
in the framework of meteorological toy models (Desroziers
et al., 2014; Fairbairn et al., 2013). A summary description
of the two algorithms is given below, as well as some specific
aspects relative to the atmospheric chemistry implementation
presented in this study. In the third section, a method based
on the postprocessing of 4DEnVar output is proposed to cor-
rect model biases.

Geosci. Model Dev., 9, 3933–3959, 2016 www.geosci-model-dev.net/9/3933/2016/



E. Emili et al.: QG-Chem 3939
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Figure 2. Meteorological and chemical fields of QG-Chem on day 20. Time-averaged fields for a 24 h period on the left, time series of
domain-averaged values for the same 24 h period on the right. The wind field and the concentration of the four chemical species of interest
(CO, NO2 and O3, with CO2 not shown since it is constant and equal to 310 ppmv) are shown from top to bottom.
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Table 3. Surface chemical emissions used for all QG-Chem experiments. Values are equal to zero for chemical species that are not listed
below. Geographical scaling is further applied to these values as shown in Fig. 1.

Species Extended name Value
(109 molec cm−2 s−1)

NO Nitric oxide 121.29
CO Carbon monoxide 2500
CH4 Methane 802
ETH Ethane 6.25
HC3 Alkanes, alcohols, esters and alkynes 37.67
HC5 Alkanes, alcohols, esters and alkynes 44.43
HC8 Alkanes, alcohols, esters and alkynes 19.14
ETE Ethene 22.33
OLT Terminal alkenes 39.67
OLI Internal alkenes 6.37
TOL Toluene 9.02
HCHO Formaldehyde 5.77
ALD Acetaldehyde and higher aldehydes 14.45
KET Ketones 5.7
XYL Xylene 14.55
CSL Cresol and other aromatics 3.68

The Object Oriented Prediction System (OOPS), a generic
software framework to develop data assimilation systems (Y.
Trémolet, personal communication, 2015), was used to im-
plement and run all the DA experiments described in this
study.

3.1 3D-Var

The 3D-Var analysis can be computed after a model forecast
time step by means of minimizing the quadratic cost function
J (Kalnay, 2003):

J (δx)=
1
2
δxTB−1δx+

1
2
(δyo
−Hδx)TR−1(δyo

−Hδx) (6)

for the increment δx used to correct the previous forecast xb
(also named background), i.e., x = xb+ δx, where x is the
control variable (e.g., the 3-D chemical state). Here, B and
R are the background and observation error covariance ma-
trices, H the linearized observation operator that transforms
an increment of the control variable into an increment in the
observation space, δyo the difference between the observa-
tions vector yo and the previous forecast δyo

= yo
−H (xb),

using the nonlinear observation operator. The minimization
of J can be achieved with standard techniques for the so-
lution of large linear systems: the B-preconditioned conju-
gate gradient algorithm has been used in this study (Derber
and Rosati, 1989). The result of the minimization is the anal-
ysis increment δxa (3-D). To advance in time, the analysis
xb+ δxa is used as the new initial condition for the follow-
ing forecast step and so forth. The relative simplicity, effi-
ciency and robustness of the 3D-Var algorithm make it very
suitable for operational models. Its practical implementation
requires mainly the development of a covariance model for B

(Weaver and Courtier, 2001). Multivariate chemical assimi-
lation can be performed with 3D-Var by extending the 3-D
control variable x to contain multiple 3-D model variables
(chemical species).

In this study the control variable x is set to represent the
complete model state, i.e., the stream function ψ plus the
96 chemical species. The covariance matrix B is modeled
through the sequential application of 1-D square root correla-
tion operators and a diagonal matrix, representing the back-
ground error standard deviation:

Bδx = BT/2B1/2δx (7)

B1/2
=61/2C1/2

z C1/2
x C1/2

y C1/2
v , (8)

where Cz, Cx , Cy and Cv are, respectively, the vertical,
zonal, meridional and multivariate correlation operators and
6 is the variance (diagonal matrix). Cx and Cy are isotropic
homogeneous correlation operators providing Gaussian spa-
tial structures. The other correlation operators are repre-
sented by symmetric positive-definite matrices. The follow-
ing parameters are used to set B: one horizontal-length scale
that defines the decorrelation scale for the zonal and merid-
ional coordinates, one value for the vertical correlation and
one value for the chemical correlation between each couple
of model variables. The variance is specified using one global
value for each variable. The resulting B is uniform and ho-
mogeneous on the horizontal plane. More complex B models
could be introduced to account, for example, for spatial vari-
ability and heterogeneity of the background error covariance.
However, this is out of the scope of the present study, which
is intended to reproduce typical operational chemical DA set-
tings, where B is usually specified using a single variance and
correlation length for each chemical species.
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Table 4. Surface dry deposition velocity used for all QG-Chem experiments. Values are equal to a fixed and low deposition velocity of
10−5 m s−1 for chemical species that are not listed below.

Species Extended name Value
(10−3 m s−1)

HNO4 Perinitric acid 1.167
MACR Methacrolein and other unsaturated monoaldehydes 0.421
HO2 Hydroperoxy radical 8.665
TOL Toluene 0.035
H2O2 Hydrogen peroxide 16.32
DCB Unsaturated dicarbonyls 2.735
XYL Xylene 0.035
GLY Glyoxal 6.686
HNO3 Nitric acid 15.31
MO2 Methyl peroxy radical 0.931
N2O5 Dinitrogen pentoxide 17.69
OP1 Methyl hydrogen peroxide 2.152
HONO Nitrous acid 1.430
NO2 Nitrogen dioxide 1.435
ALD Acetaldehyde and higher aldehydes 0.638
OP2 Higher organic peroxides 1.348
KET Ketones 0.622
HCHO Formaldehyde 1.500
PAA Peroxyacetic acid and higher analogs 1.317
ONIT Organic nitrate 0.106
TPAN Unsaturated PANs 1.047
PAN Peroxyacetyl nitrate and higher saturated PANs 1.099
O3 Ozone 3.557
NO3 Nitrogen trioxide 1.316
MGLY Methylglyoxal and other alpha-carbonyl aldehydes 2.804
SO2 Sulfur dioxide 4.463
HKET Hydroxy ketone 2.954
UDD Unsaturated dihydroxy dicarbonyl 12.31
CSL Cresol and other aromatics 1.323

Only surface observations are considered in this study.
Therefore, the observation operator H is represented by the
bi-linear interpolation of model values to the observation lo-
cation. A diagonal observation error covariance R is used, as
it is the case in most real DA systems.

One drawback of 3D-Var is that DA results rely strongly
on the background error covariance B, which should depend
on the previous assimilation cycles and forecast errors (flow
dependence). In practical applications, B is usually set con-
stant, estimated from verification of previous forecasts (cli-
matological) and/or tuned to provide the best fit of the anal-
yses against independent observations. In the case of mul-
tivariate chemical assimilation, the estimation and validity
of climatological error covariances between chemical species
has not yet been demonstrated. As a consequence, multivari-
ate corrections are normally neglected (Cv = I). This simpli-
fication is also used in this study. Finally, 3D-Var provides
a correction to the control variable each time the system is
observed (every hour in air quality applications). This does
not allow to exploit the dynamical information contained in

observation time series and prevent all estimation of model
error terms.

3.2 4DEnVar

The 4DEnVar algorithm can solve the main drawbacks
of 3D-Var by introducing the temporal dimension in the
quadratic cost function (Eq. 6), similarly to what the classic
4D-Var algorithm does (Dimet and Talagrand, 1986). How-
ever, compared to the latter, it avoids the introduction of the
tangent linear and adjoint codes of the forecast model. Fol-
lowing the notation in Desroziers et al. (2014), the 4DEnVar
cost function can be written as

J (δx)=
1
2
δxT B−1

e δx+
1
2
(δyo
−Hδx)T R−1(δyo

−Hδx), (9)

where all underlined terms are now time dependent (4-D).
The control variable x becomes the temporal trajectory of the
model state (ψ plus the 96 chemical species in this study).
The cost function is computed for an assimilation window
that can span several hours or days. The assimilation win-
dow is discretized with an arbitrary number of sub-windows,
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which defines the temporal dimension of the 4-D vectors and
matrices in Eq. (9). The minimization of J returns a 4-D vec-
tor δxa, which provides the analysis trajectory for the entire
assimilation window.

The forecast error covariance Be is estimated from an en-
semble of perturbed model trajectories:

Be =
1

L− 1
(x′1, . . .,x

′

L)(x
′

1, . . .,x
′

L)
T , (10)

where x′ are the four-dimensional perturbation and L de-
notes the size of the ensemble. It results that Be describes
spatial (3-D), multivariate and temporal covariances at once.
An analogy with the 4D-Var weak constraint cost func-
tion shows that Be represents a numerical approximation of
the linearized forecast model and model error covariance
(Desroziers et al., 2014). As for the 3D-Var case, the min-
imization of J is achieved using a B-preconditioned conju-
gate gradient algorithm (algorithm no. 3 in Desroziers et al.,
2014). H and R are block diagonal matrices whose blocks
are the operators H and R defined in Sect. 3.1 for each sub-
window.

A nice property of the 4DEnVar algorithm is that the ef-
fect of the model error covariance, generally denoted by Q
(Trémolet, 2006), can be introduced easily by adding physi-
cal perturbations during the computation of the ensemble of
forecasts. This lets the model dynamics develop the complex
covariances that derive from physical perturbations, with-
out the need to specify and implement a covariance model
for Q. Whenever the sole initial condition of the ensem-
ble is perturbed at the beginning of the assimilation win-
dow, the 4DEnVar approximates the 4D-Var algorithm in the
strong constraint formulation. The flexibility of the model
error specification in 4DEnVar is a strong asset for atmo-
spheric chemistry DA, where the sources of uncertainty can
be highly variable and a function of the chemical species.

The main drawback of 4DEnVar in practical applications
to large-scale models is related to the finite size of the en-
semble. As a consequence, the 4-D error covariance Be is
not fully ranked and covariance terms may contain statistical
noise. The effect of a noisy covariance is the appearance of
spurious analysis increments far away from assimilated ob-
servations, or between physically uncorrelated model vari-
ables (in the multivariate case). Since with 4DEnVar tempo-
ral covariances are also estimated through the ensemble, this
effect concerns also the time dimension. This is a typical is-
sue with all ensemble-based methods and large systems, and
demands the introduction of a localization operator, which
attenuates non-local increments. The localization is applied
to Be by

B= Be ◦C, (11)

where ◦ denotes the Schur product (entry-wise product) and
C is a 4-D correlation operator that damps non-local covari-
ances. The numerical implementation of Eq. (11) is made

under the following approximations: the same 3-D (and mul-
tivariate) correlation operator C is used for all 4DEnVar sub-
windows. It follows that C is a block matrix with all elements
set equal to C. Hence, in order to specify C, we could use the
covariance operator described in Eq. (7) by setting the vari-
ance terms to one. The choice of parameters of the correla-
tion operators is discussed in the results section. This simpli-
fication, also called static localization, significantly reduces
the numerical cost of the algorithm (Desroziers et al., 2014)
at the price of degraded precision when increasing the length
of the DA windows (Bocquet, 2016). The development of
localization procedures that are more consistent with the dy-
namics of the forecast model is an ongoing research topic
(Bocquet, 2016; Desroziers et al., 2016) and possible appli-
cations to QG-Chem will be considered in a future study.

3.3 Diagnosis of model error and forecast correction
with 4DEnVar

One of the objectives of this study is to retrieve model error
information from the 4DEnVar solution, which can be po-
tentially used to improve the chemical forecasts for the next
day. The 4DEnVar analysis increment δxa accounts for the
correction of both the initial condition and the model fore-
cast (model error). However, the control variable δxa only
contains the model state. It follows that the correction of the
initial condition is simply given by δx(t=0)

a , i.e., the first ele-
ment of the 4-D vector δxa. The correction of the model error
contributes to the values of δx(t>0)

a but a diagnostic proce-
dure has to be applied to retrieve it.

We can compute a forecast trajectory xf using the nonlin-
ear model starting from the updated initial condition x(t=0)

b +

δx
(t=0)
a . Subtracting it from the 4DEnVar analysis at t > 0,

we obtain

1x(t>0)
= x(t>0)

a − x
(t>0)
f . (12)

This difference contains information about the contribu-
tion of the model error in the 4-D state, as explained below.
Let us first define the model error η and analysis error ea as

η(t) = x(t)∗ −M(t−1)→(t)(x
(t−1)
∗ ) (13)

e(t)a = x
(t)
a − x

(t)
∗ , (14)

where x(t)∗ is the truth at time t ,M(t−1)→(t) is the integration
of the model from time (t − 1) to time t , with the temporal
discretization matching the length of 4DEnVar sub-windows
(Sect. 3.2). From Eq. (13), we have
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η(t+1)
= x(t+1)
∗ −M(t)→(t+1)(x

(t)
∗ )

= x(t+1)
∗ −M(t)→(t+1)(η

(t)
+M(t−1)→(t)(x

(t−1)
∗ ))

= x(t+1)
∗ −M(t)→(t+1)(η

(t)
+M(t−1)→(t)

(η(t−1)
+M(t−2)→(t−1)(x

(t−2)
∗ )))

= . . .

' x(t+1)
∗ −M(0)→(t+1)(x

(0)
∗ )−

t∑
j=1

t+1∏
l=j+1

Mlη
(j),

where we have used the Taylor expansion and assumed that
the forecast model can be linearized inside each sub-window:
M(t−1)→(t) ∼Mt . This equality can be rewritten as

x(t+1)
∗ −M(0)→(t+1)(x

(0)
∗ )' η

(t+1)
+

t∑
j=1

t+1∏
l=j+1

Mlη
(j). (15)

Using the definition (Eq. 14) and the linear assumption on
the model, Eq. (12) yields

1x(t) = x(t)a −M(0)→(t)(x
(0)
a )

= x(t)a − x
(t)
∗ + x

(t)
∗ −M(0)→(t)(x

(0)
a − x

(0)
∗ + x

(0)
∗ )

= e(t)a + x
(t)
∗ −M(0)→(t)(e

(0)
a + x

(0)
∗ )

' e(t)a + x
(t)
∗ −M(0)→(t)(x

(0)
∗ )−

t∏
l=0

Mle
(0)
a .

Substituting the equality (Eq. 15) into the latter, we get

1x(t) ' e(t)a −

t∏
l=0

Mle
(0)
a + η

(t)
+

t−1∑
j=1

t∏
l=j+1

Mlη
(j). (16)

Therefore, if the error (e(t)a −
∏t
l=0Mle

(0)
a ) is small, the vec-

tor 1x(t) represents the contribution of the model error η on
the 4-D state, accumulated through the preceding 4DEnVar
sub-windows. Hereafter, we will name1x(t) effective model
error, to be distinguished from the model error, which is gen-
erally associated with η.

In a first instance, 1x can be used to diagnose the under-
lying presence of model error in the forecast. Furthermore,
if the model error is stationary along multiple DA windows
(bias), 1x could be used to correct the forecast for the next
window:

x̃i+1
f = xi+1

f −1xi, (17)

where the superscript denotes the assimilation window in-
dex and the x̃f is the corrected forecast. Validation of op-
erational air quality models shows that biases contribute
to a large part of the model uncertainties (Marécal et al.,
2015; Zyryanov et al., 2012; Huijnen et al., 2010), which
justifies the implementation of the proposed bias correc-
tion procedure. Note that this procedure is compatible with

model biases that show an hourly variability but are station-
ary on successive days, as it is found in most of air qual-
ity models (Marécal et al., 2015; Gaubert et al., 2014). Note
also that the computation of the effective model error is blind
to the type of the underlying model error (e.g., chemical
emissions or physical parameterizations). The two main re-
quirements needed to make a useful estimation of 1x are
(i) analysis errors smaller than model errors and (ii) an ap-
proximate knowledge of the sources of model error, neces-
sary to generate informative ensembles.

Alternatively from the proposed procedure, model error
terms η(t) could be diagnosed for each sub-window and then
applied to the next-day forecast on an hourly basis. However,
this correction method is more intrusive, because it must be
applied during the nonlinear model forecast and was not con-
sidered for this study.

4 Results and discussion

Numerical experiments are described and discussed in this
section. The objective is to assess the performances of the
4DEnVar algorithm for the assimilation of the four key
species: NO2, O3, CO and CO2. In all experiments, a model
simulation with unperturbed parameters (same as the one
in Sect. 2.3) represents the truth. The experiments are per-
formed during the meteorological–chemical situation de-
scribed in Sect. 2.3. Synthetic observations are generated
from the truth by applying H (Sect. 3.1) and by adding a nor-
mally distributed error (Table 5). Four observation locations
are considered for the experiments (Fig. 1), where chemical
species are observed hourly. The relatively low density of the
observation network allows us to assess DA skills at unob-
served locations. Model forecasts are produced by perturbing
only the initial condition (perfect model), the surface emis-
sions (model error) or both. DA is performed with either 3D-
Var or 4DEnVar, and the obtained analyses are compared to
the truth. The meteorology is never observed nor perturbed,
which corresponds to use QG-Chem in a CTM-like mode.

Operational air quality centers collect hourly observations
and perform DA typically once per day (Marécal et al.,
2015). Therefore, a 24 h assimilation window is adopted
when using the 4DEnVar algorithm, with 1 h sub-windows
matching the observations’ frequency. For the same reason,
24 sequential cycles of 1 h are adopted with 3D-Var. The
main processes affecting air quality forecasts (daily emis-
sions, evolution of the mixing layer, photochemistry) have
a period of approximately 24 h. Therefore, a 24 h window
permits to account for errors in main model processes. The
utilization of longer windows is theoretically possible with
4DEnVar, assuming that the linearization of the model per-
turbations remains valid. However, the numerical cost of the
minimization increases with the windows’ length when keep-
ing fixed the duration of the sub-windows. The cost–benefit
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Table 5. Background (σB) and observation (σO) error standard de-
viation used in DA experiments expressed in volume mixing ratio
units and, within brackets, in percentage of the average field value
in Fig. 2.

Species σB σO

NO2 1.2× 10−10 (16 %) 0.9× 10−10 (11 %)
O3 12.2× 10−9 (21 %) 3.2× 10−9 (5 %)
CO 64.8× 10−9 (14 %) 8.1× 10−9 (2 %)

CO2 40.5× 10−6 (13 %) 20.2× 10−6 (6 %)

ratio of longer windows will deserve further investigations in
real applications.

Section 4.1 presents results based on a perfect model hy-
pothesis and compares 3D-Var and 4DEnVar performances
for chemical reanalyses. Section 4.2 introduces model errors
and is focused on the estimation of the effective model er-
ror using 4DEnVar. Section 4.3 summarizes the results on a
larger number of DA windows: 4DEnVar results using the
model bias correction procedure are compared to 3D-Var re-
sults for both reanalyses and forecasts.

4.1 Perfect model experiments

Experiments considering a perfect model are presented in
this section for one assimilation cycle of 24 h. Emphasis is
placed on the reanalysis capabilities of DA. A 24 h long
forecast is produced by perturbing only the initial condition.
Initial perturbations are computed applying B1/2 (Eq. 8) to
a Gaussian uncorrelated noise field N(0,I) at t = 0. Since
chemical concentrations can span different orders of magni-
tudes in the atmosphere, the standard deviation values set in
B1/2 depend on the chemical species (Table 5). The back-
ground error standard deviations have been chosen to be
about 10–20 % of the average field values (Fig. 2). The
same horizontal correlation length has been set for all species
(750 km). Multivariate correlations in B1/2 are switched off
so that perturbations of chemical species are not correlated at
t = 0. Chemical correlations can, however, arise at t > 0 due
to chemical couplings.

DA is applied to correct the 24 h long perturbed forecast.
The same covariance matrix B that was used to produce the
initial perturbation is applied at each cycle of the 3D-Var
analysis (1 h). Hence, the background error covariance used
in DA is perfectly known at t = 0, which represents the best
possible case in DA. At t > 0 the true B depends on the ob-
servations assimilated at previous steps and on the model dy-
namics, which makes the use of a fixed B within 3D-Var a
raw approximation. However, this is the typical setting of op-
erational air quality models.

With 4DEnVar, an ensemble of 16 forecasts is generated
perturbing the initial condition with the same B as above.
Therefore, the ensemble size is small compared to the dimen-
sions of the system (16× 8× 97= 12 416 variables). When

using small size ensembles, the localization of the sample co-
variance is necessary. In this study, horizontal localization is
applied to the 4-D ensemble covariance using Eq. (11), by
setting a horizontal length scale equal to the double of values
used for B (1500 km). Multivariate localization is performed
using a correlation coefficient of 0.5, which was chosen em-
pirically. A sensitivity analysis concerning the ensemble size
and the localization choices is presented later in this section.
Since we use QG-Chem in a CTM-like configuration and the
two layers are chemically not coupled, the vertical terms of
the covariance or localization matrix are always set to zero in
this study, without any impact on the presented results.

4.1.1 Univariate assimilation

This section compares results of 3D-Var and 4DEnVar DA in
univariate settings, i.e., one independent assimilation experi-
ment is performed for each of the four chemical species. The
controlled species corresponds to the species that is measured
and that is perturbed at the initial time. With 3D-Var, this is
obtained setting all terms of B to zero except for the 3-D co-
variance of the selected species. With 4DEnVar the same is
obtained by setting all multivariate localization coefficients
to zero.

Figure 3 compares the temporal trajectories of the analysis
of each species obtained from 3D-Var and 4DEnVar. Each
figure provides the temporal trajectories at the two grid points
shown in Fig. 1: one located in the polluted region and in
correspondence with assimilated observations (grid point A)
and one in the cleaner region and slightly displaced from the
measurements location (grid point B).

In addition to the comparison of the two DA algorithms,
these experiments also permit to assess the impact of the ini-
tial perturbation on chemical forecasts. First of all, we re-
mark that O3 forecasts are very close to the truth values after
24 h, which is a consequence of the fact that O3 is strongly
controlled by precursor emissions and photochemistry. The
memory of the initial condition is rapidly lost for O3, as
it was also demonstrated within regional air quality models
(Jaumouillé et al., 2012; Wu et al., 2008). This is not the
case for CO2 and CO, which have a longer lifetime. There-
fore, the initial perturbation is advected by the wind field and
the spread between the forecast and the truth lasts longer in
time. NO2, which lasts a few hours in a summertime atmo-
sphere, is practically not sensitive to the perturbation of the
initial condition (Fig. 3). Note also that the chemical concen-
trations are always lower at the clean location (grid point B)
than at the polluted one (grid point A), except for CO2 that
is neither emitted nor chemically produced. Again, this is a
consequence of the geographical variability of the emission
factors (Fig. 1).

We remark that the 4DEnVar provides in general better
analyses than 3D-Var for all species. First, it can be observed
from Fig. 3 that the analysis time series obtained with the
4DEnVar are smoother than those resulting from 3D-Var be-
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Truth
Free forecast
4DEnVar analysis
3D-Var analysis

O3

CO

CO2

Grid point A Grid point B

NO2

Figure 3. DA results with a perfect model hypothesis. Temporal trajectories for the four assimilated species are shown from top to bottom
(O3, CO, CO2 and NO2). Forecast, 3D-Var/4DEnVar analyses and truth are shown in each plot for the grid points A (left plots) and B (right
plots) depicted in Fig. 1.

cause daily trajectories are optimized at once with 4DEnVar.
The sequential aspect of 3D-Var, instead, makes the analysis
more sensitive to the random observation errors. This intro-
duces the observed jumps in the analyses.

Figure 4 provides the root mean square error (RMSE) gain
(in %) for every grid point (i,j) of the model domain,

RMSEgain
(i,j) =

1
X̄(i,j)

(
RMSEanl

(i,j)−RMSEfct
(i,j)

)
. (18)

Here, X̄(i,j) is the average concentration of the truth val-
ues (Fig. 2), RMSEfct and RMSEanl are the absolute values
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Figure 4. DA results with a perfect model hypothesis. From top to bottom: the RMSE gain (Eq. 18) is displayed, respectively, for O3, CO,
CO2 and NO2 assimilation experiments. Blue color means that DA lowered the RMSE and red color means that DA increased the RMSE.
Plots on the left are obtained using 3D-Var, on the right using 4DEnVar.
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Table 6. Summary statistics of RMSE gain for perfect model DA experiments in Fig. 4. Signs have been inverted compared to figures to
show positive values when DA reduces the RMSE.

3D-Var 4DEnVar

Species Max. gain (%) Min. gain (%) Avg. gain (%) Max. gain (%) Min. gain (%) Avg. gain (%)

O3 17.11 −7.67 0.92 27.03 −6.68 2.55
CO 17.15 −3.33 1.22 18.82 −4.11 1.62
CO2 13.08 −10.60 1.76 13.62 −7.51 1.93
NO2 57.39 −6.15 0.95 48.07 −10.52 1.21

of RMSE (in chemical concentration units) for the forecast
and analysis, respectively. The RMSE at the location (i,j) is
defined as

RMSE(i,j) =

√
1
N

(
x∗(i,j)− x(i,j)

)T (
x∗(i,j)− x(i,j)

)
, (19)

whereN = 24 is the total number of sub-windows, x∗(i,j) and
x(i,j) denotes the temporal trajectories of the truth and the
analysis (or forecast) at the grid point (i,j), respectively. In
Fig. 4 the blue color means that RMSE values after DA have
reduced (DA improved the forecast) and the red color means
that RMSE values after DA have increased (DA degraded
the forecast). Therefore, we can see from these figures that
with 4DEnVar, improvements of the RMSE at unobserved
locations are more pronounced than those of 3D-Var (more
widespread blue regions and less red regions in RMSE gain).
This is likely due to a better description of the background
error covariance, which is flow dependent and closer to the
true forecast error covariance within 4DEnVar. For exam-
ple, the background error covariance used to assimilate NO2
with 3D-Var is highly overestimated for t > 0. This happens
because, when the model is perfect, the NO2 field rapidly
converges to the truth after a few hours (Fig. 3). In this spe-
cific case, the RMSE is degraded even at observed locations
(Fig. 4, bottom left plot). This is an instructive example of
the effects of incorrectly specified B within 3D-Var. Finally,
note that for other species also 3D-Var is capable of decreas-
ing RMSE at unobserved locations. This effect is a result of
the advection of the analysis increments, and, as expected,
is more pronounced with long-lived species (CO, CO2) than
with more reactive or emitted gases (O3, NO2).

Table 6 reports the minimum, maximum and average of the
field values in Fig. 4, with the sign inversed to display posi-
tive values for positive gain of DA, and negative otherwise. It
can be seen that with 4DEnVar, the maximum degradation of
RMSE (i.e., the minimum gain in absolute values) is always
smaller by a factor 2 to 5 than the maximum gain, and the
average RMSE gain is always positive (i.e., DA improves the
forecast). The appearance of local but relatively small RMSE
degradation can be tolerated in atmospheric chemistry, be-
cause the chemical system has a dissipative behavior and er-
rors in the model state cannot grow during the forecast step.
Since the error covariance of the initial condition is perfectly

known in the experiment setup, the degradation of the 4DEn-
Var analysis is a consequence of the algorithm hypotheses
(e.g., the linearization of the forecast model) or of the nu-
merical implementation (e.g., the finite size of the ensemble
and the localization approximations).

4.1.2 Multivariate assimilation

A second set of DA experiments has been performed, but
perturbing and assimilating the four chemical species at the
same time. Therefore, one 24 h long forecast and the corre-
sponding analysis has been computed for all species, instead
of four independent analyses as before. In the case of 3D-Var,
elements of B related to the four assimilated species are set
using the same parameters as in Sect. 4.1.1. Elements related
to unobserved species are kept at zero as well as for cross-
variable correlations. This leads to a multi-species assimi-
lation, which is not yet multivariate. Effects on unobserved
variables or between species are still permitted by chemical
couplings in the forecast model.

The gain on RMSE obtained with 3D-Var for the four
species (not shown) is very similar to those obtained in
Sect. 4.1.1 with independent experiments.

With 4DEnVar, the corresponding multi-species assimila-
tion has been tested by setting the cross-variable correlation
coefficients to zero in the localization operator. In addition, a
multivariate case has also been examined by setting the cor-
relation coefficients to 0.5. In both cases results (not shown)
were found to be very similar again to those in Fig. 4.

These results indicate that, when the initial condition is
solely taken as a source of uncertainty, the chemical cou-
pling between species does not influence DA much. This is
confirmed by the ensemble standard deviation of the 4DEn-
Var experiments in Sect. 4.1.1. For each of the four assimi-
lation experiments the average ensemble standard deviation
has been computed for all species (perturbed and not per-
turbed at t = 0). The ensemble standard deviation of unper-
turbed species stays below 1 % of the local concentration (not
shown), compared to typical values of about 10–15 % for the
species that are perturbed initially. Therefore, the perturba-
tion of the sole initial state does not affect significantly the
chemical balance. This also justifies neglecting the cross cor-
relations between chemical species in operational systems
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Figure 5. Impact of ensemble size (Ne) on the RMSE gain of the 4DEnVar analyses. Results are shown for the four chemical species: O3,
CO, CO2 and NO2. For each plot, values of maximum, minimum and average RMSE gain (Table 6) are shown in different color, compared
to reference results obtained with 3D-Var. Positive values mean better RMSE gain with 4DEnVar than with the reference 3D-Var. Average
RMSE gain has been multiplied by 10 to better highlight the differences among the experiments.

that assimilate hourly observations sequentially. This result
was expected for weakly reacting species like CO2 or CO
but was not evident for reacting gases such as O3 and NO2.
A possible reason is that the amount of NO2 produced hourly
by the oxidation of emitted NO is much larger than the ap-
plied initial perturbation. Therefore, the O3 photochemical
production, which happens later during the day, is not much
influenced by the perturbation of NO2 at midnight. It would
be interesting to verify if similar results also hold when larger
perturbations are applied during daytime. A wider explo-
ration of different chemical regimes is left for a future study.

4DEnVar was capable of providing similarly good results
as in Sect. 4.1.1 when enabling the cross-variable covari-
ances (and the respective localization). This means that the
noise of chemical cross covariances due to the small en-
semble size (16 members) did not degrade the results. This
leaves hope for an effective multivariate chemical assimi-
lation when the role of chemical couplings becomes larger
(Sect. 4.2).

4.1.3 Ensemble size and localization

This section examines the impact of the principal parameters
of the 4DEnVar algorithm, i.e., the ensemble size (16 mem-
bers in previous experiments) and the localization length
scale, on the analysis RMSE. These two aspects are closely
linked with the dimension of the system and the eigenspec-
trum of the error covariance matrices (Furrer and Bengts-
son, 2007). For instance, for a strongly decaying spectrum
relatively few ensemble members are enough to provide a
good approximation of the error covariance matrix. If this
is not the case, a larger ensemble size allows in principle
less severe localization. However, no theoretical formulation
exists already for the 4DEnVar that links these parameters,
e.g., the localization scale with the ensemble size. Moreover,
the number of parameters of the localization operator (e.g.,
the horizontal length scale) might depend on the chemical
species. A full exploration of the parameter space becomes
rapidly unpractical even in a simplified model framework. Fi-
nally, the approximations made in the implementation of the
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Figure 6. Same as Fig. 5 but for the horizontal length scale of the localization operator (“noloc” when no localization is applied).

localization operator (Sect. 3.2) can potentially have a larger
effect than the choice of the parameters themselves. There-
fore, an empirical approach has been used in this paper, and
we postpone a detailed theoretical analysis to future work.

In the empirical approach, first the ensemble size is ex-
amined using fixed but reasonable values for the localization
operator (Sect. 4.1). The ensemble size can be one of the
main limiting factors in operational forecast centers and the
smallest ensemble providing better results than 3D-Var for
all species was taken. Second, the impact of horizontal and
chemical localization are examined keeping the selected en-
semble size fixed.

Results for the case study are shown in Fig. 5 (varying
ensemble size), Fig. 6 (varying horizontal localization) and
Fig. 7 (varying cross-variable localization). The minimum,
maximum and mean RMSE gain (Table 6) of the analysis are
considered to compare 4DEnVar and 3D-Var experiments.
Hence, the plots display the differences between the RMSE
gain of 4DEnVar minus the 3D-Var one, with the sign op-
portunely adjusted to display positive values when 4DEnVar
beats 3D-Var, negative values otherwise. In general, the de-
sired case is represented by all bars (mean, maximum and
minimum gain) being positive. Nevertheless, a positive av-
erage gain with the sporadic occurrence of negative maxi-

mum/minimum gains can be tolerated, if the values for the
minimum gain bar do not become too negative. Since the
minimum RMSE gain is already negative (Table 6), negative
values for the corresponding bars in Figs. 5, 6 and 7 mean
that the degradation of the 4DEnVar analysis is larger than
the 3D-Var analysis, which is not desired.

Results are very similar using 64 or 128 members, for all
species, suggesting that some convergence of the assimila-
tion scores is achieved with more than 64 members (Fig. 5).
As expected, the accuracy starts to decrease using less than
32 members, with most of the gain of 4DEnVar over 3D-Var
being lost using only 8 members. In a few cases, the RMSE
gain occasionally decreases when increasing the size of the
ensemble. This is due to statistical fluctuations when the en-
semble sizes are small. To avoid misinterpretation of statisti-
cal noise, the comparison of 3D-Var and 4DEnVar is repeated
in Sect. 4.3 for a larger number of DA windows. We remark
finally, that results with 16 members satisfy the requirements
expressed above: better average RMSE gain than 3D-Var for
all species and a limited number of cases of RMSE degrada-
tion. Hence, an ensemble size of 16 members is retained. We
remind readers that the objective of this study is to demon-
strate the applicability of a DA algorithm that could outper-
form currently implemented methods in operational centers,
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Figure 7. Same as Fig. 5 but for the multivariate correlation coefficient of the localization operator (with 0 corresponding to univariate DA
and 1 to a full multivariate unlocalized case).

but with an acceptable compromise between computational
costs and precision. Therefore, even if an ensemble size of
32 or 64 would have represented a more accurate option for
this study, we found it more valuable to assess the potential
of 4DEnVar when computational resources might be limited.

The choice of the horizontal localization scale is more del-
icate, because it is intimately linked to the model dynamics
and depends on the ensemble size and on the assumptions
made to construct and apply C (Sect. 3.2). Figure 6 shows
that horizontal localization is necessary to obtain meaning-
ful results with 4DEnVar. Second, increasing the localization
scale to values as high as 3000 km, compared to the 750 km
of the initial perturbation scale, has the effect of improving
the maximum RMSE gain but also degrading significantly
the minimum gain. This is not desired, as explained above.
The best results, considering employing the same homoge-
neous and global localization scale for all chemical species,
can be found for the value of 1500 km.

The configuration of a multivariate localization, or chem-
ical localization in our study, presents the same issues as
the spatial one. A similar approach as in the above para-
graph has been taken. The numerical experiments described

in Sect. 4.1.2, which considered multivariate cases, are used
to compute error differences in Fig. 7. Again, we remark that
without any localization the statistical noise of the ensem-
ble covariance significantly degrades the results compared to
3D-Var. A localization coefficient of 0.5 reduces efficiently
the effect of noisy correlations in the 4-D ensemble covari-
ance, leaving the possibility of describing multivariate ef-
fects. We remind readers that multivariate effects were found
to be very small in perfect model experiments presented until
now, but can be much larger when a model error is introduced
(Sect. 4.2).

We conclude that a simple localization scheme, based
on global and empirically tuned parameters, provides al-
ready encouraging results for the application of 4DEnVar to
large-scale chemistry models. The development of more so-
phisticated localization operators (Bocquet, 2016; Desroziers
et al., 2016) and more rigorous methods to estimate their pa-
rameters (Ménétrier et al., 2015), represents a current subject
of research, and will be the topic of a future study.
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4.2 Model error experiments

In the previous section, we have shown how 4DEnVar is
able to match or even outperform 3D-Var results when
the model is perfect. However, the main interest of 4DEn-
Var for atmospheric chemistry arises when the model is
not perfect, i.e., a case that is more easily addressed us-
ing ensemble-based methods. In this section, 4DEnVar ex-
periments are conducted in the presence of a model error
term. A typical source of uncertainty in CTMs is repre-
sented by anthropogenic or biogenic emissions (Kok, 2011;
Zhao et al., 2011; Ma and van Aardenne, 2004). In the case
of reactive species like NOx , erroneous emissions can im-
pact strongly the formation of secondary species such as
O3 (Lei and Wang, 2014; Sillman, 1999). Errors in surface
emissions already produce complex and rich dynamics and
will be used as a test bed to investigate the effects of model
error in DA. Other sources of uncertainties, e.g., chemistry
parameters or meteorology, will be addressed in a future
study, considering that the same methodology used here can
be applied.

Similar single-cycle DA experiments are conducted as in
Sect. 4.1. The main difference with the previous section is
that experiments are done here during the spin-up period of
the model (days 2–4). This allows us to examine the model
error estimation during the pollution build-up period, when
the chemical system is in a transient phase and daily cy-
cles of reactive gases are not yet stationary. This represents
a more challenging and realistic situation for testing the bias
correction procedure (Eq. 17), which is fully consistent only
in stationary conditions. The true NO emissions (Table 3) are
perturbed by a multiplicative factor, which is sampled from a
log-normal distribution with mean and sigma equal to 0.5 and
0.8, respectively. Forecast emissions are increased by a mul-
tiplicative factor of 2.35, whereas the log-normal distribution
has been used to generate emission perturbations for the en-
semble of forecasts. The emissions perturbation is constant
in time but not in space, due to the geographical variability
of emission factors (Fig. 1).

The main objective of this section is to illustrate the ap-
plication of the bias estimation procedure (Sect. 3.3) on
chemical fields. Chemical interactions alone can already
give rise to complex temporal dynamics, which can produce
unattended behavior within typical hypotheses of most DA
schemes (Tang et al., 2016). Therefore, a simplified model
setup is used in this section by means of deactivating the
advection of chemical species. This reduces QG-Chem to a
collection of 0-D chemistry models and allows us to focus on
the effects of model errors in chemistry. Aside from this, the
same exact configuration as before is used for 4DEnVar (ini-
tial condition error, ensemble size, localization). DA results
in a more general case, when both chemistry and advection
are activated, will follow in Sect. 4.3. Univariate O3 DA is
presented in Sect. 4.2.1. Results of a multivariate DA exper-
iment are presented in Sect. 4.2.2, to examine the combined

Truth
Free forecast
4DEnVar analysis
True model bias
Model bias estimation

O3

O3

O3

IC error and perfect model

Model error and perfect IC

IC error and model error

Figure 8. O3 effective model error estimation in the univariate case
(only O3 assimilated). Temporal trajectories during day 2 for the
forecast, the analysis, the truth, the true effective model error and
the effective model error estimated using Eq. (12), for the pixel
A located close to an observation. From top to bottom the fol-
lowing experiments are shown with the uncertainties being intro-
duced: (i) only in the O3 initial condition (as in Sect. 4.1), (ii) only
in the forecast model (through surface emissions perturbation) and
(iii) both in the O3 initial condition and in the forecast model.

effects of model error and chemical couplings. Finally, the
impact of the model bias correction procedure is evaluated
on 48 h forecasts of several species in Sect. 4.2.3.
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Figure 9. Temporal averages (24 h) of the estimated effective model error for the three experiments as in Fig. 8. From left to right and from
top to bottom, experiments (i), (ii) and (iii) are shown. On the bottom right plot the true effective model error in the experiments (ii) and (iii)
is shown (no model error was activated for the first experiment).

4.2.1 Univariate assimilation

Three DA experiments are shown in Fig. 8: (i) activating only
the initial perturbation, (ii) activating only the model error
and (iii) with both perturbations activated. Only O3 obser-
vations have been assimilated and the chemical localization
coefficients are set to zero to compute univariate analyses.

With the NO emissions increased by a factor of 2.35, the
forecast produces higher concentrations of O3 (Fig. 8, middle
plot). We remark also that the effects of model error in O3 ap-
pear later in the day, due to the photochemistry, whereas the
perturbation of the initial condition has a larger effect in the
first part of the day. In this specific case, it is also interesting
to note that, when both perturbation are applied, a compensa-
tion of the two errors cancels out the differences between the
forecast and the truth later in the day. This is an example of
compensating errors in atmospheric chemistry, which might
be hard to detect when comparing model results to observa-
tions.

The 4DEnVar analyses agree well with the truth in all three
cases, similarly to what was obtained in Sect. 4.1.1. This sat-
isfies the main requirement for a meaningful computation of
the effective model error (Sect. 3.3). The estimation of the ef-
fective model error with Eq. (12) is also displayed in Fig. 8.
We remind readers that the effective model error is expressed
in the same physical units of the model state, i.e., chemical
concentration units (ppbv). The true effective model error is

computed by subtracting the truth from a forecast initialized
from the truth, and it is also added to the figures.

The effective model error is zero in the first experiment,
which is correctly diagnosed by the procedure. In the second
experiment, the estimated effective model error is approxi-
mately zero until 10:00 UTC and grows to positive values of
about 8 ppbv later in the afternoon, which is coherent with
the underlying perturbations and chemical mechanism.

The temporal average of the effective model error (Fig. 9)
shows that the larger errors are diagnosed in the center of
the domain, coherently with the characteristics of the emis-
sions errors (global scaling of NO emissions). The geograph-
ical patterns and the differences from the true effective error
(bottom right plot in Fig. 9) are a result of the observations
location and localization scale. With the proposed procedure,
the effective model error estimation relies on the localization
scale that has been used for the 4DEnVar analysis. Therefore,
the effective model error approaches zero moving far from
assimilated observations, no matter what the spatial patterns
of the true model error are. In the third experiment, the tem-
poral behavior of the effective model error is well captured at
the observed location. However, significant differences with
the second experiment are visible in the spatial distribution
of the error. Ideally, the estimation of the effective model er-
ror should provide exactly the same results in the second and
third experiment. Differences arise because DA is not perfect
due to small ensemble size, linearization hypotheses, obser-
vation number and observation errors. Also, when adding de-
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Figure 10. Multivariate effective model error estimation. Temporal
trajectories for day 2, as in Fig. 8 but for NO2, NO and CO species
(not assimilated), obtained assimilating only O3. Uncertainties were
both in the O3 initial condition and in the forecast model (NO emis-
sions), corresponding to the third experiment in Fig. 8. Only differ-
ence with the previous experiment in is that a non-zero multivariate
localization coefficient is used here.

grees of freedom to the sources of uncertainty and keeping
constant the observation network, DA becomes more chal-
lenging. For example, if observations of O3 were available
only in the late afternoon, no discrimination between the two
sources of error could have been achieved in the third exper-
iment. However, thanks to the hourly frequency of O3 obser-
vations, the temporal and large-scale features of the model
error have been retrieved also in the third case.

4.2.2 Multivariate assimilation

The effects of O3 assimilation on other chemical species are
shown in Fig. 10. These were obtained by repeating the third
experiment of Sect. 4.2.1 but setting the chemical localiza-
tion coefficient to 0.5 instead of zero. Compared to the results
discussed in Sect. 4.1.2, multivariate corrections are now
very significant. For example, analyzed NO and NO2 con-
centrations are almost halved and the initial forecast errors
greatly reduced. On the other hand, CO, which was not per-
turbed initially nor is it strongly coupled to NO /NO2 /O3
concentrations, is not modified at all by the DA. This shows
that multivariate aspects of chemical DA can be well cap-
tured by the 4DEnVar algorithm, even with a small ensem-
ble.

The effective model error can be computed for all the vari-
ables of the state vector, and is plotted in Figs. 10 and 11.
The error fields of NO2 and NO reproduce well the tempo-
ral and spatial features of the perturbation on NO emissions
that was implemented in the forecast. Note that since NO is
rapidly converted into NO2 during the night, the initial linear
increase of the effective model error is only observable on
NO2. On the other hand, during daytime, a strong presence
of the effective model error is found for both NO and NO2.
However, the NO2 and NO errors trajectories are not linear
during daytime, due to the complex photochemistry.

Strong nonlinearities of the chemical system cannot be
taken into account by the current implementation of the
4DEnVar algorithm. When the NO /O3 relationship was
strongly nonlinear, inaccurate analyses and, therefore, esti-
mations of the effective model error have been found (not
shown). This difficulty could be overcome by introducing
external loops within 4DEnVar, similarly to how it was al-
ready done with the IEnKS algorithm (Haussaire and Boc-
quet, 2016). This represents the objective of a future study.
Alternatively, the combined assimilation of O3 and NO2 or a
more severe chemical localization can reduce the occurrence
of analysis errors in nonlinear regimes.

4.2.3 Impact on chemical forecasts

The analysis computed in the previous section has been used
to initialize chemical forecasts for the following 48 h. This
was done to evaluate the potential of the forecast bias correc-
tion procedure (Eq. 17). The corrected forecasts (CF) of O3,
NO2 and NO are compared to the initial 3-day forecast (OF),
the 48 h forecast initialized from the latest available analysis
without any correction (AF) and the truth (Fig. 12).

First, the AF converges very rapidly (in about 12 h) to the
OF for all species, confirming the limited effects of the state
correction on the chemical forecasts for the next days (Wu
et al., 2008). On the other hand, the CF is very close to
the truth during the first 24 h, indicating that the hypothe-
sis of a stationary effective model error in successive days
(but hourly variable) seems appropriate in this case. During
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Figure 11. Temporal averages (24 h) of the estimated effective model error (in ppbv) for the multivariate DA experiment in Fig. 10. Estimated
effective model error for NO2 on top and NO on bottom. On the right, the true effective model error is displayed for both species.

Table 7. DA RMSEs for seven cycles of analyses/next-day forecasts where all considered species are perturbed and assimilated, and with
model error enabled. εmin, εmax and εavg (in %) are the minimum, maximum and average values of the relative RMSE (Eq. 19 divided by
the truth average) on the QG-Chem domain.

Species
Reanalysis Forecast

3D-Var 4DEnVar 3D-Var 4DEnVar

εmin εmax εavg εmin εmax εavg εmin εmax εavg εmin εmax εavg

O3 2.8 25.7 14.3 2.0 26.4 13.3 5.1 23.9 14.4 4.9 21.7 11.3
CO 1.3 42.8 17.1 1.1 27.7 13.1 6.7 90.8 37.3 7.2 50.1 22.1
NO2 7.7 88.9 41.2 4.1 69.4 23.3 23.6 117.8 74.0 11.3 90.3 37.2
CO2 3.1 15.3 8.6 1.4 17.5 8.6 1.7 13.7 5.7 1.9 13.6 6.9

the third day, a positive forecast correction is still achieved.
However, chemical concentrations have evolved too much to
be efficiently corrected using the bias estimated on the first
day. Estimating and correcting the forecast tendencies, in-
stead of the state, could provide a better result for the third
day.

Accounting for model errors, either bias or tendencies, for
the next-day forecast requires the model uncertainties to be
stationary. A stationary error has been used in this study since
surface emissions were taken constant in time. Most of re-
gional air quality models seem largely affected by stationary
errors (Marécal et al., 2015) and assuming the persistence
of the bias during 24 h looks reasonable. However, the main
sources of uncertainties of real CTMs need first to be identi-
fied to allow a meaningful effective model error estimation.
Therefore, the implementation of 4DEnVar to a real CTM is

necessary to further demonstrate its potential for air quality
forecasts.

4.3 Statistical comparison between 4DEnVar and
3D-Var

Single-window DA experiments have been examined so far,
to better analyze new aspects of 4DEnVar DA for atmo-
spheric chemistry. In this section, DA experiments are con-
ducted for multiple consecutive days, to provide a statisti-
cally robust comparison between 3D-Var and 4DEnVar. A
general case including initial condition and model errors for
all four species is considered, and both reanalyses and 24 h
forecasts for the next day are evaluated. The same values as
before (multivariate experiments in Sect. 4.1.2) are used for
the initial perturbation and for the algorithm settings. Com-
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Free forecast
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Bias-corrected forecast

Assimilation window Forecast 

NO2
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Figure 12. Impact of model bias correction on 48 h forecasts. Tem-
poral trajectory of free forecast (3 days), analysis (24 h), truth and
48 h long forecasts initialized from the latest available analysis, for
the pixel A in Fig. 1. DA of O3 is performed only during the first
24 h (as in Fig. 10). Curves are displayed in dark blue when no bias
correction is applied to the final forecast and are salmon colored
when the effective model error estimation in Fig. 10 is used to cor-
rect the final forecast (Eq. 17).

pared to Sect. 4.2, all emissions in Table 3 are now perturbed,
using a log-normally distributed scaling factor.

Synthetic observations are generated from a 7-day truth
simulation. The four species are assimilated for a period of 7
days, starting on day 20. However, at the end of each cycle
of 24 h (forecast, analysis and next-day forecast), the initial
condition is reinitialized with the truth concentrations. Ini-
tial condition perturbations are recomputed, advancing the
seed of the pseudo-random generator. Therefore, the seven

daily cycles are statistically independent. This is done to in-
crease the experiment statistics, without having to deal with
the propagation of the analysis covariance through consecu-
tive cycles. This aspect will be investigated in a future study.

The relative RMSE between the experiments and the truth
is computed at each grid point for the 7-day period as in
Eq. (19). Results are summarized in Table 7: minimum,
maximum and average values of the relative RMSEs com-
puted over the QG-Chem domain are reported for 3D-Var
and 4DEnVar experiments.

We confirm preceding findings concerning the reanaly-
ses capabilities of 4DEnVar, which provides superior results
to 3D-Var for all species. Results are particularly good for
species strongly related to emissions (CO and NO2), which
show reduced average RMSE values compared to 3D-Var re-
sults. This is a consequence of precisely accounting for emis-
sion uncertainties within 4DEnVar. A similar result was ob-
tained by Haussaire and Bocquet (2016). They showed that
by using an ensemble forecast of the meteorology, thus par-
tially accounting for model error, the root mean square error
of IEnKS (a nonlinear 4DEnVar method) on the low-order
online tracer model L95-T was improved by 25 to 50 %.
Moreover, the 4DEnVar maximum RMSE is also similar or
lower than in 3D-Var reanalyses, which suggests that the oc-
currence of degraded results compared to 3D-Var (negative
bars in Fig. 5) is not systematic.

Similar conclusions can be drawn for the RMSE of the
next-day forecast. We remind readers that the bias correction
procedure has been used with 4DEnVar, whereas no correc-
tion is applied with 3D-Var. CO and NO2 forecasts, show
significantly lower RMSE with 4DEnVar, due to the forecast
bias correction. O3 forecast improvements are also observed,
even if smaller than those for the two precursors. With 4DEn-
Var, forecasts of CO2 are slightly worse than with 3D-Var.
Since CO2 is not affected by the considered model error and
it is not chemically coupled to other species, the relative bias
correction term should be strictly equal to zero. However, the
small ensemble size and use of localization introduce statis-
tical noise in the effective model error estimation, which can
impact the forecast correction. This issue can be mitigated
by selectively setting to zero the chemical localization coef-
ficient between species that are chemically uncoupled. How-
ever, results remained on par with 3D-Var in this study.

We can conclude that the forecast of species related to
surface emissions, either directly or through chemical cou-
plings, can be significantly improved when the model error
is considered within DA. The forecasts of CO2, which is a
passive tracer in our study, seem instead dominated by the
number of assimilated observation, no matter which DA al-
gorithm is employed. However, this is not the case in real
applications, where CO2 concentration is modulated by un-
certain anthropogenic emissions and natural sinks.

We finally remark that EnKF, which also takes advantage
of the information available from the ensembles, could have
represented an alternative and possibly more accurate refer-
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ence than 3D-Var for this study. However, it is significantly
more costly than 3D-Var, it introduces some difficulties like
the definition of an optimal inflation procedure (Constanti-
nescu et al., 2007a; Gaubert et al., 2014) and was not yet
available in the OOPS DA library at the time of the study. A
more comprehensive comparison of DA schemes of increas-
ing complexity and cost within QG-Chem is left for a future
study, the present being focused especially on the bias cor-
rection procedure using 4DEnVar.

5 Conclusions

The objectives of this study were (i) to develop a new toy
model framework to test advanced DA algorithms for atmo-
spheric chemistry and (ii) demonstrate the potential of the
4DEnVar method for air quality or more general tropospheric
chemistry applications. In particular, we addressed the ques-
tions of how to jointly assimilate chemical species with very
different lifetimes and possible chemical couplings, and how
to account for model error to improve forecasts for the next
day.

An atmospheric chemistry reduced-order model (QG-
Chem) has been developed, based on quasi-geostrophic me-
teorology and a detailed tropospheric chemistry scheme. It
has been used to simulate the complex spatiotemporal pat-
terns of reactive gases (NOx , O3) and long-lived species (CO,
CO2) under the effects of emissions, chemistry and transport.
QG-Chem has been coupled to a generic library for data as-
similation (OOPS) and has been proven to be well suited to
perform a large number of DA experiments. Concerning tem-
poral aspects and assimilated observations, the experiments
have been designed based on the implementation of chemical
DA in operational air quality forecast centers.

A number of DA experiments have been conducted to
compare 4DEnVar analyses with 3D-Var analyses in a perfect
model hypothesis, in a univariate and a multivariate setting.
The sensitivity of 4DEnVar results to the ensemble size and
localization method was also assessed. Results with 4DEn-
Var are generally better for all chemical species even when
using a small ensemble size of 16 members, provided that en-
semble localization, even if basic, is applied. This suggests
that considering the linearized model dynamics to derive a
flow-dependent background error covariance can be benefi-
cial for chemical reanalyses. Thanks to 4DEnVar, this can be
obtained without need of tangent linear and adjoint codes of
the complex CTM. Multivariate effects were found to be not
significant when a perfect model is used, suggesting that mul-
tivariate DA goes together with model error for atmospheric
chemistry applications.

Clear advantages of using an ensemble method, which is
significantly more costly than 3DVar, have been found when
model errors were introduced. It has been shown that 4DEn-
Var is able to take into account heterogeneous errors in chem-
ical emissions and complex chemical couplings to cross cor-

rect precursor species (e.g., NO and NO2), based only on
hourly observations of secondary species (O3).

Using DA windows that are long enough (24 h in this
study), 4DEnVar allowed to account for the different
timescales of the chemical mechanism and the correspond-
ing effects in DA. For example, the delayed impact of NO
emission errors in afternoon O3 concentrations was correctly
accounted for by 4DEnVar. The contribution of model er-
rors to the 4-D chemical state can be estimated at the cost of
an additional forecast, providing quantitative information on
possible forecast biases, and, in the case of stationary errors,
a method to correct next-day forecasts. This has been tested
with success in several independent DA windows, showing
that 24 h forecasts of NO2 and CO can be twice as accurate
with 4DEnVar as with 3D-Var. Better results have been also
found for O3 forecasts.

We conclude that 4DEnVar is potentially of high inter-
est for chemical DA. We determine the main benefits to be
the implicit specification of a flow-dependent and multivari-
ate error covariance matrix, the possibility of accounting for
model errors through stochastic perturbation and the oppor-
tunity for using DA windows long enough to catch typical
features of model errors in air quality models. The computa-
tional cost of 4DEnVar is higher than 3D-Var, but a small en-
semble of at least 15 to 20 members remain affordable within
most operational centers.

The application to a real CTM remains necessary to eval-
uate if the advantages of 4DEnVar shown in this study hold
in real applications, where model uncertainties are not per-
fectly known, as well as observational ones. Aspects related
to the vertical propagation of the information, which have
been neglected with QG-Chem, could also represent an addi-
tional challenge in real systems. Finally, research on algorith-
mic aspects of 4DEnVar is needed to implement more accu-
rate localization operators, to account for nonlinear chemical
regimes and to correctly propagate the analysis covariance
through successive DA windows. QG-Chem could represent
a useful tool for these type of studies.

6 Code and data availability

The QG-Chem code is copyright of the CERFACS labora-
tory. The sources and the data used in this study are available
upon request to E. Emili (emili@cerfacs.fr) or D. Cariolle
(cariolle@cerfacs.fr).
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