Articles | Volume 9, issue 9
https://doi.org/10.5194/gmd-9-2925-2016
https://doi.org/10.5194/gmd-9-2925-2016
Model evaluation paper
 | 
31 Aug 2016
Model evaluation paper |  | 31 Aug 2016

Large-eddy simulation and stochastic modeling of Lagrangian particles for footprint determination in the stable boundary layer

Andrey Glazunov, Üllar Rannik, Victor Stepanenko, Vasily Lykosov, Mikko Auvinen, Timo Vesala, and Ivan Mammarella

Related authors

On dissipation timescales of the basic second-order moments: the effect on the energy and flux budget (EFB) turbulence closure for stably stratified turbulence
Evgeny Kadantsev, Evgeny Mortikov, Andrey Glazunov, Nathan Kleeorin, and Igor Rogachevskii
Nonlin. Processes Geophys., 31, 395–408, https://doi.org/10.5194/npg-31-395-2024,https://doi.org/10.5194/npg-31-395-2024, 2024
Short summary
Dissipation rate of turbulent kinetic energy in stably stratified sheared flows
Sergej Zilitinkevich, Oleg Druzhinin, Andrey Glazunov, Evgeny Kadantsev, Evgeny Mortikov, Iryna Repina, and Yulia Troitskaya
Atmos. Chem. Phys., 19, 2489–2496, https://doi.org/10.5194/acp-19-2489-2019,https://doi.org/10.5194/acp-19-2489-2019, 2019
Short summary

Related subject area

Atmospheric sciences
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
Felipe Cifuentes, Henk Eskes, Enrico Dammers, Charlotte Bryan, and Folkert Boersma
Geosci. Model Dev., 18, 621–649, https://doi.org/10.5194/gmd-18-621-2025,https://doi.org/10.5194/gmd-18-621-2025, 2025
Short summary
Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025,https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary
Quantifying uncertainties in satellite NO2 superobservations for data assimilation and model evaluation
Pieter Rijsdijk, Henk Eskes, Arlene Dingemans, K. Folkert Boersma, Takashi Sekiya, Kazuyuki Miyazaki, and Sander Houweling
Geosci. Model Dev., 18, 483–509, https://doi.org/10.5194/gmd-18-483-2025,https://doi.org/10.5194/gmd-18-483-2025, 2025
Short summary
ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025,https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary
Coupling the urban canopy model TEB (SURFEXv9.0) with the radiation model SPARTACUS-Urbanv0.6.1 for more realistic urban radiative exchange calculation
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025,https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary

Cited articles

Anderson, P. S.: Measurement of Prandtl number as a function of Richardson number avoiding self-correlation, Bound.-Lay. Meteorol., 131, 345–362, https://doi.org/10.1007/s10546-009-9376-4, 2009.
Banta, R. M., Pichugina, Y. L., and Brewer, W. A.: Turbulent Velocity-Variance Profiles in the Stable Boundary Layer Generated by a Nocturnal Low-Level Jet, J. Atmos. Sci., 63, 700–2719, https://doi.org/10.1175/JAS3776.1, 2006.
Barad, M.: Project Prairie Grass, a field program in diffusion, vol 2. Technical Report Geophysical Research Papers No. 59, TR-58-235(II)m Air Force Cambridge Research Center, Bedford, 209 pp., http://www.jsirwin.com/PGrassVolumeII.pdf, 1958.
Bardina, J., Ferziger, J. H., and Reynolds, W. C.: Improved subgrid scale models for large-eddy simulation, Am. Inst. Aeronaut. Astronaut., paper 80-1357, https://doi.org/10.2514/6.1980-1357, 1980.
Basu, S. and Porté-Agel, F.: Large-Eddy Simulation of Stably Stratified Atmospheric Boundary Layer Turbulence: A Scale-Dependent Dynamic Modeling Approach, J. Atmos. Sci., 63, 2074–2091, https://doi.org/10.1175/JAS3734.1, 2006.
Download
Short summary
Large-eddy simulation (LES) and Lagrangian stochastic modeling of passive particle dispersion were applied to the scalar flux footprint determination in the stable atmospheric boundary layer. The footprint functions obtained in LES were compared with the functions calculated with the use of first-order single-particle Lagrangian stochastic models (LSMs) and zeroth-order Lagrangian stochastic models - the random displacement models (RDMs).
Share