Articles | Volume 9, issue 9
Model evaluation paper
31 Aug 2016
Model evaluation paper |  | 31 Aug 2016

Large-eddy simulation and stochastic modeling of Lagrangian particles for footprint determination in the stable boundary layer

Andrey Glazunov, Üllar Rannik, Victor Stepanenko, Vasily Lykosov, Mikko Auvinen, Timo Vesala, and Ivan Mammarella

Related authors

Dissipation rate of turbulent kinetic energy in stably stratified sheared flows
Sergej Zilitinkevich, Oleg Druzhinin, Andrey Glazunov, Evgeny Kadantsev, Evgeny Mortikov, Iryna Repina, and Yulia Troitskaya
Atmos. Chem. Phys., 19, 2489–2496,,, 2019
Short summary

Related subject area

Atmospheric sciences
Use of threshold parameter variation for tropical cyclone tracking
Bernhard M. Enz, Jan P. Engelmann, and Ulrike Lohmann
Geosci. Model Dev., 16, 5093–5112,,, 2023
Short summary
Passive-tracer modelling at super-resolution with Weather Research and Forecasting – Advanced Research WRF (WRF-ARW) to assess mass-balance schemes
Sepehr Fathi, Mark Gordon, and Yongsheng Chen
Geosci. Model Dev., 16, 5069–5091,,, 2023
Short summary
The High-resolution Intermediate Complexity Atmospheric Research (HICAR v1.1) model enables fast dynamic downscaling to the hectometer scale
Dylan Reynolds, Ethan Gutmann, Bert Kruyt, Michael Haugeneder, Tobias Jonas, Franziska Gerber, Michael Lehning, and Rebecca Mott
Geosci. Model Dev., 16, 5049–5068,,, 2023
Short summary
A gridded air quality forecast through fusing site-available machine learning predictions from RFSML v1.0 and chemical transport model results from GEOS-Chem v13.1.0 using the ensemble Kalman filter
Li Fang, Jianbing Jin, Arjo Segers, Hong Liao, Ke Li, Bufan Xu, Wei Han, Mijie Pang, and Hai Xiang Lin
Geosci. Model Dev., 16, 4867–4882,,, 2023
Short summary
Plume detection and emission estimate for biomass burning plumes from TROPOMI carbon monoxide observations using APE v1.1
Manu Goudar, Juliëtte C. S. Anema, Rajesh Kumar, Tobias Borsdorff, and Jochen Landgraf
Geosci. Model Dev., 16, 4835–4852,,, 2023
Short summary

Cited articles

Anderson, P. S.: Measurement of Prandtl number as a function of Richardson number avoiding self-correlation, Bound.-Lay. Meteorol., 131, 345–362,, 2009.
Banta, R. M., Pichugina, Y. L., and Brewer, W. A.: Turbulent Velocity-Variance Profiles in the Stable Boundary Layer Generated by a Nocturnal Low-Level Jet, J. Atmos. Sci., 63, 700–2719,, 2006.
Barad, M.: Project Prairie Grass, a field program in diffusion, vol 2. Technical Report Geophysical Research Papers No. 59, TR-58-235(II)m Air Force Cambridge Research Center, Bedford, 209 pp.,, 1958.
Bardina, J., Ferziger, J. H., and Reynolds, W. C.: Improved subgrid scale models for large-eddy simulation, Am. Inst. Aeronaut. Astronaut., paper 80-1357,, 1980.
Basu, S. and Porté-Agel, F.: Large-Eddy Simulation of Stably Stratified Atmospheric Boundary Layer Turbulence: A Scale-Dependent Dynamic Modeling Approach, J. Atmos. Sci., 63, 2074–2091,, 2006.
Short summary
Large-eddy simulation (LES) and Lagrangian stochastic modeling of passive particle dispersion were applied to the scalar flux footprint determination in the stable atmospheric boundary layer. The footprint functions obtained in LES were compared with the functions calculated with the use of first-order single-particle Lagrangian stochastic models (LSMs) and zeroth-order Lagrangian stochastic models - the random displacement models (RDMs).