Articles | Volume 9, issue 9
https://doi.org/10.5194/gmd-9-2925-2016
https://doi.org/10.5194/gmd-9-2925-2016
Model evaluation paper
 | 
31 Aug 2016
Model evaluation paper |  | 31 Aug 2016

Large-eddy simulation and stochastic modeling of Lagrangian particles for footprint determination in the stable boundary layer

Andrey Glazunov, Üllar Rannik, Victor Stepanenko, Vasily Lykosov, Mikko Auvinen, Timo Vesala, and Ivan Mammarella

Related authors

On dissipation timescales of the basic second-order moments: the effect on the energy and flux budget (EFB) turbulence closure for stably stratified turbulence
Evgeny Kadantsev, Evgeny Mortikov, Andrey Glazunov, Nathan Kleeorin, and Igor Rogachevskii
Nonlin. Processes Geophys., 31, 395–408, https://doi.org/10.5194/npg-31-395-2024,https://doi.org/10.5194/npg-31-395-2024, 2024
Short summary
Dissipation rate of turbulent kinetic energy in stably stratified sheared flows
Sergej Zilitinkevich, Oleg Druzhinin, Andrey Glazunov, Evgeny Kadantsev, Evgeny Mortikov, Iryna Repina, and Yulia Troitskaya
Atmos. Chem. Phys., 19, 2489–2496, https://doi.org/10.5194/acp-19-2489-2019,https://doi.org/10.5194/acp-19-2489-2019, 2019
Short summary

Related subject area

Atmospheric sciences
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024,https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary
LIMA (v2.0): A full two-moment cloud microphysical scheme for the mesoscale non-hydrostatic model Meso-NH v5-6
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024,https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024,https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024,https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024,https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary

Cited articles

Anderson, P. S.: Measurement of Prandtl number as a function of Richardson number avoiding self-correlation, Bound.-Lay. Meteorol., 131, 345–362, https://doi.org/10.1007/s10546-009-9376-4, 2009.
Banta, R. M., Pichugina, Y. L., and Brewer, W. A.: Turbulent Velocity-Variance Profiles in the Stable Boundary Layer Generated by a Nocturnal Low-Level Jet, J. Atmos. Sci., 63, 700–2719, https://doi.org/10.1175/JAS3776.1, 2006.
Barad, M.: Project Prairie Grass, a field program in diffusion, vol 2. Technical Report Geophysical Research Papers No. 59, TR-58-235(II)m Air Force Cambridge Research Center, Bedford, 209 pp., http://www.jsirwin.com/PGrassVolumeII.pdf, 1958.
Bardina, J., Ferziger, J. H., and Reynolds, W. C.: Improved subgrid scale models for large-eddy simulation, Am. Inst. Aeronaut. Astronaut., paper 80-1357, https://doi.org/10.2514/6.1980-1357, 1980.
Basu, S. and Porté-Agel, F.: Large-Eddy Simulation of Stably Stratified Atmospheric Boundary Layer Turbulence: A Scale-Dependent Dynamic Modeling Approach, J. Atmos. Sci., 63, 2074–2091, https://doi.org/10.1175/JAS3734.1, 2006.
Download
Short summary
Large-eddy simulation (LES) and Lagrangian stochastic modeling of passive particle dispersion were applied to the scalar flux footprint determination in the stable atmospheric boundary layer. The footprint functions obtained in LES were compared with the functions calculated with the use of first-order single-particle Lagrangian stochastic models (LSMs) and zeroth-order Lagrangian stochastic models - the random displacement models (RDMs).