Articles | Volume 9, issue 7
https://doi.org/10.5194/gmd-9-2391-2016
https://doi.org/10.5194/gmd-9-2391-2016
Development and technical paper
 | 
12 Jul 2016
Development and technical paper |  | 12 Jul 2016

Evaluating statistical consistency in the ocean model component of the Community Earth System Model (pyCECT v2.0)

Allison H. Baker, Yong Hu, Dorit M. Hammerling, Yu-heng Tseng, Haiying Xu, Xiaomeng Huang, Frank O. Bryan, and Guangwen Yang

Related authors

The Ensemble Consistency Test: From CESM to MPAS and Beyond
Teo Price-Broncucia, Allison Baker, Dorit Hammerling, Michael Duda, and Rebecca Morrison
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-115,https://doi.org/10.5194/gmd-2024-115, 2024
Preprint under review for GMD
Short summary
Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform
Shaoqing Zhang, Haohuan Fu, Lixin Wu, Yuxuan Li, Hong Wang, Yunhui Zeng, Xiaohui Duan, Wubing Wan, Li Wang, Yuan Zhuang, Hongsong Meng, Kai Xu, Ping Xu, Lin Gan, Zhao Liu, Sihai Wu, Yuhu Chen, Haining Yu, Shupeng Shi, Lanning Wang, Shiming Xu, Wei Xue, Weiguo Liu, Qiang Guo, Jie Zhang, Guanghui Zhu, Yang Tu, Jim Edwards, Allison Baker, Jianlin Yong, Man Yuan, Yangyang Yu, Qiuying Zhang, Zedong Liu, Mingkui Li, Dongning Jia, Guangwen Yang, Zhiqiang Wei, Jingshan Pan, Ping Chang, Gokhan Danabasoglu, Stephen Yeager, Nan Rosenbloom, and Ying Guo
Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020,https://doi.org/10.5194/gmd-13-4809-2020, 2020
Short summary
Nine time steps: ultra-fast statistical consistency testing of the Community Earth System Model (pyCECT v3.0)
Daniel J. Milroy, Allison H. Baker, Dorit M. Hammerling, and Elizabeth R. Jessup
Geosci. Model Dev., 11, 697–711, https://doi.org/10.5194/gmd-11-697-2018,https://doi.org/10.5194/gmd-11-697-2018, 2018
Short summary
Evaluating lossy data compression on climate simulation data within a large ensemble
Allison H. Baker, Dorit M. Hammerling, Sheri A. Mickelson, Haiying Xu, Martin B. Stolpe, Phillipe Naveau, Ben Sanderson, Imme Ebert-Uphoff, Savini Samarasinghe, Francesco De Simone, Francesco Carbone, Christian N. Gencarelli, John M. Dennis, Jennifer E. Kay, and Peter Lindstrom
Geosci. Model Dev., 9, 4381–4403, https://doi.org/10.5194/gmd-9-4381-2016,https://doi.org/10.5194/gmd-9-4381-2016, 2016
Short summary
P-CSI v1.0, an accelerated barotropic solver for the high-resolution ocean model component in the Community Earth System Model v2.0
Xiaomeng Huang, Qiang Tang, Yuheng Tseng, Yong Hu, Allison H. Baker, Frank O. Bryan, John Dennis, Haohuan Fu, and Guangwen Yang
Geosci. Model Dev., 9, 4209–4225, https://doi.org/10.5194/gmd-9-4209-2016,https://doi.org/10.5194/gmd-9-4209-2016, 2016
Short summary

Related subject area

Climate and Earth system modeling
An improved representation of aerosol in the ECMWF IFS-COMPO 49R1 through the integration of EQSAM4Climv12 – a first attempt at simulating aerosol acidity
Samuel Rémy, Swen Metzger, Vincent Huijnen, Jason E. Williams, and Johannes Flemming
Geosci. Model Dev., 17, 7539–7567, https://doi.org/10.5194/gmd-17-7539-2024,https://doi.org/10.5194/gmd-17-7539-2024, 2024
Short summary
At-scale Model Output Statistics in mountain environments (AtsMOS v1.0)
Maximillian Van Wyk de Vries, Tom Matthews, L. Baker Perry, Nirakar Thapa, and Rob Wilby
Geosci. Model Dev., 17, 7629–7643, https://doi.org/10.5194/gmd-17-7629-2024,https://doi.org/10.5194/gmd-17-7629-2024, 2024
Short summary
Impact of ocean vertical-mixing parameterization on Arctic sea ice and upper-ocean properties using the NEMO-SI3 model
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev., 17, 7445–7466, https://doi.org/10.5194/gmd-17-7445-2024,https://doi.org/10.5194/gmd-17-7445-2024, 2024
Short summary
Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2.1
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024,https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
A new lightning scheme in the Canadian Atmospheric Model (CanAM5.1): implementation, evaluation, and projections of lightning and fire in future climates
Cynthia Whaley, Montana Etten-Bohm, Courtney Schumacher, Ayodeji Akingunola, Vivek Arora, Jason Cole, Michael Lazare, David Plummer, Knut von Salzen, and Barbara Winter
Geosci. Model Dev., 17, 7141–7155, https://doi.org/10.5194/gmd-17-7141-2024,https://doi.org/10.5194/gmd-17-7141-2024, 2024
Short summary

Cited articles

Baker, A. H., Xu, H., Dennis, J. M., Levy, M. N., Nychka, D., Mickelson, S. A., Edwards, J., Vertenstein, M., and Wegener, A.: A Methodology for Evaluating the Impact of Data Compression on Climate Simulation Data, in: Proceedings of the 23rd International Symposium on High-performance Parallel and Distributed Computing, HPDC '14, 203–214, 2014.
Baker, A. H., Hammerling, D. M., Levy, M. N., Xu, H., Dennis, J. M., Eaton, B. E., Edwards, J., Hannay, C., Mickelson, S. A., Neale, R. B., Nychka, D., Shollenberger, J., Tribbia, J., Vertenstein, M., and Williamson, D.: A new ensemble-based consistency test for the Community Earth System Model (pyCECT v1.0), Geosci. Model Dev., 8, 2829–2840, https://doi.org/10.5194/gmd-8-2829-2015, 2015.
Box, G. E. P. and Draper, N. R.: Response Surfaces, Mixtures, and Ridge Analyses, Second Edition, John Wiley and Sons, 2007.
Carson, II, J. S.: Model Verification and Validation, in: Proceedings of the 2002 Winter Simulation Conference, 52–58, 2002.
Clune, T. and Rood, R.: Software Testing and Verification in Climate Model Development, IEEE Software, 28, 49–55, https://doi.org/10.1109/MS.2011.117, 2011.
Download
Short summary
Software quality assurance is critical to detecting errors in large, complex climate simulation codes. We focus on ocean model simulation data in the context of an ensemble-based statistical consistency testing approach developed for atmospheric data. Because ocean and atmosphere models have differing characteristics, we develop a new statistical tool to evaluate ocean model simulation data that provide a simple, subjective, and systematic way to detect errors and instil model confidence.