Articles | Volume 9, issue 6
https://doi.org/10.5194/gmd-9-2143-2016
https://doi.org/10.5194/gmd-9-2143-2016
Model description paper
 | 
10 Jun 2016
Model description paper |  | 10 Jun 2016

Development of aroCACM/MPMPO 1.0: a model to simulate secondary organic aerosol from aromatic precursors in regional models

Matthew L. Dawson, Jialu Xu, Robert J. Griffin, and Donald Dabdub

Related authors

Measurement of gas-phase ammonia and amines in air by collection onto an ion exchange resin and analysis by ion chromatography
M. L. Dawson, V. Perraud, A. Gomez, K. D. Arquero, M. J. Ezell, and B. J. Finlayson-Pitts
Atmos. Meas. Tech., 7, 2733–2744, https://doi.org/10.5194/amt-7-2733-2014,https://doi.org/10.5194/amt-7-2733-2014, 2014

Related subject area

Atmospheric sciences
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024,https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024,https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024,https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024,https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Impact of ITCZ width on global climate: ITCZ-MIP
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024,https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary

Cited articles

Ashworth, K., Chung, S. H., Griffin, R. J., Chen, J., Forkel, R., Bryan, A. M., and Steiner, A. L.: FORest Canopy Atmosphere Transfer (FORCAsT) 1.0: a 1-D model of biosphere–atmosphere chemical exchange, Geosci. Model Dev., 8, 3765–3784, https://doi.org/10.5194/gmd-8-3765-2015, 2015.
Carreras-Sospedra, M., Vutukuru, S., Brouwer, J., and Dabdub, D.: Central power generation versus distributed generation – An air quality assessment in the South Coast Air Basin of California, Atmos. Environ., 44, 3215–3223, 2010.
Carter, W., Heo, G., Cocker, D., and Nakao, S.: SOA formation: Chamber study and model development. Final report to the California Air Resources Board, Contract No. 08-326, Tech. rep., 2012.
Dabdub, D. and Seinfeld, J. H.: Air quality modeling on massively parallel computers, Atmos. Environ., 28, 1679–1687, 1994.
Dabdub, D. and Seinfeld, J. H.: Parallel computation in atmospheric chemical modeling, Parallel Comput., 22, 111–130, 1996.
Download
Short summary
The atmospheric oxidation of aromatic compounds is an important source of aerosol-forming species, and thus contributes to pollution in urban areas. However, details of the mechanisms by which oxidation occurs are only recently being elucidated. Here we report the incorporation of a newly developed mechanism for aromatic oxidation into the UCI-CIT regional air quality model. Results suggest an unexpected role for chemical pathways typically associated with cleaner environments.