Articles | Volume 9, issue 6
https://doi.org/10.5194/gmd-9-2143-2016
https://doi.org/10.5194/gmd-9-2143-2016
Model description paper
 | 
10 Jun 2016
Model description paper |  | 10 Jun 2016

Development of aroCACM/MPMPO 1.0: a model to simulate secondary organic aerosol from aromatic precursors in regional models

Matthew L. Dawson, Jialu Xu, Robert J. Griffin, and Donald Dabdub

Related authors

Measurement of gas-phase ammonia and amines in air by collection onto an ion exchange resin and analysis by ion chromatography
M. L. Dawson, V. Perraud, A. Gomez, K. D. Arquero, M. J. Ezell, and B. J. Finlayson-Pitts
Atmos. Meas. Tech., 7, 2733–2744, https://doi.org/10.5194/amt-7-2733-2014,https://doi.org/10.5194/amt-7-2733-2014, 2014

Related subject area

Atmospheric sciences
GAN-argcPredNet v2.0: a radar echo extrapolation model based on spatiotemporal process enhancement
Kun Zheng, Qiya Tan, Huihua Ruan, Jinbiao Zhang, Cong Luo, Siyu Tang, Yunlei Yi, Yugang Tian, and Jianmei Cheng
Geosci. Model Dev., 17, 399–413, https://doi.org/10.5194/gmd-17-399-2024,https://doi.org/10.5194/gmd-17-399-2024, 2024
Short summary
Analysis of the GEFS-Aerosols annual budget to better understand aerosol predictions simulated in the model
Li Pan, Partha S. Bhattacharjee, Li Zhang, Raffaele Montuoro, Barry Baker, Jeff McQueen, Georg A. Grell, Stuart A. McKeen, Shobha Kondragunta, Xiaoyang Zhang, Gregory J. Frost, Fanglin Yang, and Ivanka Stajner
Geosci. Model Dev., 17, 431–447, https://doi.org/10.5194/gmd-17-431-2024,https://doi.org/10.5194/gmd-17-431-2024, 2024
Short summary
A model for rapid PM2.5 exposure estimates in wildfire conditions using routinely available data: rapidfire v0.1.3
Sean Raffuse, Susan O'Neill, and Rebecca Schmidt
Geosci. Model Dev., 17, 381–397, https://doi.org/10.5194/gmd-17-381-2024,https://doi.org/10.5194/gmd-17-381-2024, 2024
Short summary
BoundaryLayerDynamics.jl v1.0: a modern codebase for atmospheric boundary-layer simulations
Manuel F. Schmid, Marco G. Giometto, Gregory A. Lawrence, and Marc B. Parlange
Geosci. Model Dev., 17, 321–333, https://doi.org/10.5194/gmd-17-321-2024,https://doi.org/10.5194/gmd-17-321-2024, 2024
Short summary
The wave-age-dependent stress parameterisation (WASP) for momentum and heat turbulent fluxes at sea in SURFEX v8.1
Marie-Noëlle Bouin, Cindy Lebeaupin Brossier, Sylvie Malardel, Aurore Voldoire, and César Sauvage
Geosci. Model Dev., 17, 117–141, https://doi.org/10.5194/gmd-17-117-2024,https://doi.org/10.5194/gmd-17-117-2024, 2024
Short summary

Cited articles

Ashworth, K., Chung, S. H., Griffin, R. J., Chen, J., Forkel, R., Bryan, A. M., and Steiner, A. L.: FORest Canopy Atmosphere Transfer (FORCAsT) 1.0: a 1-D model of biosphere–atmosphere chemical exchange, Geosci. Model Dev., 8, 3765–3784, https://doi.org/10.5194/gmd-8-3765-2015, 2015.
Carreras-Sospedra, M., Vutukuru, S., Brouwer, J., and Dabdub, D.: Central power generation versus distributed generation – An air quality assessment in the South Coast Air Basin of California, Atmos. Environ., 44, 3215–3223, 2010.
Carter, W., Heo, G., Cocker, D., and Nakao, S.: SOA formation: Chamber study and model development. Final report to the California Air Resources Board, Contract No. 08-326, Tech. rep., 2012.
Dabdub, D. and Seinfeld, J. H.: Air quality modeling on massively parallel computers, Atmos. Environ., 28, 1679–1687, 1994.
Dabdub, D. and Seinfeld, J. H.: Parallel computation in atmospheric chemical modeling, Parallel Comput., 22, 111–130, 1996.
Download
Short summary
The atmospheric oxidation of aromatic compounds is an important source of aerosol-forming species, and thus contributes to pollution in urban areas. However, details of the mechanisms by which oxidation occurs are only recently being elucidated. Here we report the incorporation of a newly developed mechanism for aromatic oxidation into the UCI-CIT regional air quality model. Results suggest an unexpected role for chemical pathways typically associated with cleaner environments.