Articles | Volume 9, issue 5
https://doi.org/10.5194/gmd-9-1921-2016
https://doi.org/10.5194/gmd-9-1921-2016
Development and technical paper
 | 
25 May 2016
Development and technical paper |  | 25 May 2016

Evaluation of the Plant–Craig stochastic convection scheme (v2.0) in the ensemble forecasting system MOGREPS-R (24 km) based on the Unified Model (v7.3)

Richard J. Keane, Robert S. Plant, and Warren J. Tennant

Related authors

A climatology of tropical wind shear produced by clustering wind profiles from the Met Office Unified Model (GA7.0)
Mark R. Muetzelfeldt, Robert S. Plant, Peter A. Clark, Alison J. Stirling, and Steven J. Woolnough
Geosci. Model Dev., 14, 4035–4049, https://doi.org/10.5194/gmd-14-4035-2021,https://doi.org/10.5194/gmd-14-4035-2021, 2021
Short summary
The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations
David Walters, Anthony J. Baran, Ian Boutle, Malcolm Brooks, Paul Earnshaw, John Edwards, Kalli Furtado, Peter Hill, Adrian Lock, James Manners, Cyril Morcrette, Jane Mulcahy, Claudio Sanchez, Chris Smith, Rachel Stratton, Warren Tennant, Lorenzo Tomassini, Kwinten Van Weverberg, Simon Vosper, Martin Willett, Jo Browse, Andrew Bushell, Kenneth Carslaw, Mohit Dalvi, Richard Essery, Nicola Gedney, Steven Hardiman, Ben Johnson, Colin Johnson, Andy Jones, Colin Jones, Graham Mann, Sean Milton, Heather Rumbold, Alistair Sellar, Masashi Ujiie, Michael Whitall, Keith Williams, and Mohamed Zerroukat
Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019,https://doi.org/10.5194/gmd-12-1909-2019, 2019
Short summary
The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations
David Walters, Ian Boutle, Malcolm Brooks, Thomas Melvin, Rachel Stratton, Simon Vosper, Helen Wells, Keith Williams, Nigel Wood, Thomas Allen, Andrew Bushell, Dan Copsey, Paul Earnshaw, John Edwards, Markus Gross, Steven Hardiman, Chris Harris, Julian Heming, Nicholas Klingaman, Richard Levine, James Manners, Gill Martin, Sean Milton, Marion Mittermaier, Cyril Morcrette, Thomas Riddick, Malcolm Roberts, Claudio Sanchez, Paul Selwood, Alison Stirling, Chris Smith, Dan Suri, Warren Tennant, Pier Luigi Vidale, Jonathan Wilkinson, Martin Willett, Steve Woolnough, and Prince Xavier
Geosci. Model Dev., 10, 1487–1520, https://doi.org/10.5194/gmd-10-1487-2017,https://doi.org/10.5194/gmd-10-1487-2017, 2017
Short summary

Related subject area

Atmospheric sciences
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024,https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024,https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024,https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024,https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Impact of ITCZ width on global climate: ITCZ-MIP
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024,https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary

Cited articles

Abhilash, S., Sahai, A. K., Pattnaik, S., Goswami, B. N., and Kumar, A.: Extended range prediction of active-break spells of Indian summer monsoon rainfall using an ensemble prediction system in NCEP Climate Forecast System, Int. J. Climatol., 34, 98–113, https://doi.org/10.1002/joc.3668, 2013.
Ball, M. A. and Plant, R. S.: Comparison of stochastic parameterization approaches in a single-column model, Phil. Trans. Roy. Soc. A, 366, 2605–2623, 2008.
Bechtold, P.: Convection in global numerical weather prediction, in: Parameterization of Atmospheric Convection. Volume 2: Current Issues and New Theories, edited by: Plant, R. S. and Yano, J.-I., chap. 15, World Scientific, Imperial College Press, 5–45, 2015.
Ben Bouallègue, Z.: Assessment and added value estimation of an ensemble approach with a focus on global radiation, Mausam, Q. J. Meteorol. Hydrol. Geophys., 66, 541–550, 2015.
Bengtsson, L., Steinheimer, M., Bechtold, P., and Geleyn, J.-F.: A stochastic parametrization for deep convection using cellular automata, Q. J. Roy. Meteor. Soc., 139, 1533–1543, https://doi.org/10.1002/qj.2108, 2013.
Download
Short summary
A widely studied stochastic deep convection scheme is evaluated over an extended forecasting period for the first time. It is found to significantly improve the probabilistic forecast for weakly forced cases – which tend to be less predictable – and to be comparable to a well-tuned reference scheme for strongly forced cases. A newly developed verification metric is applied to provide evidence that the improved probabilistic forecast is in large part due to the stochasticity of the scheme.