Articles | Volume 9, issue 5
https://doi.org/10.5194/gmd-9-1921-2016
https://doi.org/10.5194/gmd-9-1921-2016
Development and technical paper
 | 
25 May 2016
Development and technical paper |  | 25 May 2016

Evaluation of the Plant–Craig stochastic convection scheme (v2.0) in the ensemble forecasting system MOGREPS-R (24 km) based on the Unified Model (v7.3)

Richard J. Keane, Robert S. Plant, and Warren J. Tennant

Related authors

A climatology of tropical wind shear produced by clustering wind profiles from the Met Office Unified Model (GA7.0)
Mark R. Muetzelfeldt, Robert S. Plant, Peter A. Clark, Alison J. Stirling, and Steven J. Woolnough
Geosci. Model Dev., 14, 4035–4049, https://doi.org/10.5194/gmd-14-4035-2021,https://doi.org/10.5194/gmd-14-4035-2021, 2021
Short summary
The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations
David Walters, Anthony J. Baran, Ian Boutle, Malcolm Brooks, Paul Earnshaw, John Edwards, Kalli Furtado, Peter Hill, Adrian Lock, James Manners, Cyril Morcrette, Jane Mulcahy, Claudio Sanchez, Chris Smith, Rachel Stratton, Warren Tennant, Lorenzo Tomassini, Kwinten Van Weverberg, Simon Vosper, Martin Willett, Jo Browse, Andrew Bushell, Kenneth Carslaw, Mohit Dalvi, Richard Essery, Nicola Gedney, Steven Hardiman, Ben Johnson, Colin Johnson, Andy Jones, Colin Jones, Graham Mann, Sean Milton, Heather Rumbold, Alistair Sellar, Masashi Ujiie, Michael Whitall, Keith Williams, and Mohamed Zerroukat
Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019,https://doi.org/10.5194/gmd-12-1909-2019, 2019
Short summary
The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations
David Walters, Ian Boutle, Malcolm Brooks, Thomas Melvin, Rachel Stratton, Simon Vosper, Helen Wells, Keith Williams, Nigel Wood, Thomas Allen, Andrew Bushell, Dan Copsey, Paul Earnshaw, John Edwards, Markus Gross, Steven Hardiman, Chris Harris, Julian Heming, Nicholas Klingaman, Richard Levine, James Manners, Gill Martin, Sean Milton, Marion Mittermaier, Cyril Morcrette, Thomas Riddick, Malcolm Roberts, Claudio Sanchez, Paul Selwood, Alison Stirling, Chris Smith, Dan Suri, Warren Tennant, Pier Luigi Vidale, Jonathan Wilkinson, Martin Willett, Steve Woolnough, and Prince Xavier
Geosci. Model Dev., 10, 1487–1520, https://doi.org/10.5194/gmd-10-1487-2017,https://doi.org/10.5194/gmd-10-1487-2017, 2017
Short summary

Related subject area

Atmospheric sciences
Improving trajectory calculations by FLEXPART 10.4+ using single-image super-resolution
Rüdiger Brecht, Lucie Bakels, Alex Bihlo, and Andreas Stohl
Geosci. Model Dev., 16, 2181–2192, https://doi.org/10.5194/gmd-16-2181-2023,https://doi.org/10.5194/gmd-16-2181-2023, 2023
Short summary
Data fusion uncertainty-enabled methods to map street-scale hourly NO2 in Barcelona: a case study with CALIOPE-Urban v1.0
Alvaro Criado, Jan Mateu Armengol, Hervé Petetin, Daniel Rodriguez-Rey, Jaime Benavides, Marc Guevara, Carlos Pérez García-Pando, Albert Soret, and Oriol Jorba
Geosci. Model Dev., 16, 2193–2213, https://doi.org/10.5194/gmd-16-2193-2023,https://doi.org/10.5194/gmd-16-2193-2023, 2023
Short summary
Forecasting tropical cyclone tracks in the northwestern Pacific based on a deep-learning model
Liang Wang, Bingcheng Wan, Shaohui Zhou, Haofei Sun, and Zhiqiu Gao
Geosci. Model Dev., 16, 2167–2179, https://doi.org/10.5194/gmd-16-2167-2023,https://doi.org/10.5194/gmd-16-2167-2023, 2023
Short summary
Accelerating models for multiphase chemical kinetics through machine learning with polynomial chaos expansion and neural networks
Thomas Berkemeier, Matteo Krüger, Aryeh Feinberg, Marcel Müller, Ulrich Pöschl, and Ulrich K. Krieger
Geosci. Model Dev., 16, 2037–2054, https://doi.org/10.5194/gmd-16-2037-2023,https://doi.org/10.5194/gmd-16-2037-2023, 2023
Short summary
A machine learning emulator for Lagrangian particle dispersion model footprints: a case study using NAME
Elena Fillola, Raul Santos-Rodriguez, Alistair Manning, Simon O'Doherty, and Matt Rigby
Geosci. Model Dev., 16, 1997–2009, https://doi.org/10.5194/gmd-16-1997-2023,https://doi.org/10.5194/gmd-16-1997-2023, 2023
Short summary

Cited articles

Abhilash, S., Sahai, A. K., Pattnaik, S., Goswami, B. N., and Kumar, A.: Extended range prediction of active-break spells of Indian summer monsoon rainfall using an ensemble prediction system in NCEP Climate Forecast System, Int. J. Climatol., 34, 98–113, https://doi.org/10.1002/joc.3668, 2013.
Ball, M. A. and Plant, R. S.: Comparison of stochastic parameterization approaches in a single-column model, Phil. Trans. Roy. Soc. A, 366, 2605–2623, 2008.
Bechtold, P.: Convection in global numerical weather prediction, in: Parameterization of Atmospheric Convection. Volume 2: Current Issues and New Theories, edited by: Plant, R. S. and Yano, J.-I., chap. 15, World Scientific, Imperial College Press, 5–45, 2015.
Ben Bouallègue, Z.: Assessment and added value estimation of an ensemble approach with a focus on global radiation, Mausam, Q. J. Meteorol. Hydrol. Geophys., 66, 541–550, 2015.
Bengtsson, L., Steinheimer, M., Bechtold, P., and Geleyn, J.-F.: A stochastic parametrization for deep convection using cellular automata, Q. J. Roy. Meteor. Soc., 139, 1533–1543, https://doi.org/10.1002/qj.2108, 2013.
Download
Short summary
A widely studied stochastic deep convection scheme is evaluated over an extended forecasting period for the first time. It is found to significantly improve the probabilistic forecast for weakly forced cases – which tend to be less predictable – and to be comparable to a well-tuned reference scheme for strongly forced cases. A newly developed verification metric is applied to provide evidence that the improved probabilistic forecast is in large part due to the stochasticity of the scheme.