Articles | Volume 9, issue 1
https://doi.org/10.5194/gmd-9-111-2016
https://doi.org/10.5194/gmd-9-111-2016
Model description paper
 | 
19 Jan 2016
Model description paper |  | 19 Jan 2016

Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

M. D. Petters, S. M. Kreidenweis, and P. J. Ziemann

Related authors

Wind-driven emissions of coarse-mode particles in an urban environment
Markus D. Petters, Tyas Pujiastuti, Ajmal Rasheeda Satheesh, Sabin Kasparoglu, Bethany Sutherland, and Nicholas Meskhidze
Atmos. Chem. Phys., 24, 745–762, https://doi.org/10.5194/acp-24-745-2024,https://doi.org/10.5194/acp-24-745-2024, 2024
Short summary
Characterization of a modified printed optical particle spectrometer for high-frequency and high-precision laboratory and field measurements
Sabin Kasparoglu, Mohammad Maksimul Islam, Nicholas Meskhidze, and Markus D. Petters
Atmos. Meas. Tech., 15, 5007–5018, https://doi.org/10.5194/amt-15-5007-2022,https://doi.org/10.5194/amt-15-5007-2022, 2022
Short summary
Revisiting matrix-based inversion of scanning mobility particle sizer (SMPS) and humidified tandem differential mobility analyzer (HTDMA) data
Markus D. Petters
Atmos. Meas. Tech., 14, 7909–7928, https://doi.org/10.5194/amt-14-7909-2021,https://doi.org/10.5194/amt-14-7909-2021, 2021
Short summary
Toward closure between predicted and observed particle viscosity over a wide range of temperatures and relative humidity
Sabin Kasparoglu, Ying Li, Manabu Shiraiwa, and Markus D. Petters
Atmos. Chem. Phys., 21, 1127–1141, https://doi.org/10.5194/acp-21-1127-2021,https://doi.org/10.5194/acp-21-1127-2021, 2021
Short summary
Classification of aerosol population type and cloud condensation nuclei properties in a coastal California littoral environment using an unsupervised cluster model
Samuel A. Atwood, Sonia M. Kreidenweis, Paul J. DeMott, Markus D. Petters, Gavin C. Cornwell, Andrew C. Martin, and Kathryn A. Moore
Atmos. Chem. Phys., 19, 6931–6947, https://doi.org/10.5194/acp-19-6931-2019,https://doi.org/10.5194/acp-19-6931-2019, 2019
Short summary

Related subject area

Atmospheric sciences
Decision Support System version 1.0 (DSS v1.0) for air quality management in Delhi, India
Gaurav Govardhan, Sachin D. Ghude, Rajesh Kumar, Sumit Sharma, Preeti Gunwani, Chinmay Jena, Prafull Yadav, Shubhangi Ingle, Sreyashi Debnath, Pooja Pawar, Prodip Acharja, Rajmal Jat, Gayatry Kalita, Rupal Ambulkar, Santosh Kulkarni, Akshara Kaginalkar, Vijay K. Soni, Ravi S. Nanjundiah, and Madhavan Rajeevan
Geosci. Model Dev., 17, 2617–2640, https://doi.org/10.5194/gmd-17-2617-2024,https://doi.org/10.5194/gmd-17-2617-2024, 2024
Short summary
How non-equilibrium aerosol chemistry impacts particle acidity: the GMXe AERosol CHEMistry (GMXe–AERCHEM, v1.0) sub-submodel of MESSy
Simon Rosanka, Holger Tost, Rolf Sander, Patrick Jöckel, Astrid Kerkweg, and Domenico Taraborrelli
Geosci. Model Dev., 17, 2597–2615, https://doi.org/10.5194/gmd-17-2597-2024,https://doi.org/10.5194/gmd-17-2597-2024, 2024
Short summary
A grid model for vertical correction of precipitable water vapor over the Chinese mainland and surrounding areas using random forest
Junyu Li, Yuxin Wang, Lilong Liu, Yibin Yao, Liangke Huang, and Feijuan Li
Geosci. Model Dev., 17, 2569–2581, https://doi.org/10.5194/gmd-17-2569-2024,https://doi.org/10.5194/gmd-17-2569-2024, 2024
Short summary
MEXPLORER 1.0.0 – a mechanism explorer for analysis and visualization of chemical reaction pathways based on graph theory
Rolf Sander
Geosci. Model Dev., 17, 2419–2425, https://doi.org/10.5194/gmd-17-2419-2024,https://doi.org/10.5194/gmd-17-2419-2024, 2024
Short summary
Advances and prospects of deep learning for medium-range extreme weather forecasting
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 2347–2358, https://doi.org/10.5194/gmd-17-2347-2024,https://doi.org/10.5194/gmd-17-2347-2024, 2024
Short summary

Cited articles

Amundson, N. R., Caboussat, A., He, J. W., and Seinfeld, J. H.: An optimization problem related to the modeling of atmospheric organic aerosols, C. R. Acad. Sci. Paris Ser. I, 340, 765–768, https://doi.org/10.1016/j.crma.2005.04.018, 2005.
Amundson, N. R., Caboussat, A., He, J. W., Martynenko, A. V., Landry, C., Tong, C., and Seinfeld, J. H.: A new atmospheric aerosol phase equilibrium model (UHAERO): organic systems, Atmos. Chem. Phys., 7, 4675–4698, https://doi.org/10.5194/acp-7-4675-2007, 2007.
Andreae, M. O. and Rosenfeld, D.: Aerosol–cloud–precipitation interactions, Part 1. The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008.
Barley, M. H., Topping, D. O., and McFiggans, G.: The critical assessment of liquid density estimation methods for multifunctional organic compounds, J. Phys. Chem. A, 117, 3428–3441, https://doi.org/10.1021/jp304547r, 2013.
Bilde, M. and Svenningsson, B.: CCN activation of slightly soluble organics: The importance of small amounts of inorganic salt and particle phase, Tellus, 56B, 128–134, https://doi.org/10.1111/j.1600-0889.2004.00090.x, 2004
Download
Short summary
Organic particles suspended in air serve as nucleation seeds for droplets in atmospheric clouds. Over time their chemical composition changes towards more functionalized compounds. This work presents a model that can predict an organic compounds' ability promote the nucleation of cloud drops from its functional group composition. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote droplet nucleation. Methylene and nitrate moieties inhibit droplet nucleation.