Articles | Volume 9, issue 1
https://doi.org/10.5194/gmd-9-111-2016
https://doi.org/10.5194/gmd-9-111-2016
Model description paper
 | 
19 Jan 2016
Model description paper |  | 19 Jan 2016

Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

M. D. Petters, S. M. Kreidenweis, and P. J. Ziemann

Related authors

Field intercomparison of ice nucleation measurements: the Fifth International Workshop on Ice Nucleation Phase 3 (FIN-03)
Paul J. DeMott, Jessica A. Mirrielees, Sarah Suda Petters, Daniel J. Cziczo, Markus D. Petters, Heinz G. Bingemer, Thomas C. J. Hill, Karl Froyd, Sarvesh Garimella, A. Gannet Hallar, Ezra J. T. Levin, Ian B. McCubbin, Anne E. Perring, Christopher N. Rapp, Thea Schiebel, Jann Schrod, Kaitlyn J. Suski, Daniel Weber, Martin J. Wolf, Maria Zawadowicz, Jake Zenker, Ottmar Möhler, and Sarah D. Brooks
Atmos. Meas. Tech., 18, 639–672, https://doi.org/10.5194/amt-18-639-2025,https://doi.org/10.5194/amt-18-639-2025, 2025
Short summary
Wind-driven emissions of coarse-mode particles in an urban environment
Markus D. Petters, Tyas Pujiastuti, Ajmal Rasheeda Satheesh, Sabin Kasparoglu, Bethany Sutherland, and Nicholas Meskhidze
Atmos. Chem. Phys., 24, 745–762, https://doi.org/10.5194/acp-24-745-2024,https://doi.org/10.5194/acp-24-745-2024, 2024
Short summary
Characterization of a modified printed optical particle spectrometer for high-frequency and high-precision laboratory and field measurements
Sabin Kasparoglu, Mohammad Maksimul Islam, Nicholas Meskhidze, and Markus D. Petters
Atmos. Meas. Tech., 15, 5007–5018, https://doi.org/10.5194/amt-15-5007-2022,https://doi.org/10.5194/amt-15-5007-2022, 2022
Short summary
Revisiting matrix-based inversion of scanning mobility particle sizer (SMPS) and humidified tandem differential mobility analyzer (HTDMA) data
Markus D. Petters
Atmos. Meas. Tech., 14, 7909–7928, https://doi.org/10.5194/amt-14-7909-2021,https://doi.org/10.5194/amt-14-7909-2021, 2021
Short summary
Toward closure between predicted and observed particle viscosity over a wide range of temperatures and relative humidity
Sabin Kasparoglu, Ying Li, Manabu Shiraiwa, and Markus D. Petters
Atmos. Chem. Phys., 21, 1127–1141, https://doi.org/10.5194/acp-21-1127-2021,https://doi.org/10.5194/acp-21-1127-2021, 2021
Short summary

Related subject area

Atmospheric sciences
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
Felipe Cifuentes, Henk Eskes, Enrico Dammers, Charlotte Bryan, and Folkert Boersma
Geosci. Model Dev., 18, 621–649, https://doi.org/10.5194/gmd-18-621-2025,https://doi.org/10.5194/gmd-18-621-2025, 2025
Short summary
Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025,https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary
Quantifying uncertainties in satellite NO2 superobservations for data assimilation and model evaluation
Pieter Rijsdijk, Henk Eskes, Arlene Dingemans, K. Folkert Boersma, Takashi Sekiya, Kazuyuki Miyazaki, and Sander Houweling
Geosci. Model Dev., 18, 483–509, https://doi.org/10.5194/gmd-18-483-2025,https://doi.org/10.5194/gmd-18-483-2025, 2025
Short summary
ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025,https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary
Coupling the urban canopy model TEB (SURFEXv9.0) with the radiation model SPARTACUS-Urbanv0.6.1 for more realistic urban radiative exchange calculation
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025,https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary

Cited articles

Amundson, N. R., Caboussat, A., He, J. W., and Seinfeld, J. H.: An optimization problem related to the modeling of atmospheric organic aerosols, C. R. Acad. Sci. Paris Ser. I, 340, 765–768, https://doi.org/10.1016/j.crma.2005.04.018, 2005.
Amundson, N. R., Caboussat, A., He, J. W., Martynenko, A. V., Landry, C., Tong, C., and Seinfeld, J. H.: A new atmospheric aerosol phase equilibrium model (UHAERO): organic systems, Atmos. Chem. Phys., 7, 4675–4698, https://doi.org/10.5194/acp-7-4675-2007, 2007.
Andreae, M. O. and Rosenfeld, D.: Aerosol–cloud–precipitation interactions, Part 1. The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008.
Barley, M. H., Topping, D. O., and McFiggans, G.: The critical assessment of liquid density estimation methods for multifunctional organic compounds, J. Phys. Chem. A, 117, 3428–3441, https://doi.org/10.1021/jp304547r, 2013.
Bilde, M. and Svenningsson, B.: CCN activation of slightly soluble organics: The importance of small amounts of inorganic salt and particle phase, Tellus, 56B, 128–134, https://doi.org/10.1111/j.1600-0889.2004.00090.x, 2004
Download
Short summary
Organic particles suspended in air serve as nucleation seeds for droplets in atmospheric clouds. Over time their chemical composition changes towards more functionalized compounds. This work presents a model that can predict an organic compounds' ability promote the nucleation of cloud drops from its functional group composition. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote droplet nucleation. Methylene and nitrate moieties inhibit droplet nucleation.
Share