Articles | Volume 8, issue 1
https://doi.org/10.5194/gmd-8-99-2015
https://doi.org/10.5194/gmd-8-99-2015
Development and technical paper
 | 
29 Jan 2015
Development and technical paper |  | 29 Jan 2015

Photochemical grid model implementation and application of VOC, NOx, and O3 source apportionment

R. H. F. Kwok, K. R. Baker, S. L. Napelenok, and G. S. Tonnesen

Related authors

Comprehensive Air Quality Model With Extensions, v7.20: Formulation and Evaluation for Ozone and Particulate Matter Over the US
Christopher A. Emery, Kirk R. Baker, Gary M. Wilson, and Greg Yarwood
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-48,https://doi.org/10.5194/gmd-2024-48, 2024
Preprint withdrawn
Short summary
Summertime tropospheric ozone source apportionment study in the Madrid region (Spain)
David de la Paz, Rafael Borge, Juan Manuel de Andrés, Luis Tovar, Golam Sarwar, and Sergey L. Napelenok
Atmos. Chem. Phys., 24, 4949–4972, https://doi.org/10.5194/acp-24-4949-2024,https://doi.org/10.5194/acp-24-4949-2024, 2024
Short summary
Revisiting day-of-week ozone patterns in an era of evolving US air quality
Heather Simon, Christian Hogrefe, Andrew Whitehill, Kristen M. Foley, Jennifer Liljegren, Norm Possiel, Benjamin Wells, Barron H. Henderson, Lukas C. Valin, Gail Tonnesen, K. Wyat Appel, and Shannon Koplitz
Atmos. Chem. Phys., 24, 1855–1871, https://doi.org/10.5194/acp-24-1855-2024,https://doi.org/10.5194/acp-24-1855-2024, 2024
Short summary
Comparison of ozone formation attribution techniques in the northeastern United States
Qian Shu, Sergey L. Napelenok, William T. Hutzell, Kirk R. Baker, Barron H. Henderson, Benjamin N. Murphy, and Christian Hogrefe
Geosci. Model Dev., 16, 2303–2322, https://doi.org/10.5194/gmd-16-2303-2023,https://doi.org/10.5194/gmd-16-2303-2023, 2023
Short summary
Inferring and evaluating satellite-based constraints on NOx emissions estimates in air quality simulations
James D. East, Barron H. Henderson, Sergey L. Napelenok, Shannon N. Koplitz, Golam Sarwar, Robert Gilliam, Allen Lenzen, Daniel Q. Tong, R. Bradley Pierce, and Fernando Garcia-Menendez
Atmos. Chem. Phys., 22, 15981–16001, https://doi.org/10.5194/acp-22-15981-2022,https://doi.org/10.5194/acp-22-15981-2022, 2022
Short summary

Related subject area

Atmospheric sciences
The Modular and Integrated Data Assimilation System at Environment and Climate Change Canada (MIDAS v3.9.1)
Mark Buehner, Jean-Francois Caron, Ervig Lapalme, Alain Caya, Ping Du, Yves Rochon, Sergey Skachko, Maziar Bani Shahabadi, Sylvain Heilliette, Martin Deshaies-Jacques, Weiguang Chang, and Michael Sitwell
Geosci. Model Dev., 18, 1–18, https://doi.org/10.5194/gmd-18-1-2025,https://doi.org/10.5194/gmd-18-1-2025, 2025
Short summary
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024,https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary
LIMA (v2.0): A full two-moment cloud microphysical scheme for the mesoscale non-hydrostatic model Meso-NH v5-6
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024,https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024,https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024,https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary

Cited articles

Andreani-Aksoyoglu, S., Keller, J., and Prevot, A.: Air Pollution Modelling and Simulation, Proceedings, Applicability of indicator-based approach to assess ozone sensitivities: A model study in Switzerland. Springer-Verlag Berlin, Berlin. 21–29, 2002.
Anenberg, S. C., Horowitz, L. W., Tong, D. Q., and West, J.J.: An Estimate of the Global Burden of Anthropogenic Ozone and Fine Particulate Matter on Premature Human Mortality Using Atmospheric Modeling, Environ. Health Perspect., 118, 1189–1195, 2010.
Arunachalam, S.: Peer Review of Source Apportionment Tools in CAMx and CMAQ, UNC-Chapel Hill, Contract no. EP-D-07-102, Assignment no. 2-06, Version 2, 2010.
Bell, M. L., McDermott, A., Zeger, S. L., Samet, J. M., and Dominici, F.: Ozone and short-term mortality in 95 US urban communities, 1987–2000, J. Am. Med. Assoc., 292, 2372–2378, 2004.
Bergin, M. S., Russell, A. G., Odman, M. T., Cohan, D. S., and Chameides, W. L.: Single-Source Impact Analysis Using Three-Dimensional Air Quality Models, J. Air Waste Manage. Assoc., 58, 1351–1359, 2008.
Download
Short summary
The implementation and application of the Integrated Source Apportionment Method (ISAM) for O3 and its precursors for the Community Multiscale Air Quality (CMAQ) model are described. CMAQ-ISAM is a hybrid of source apportionment and source sensitivity in that O3 production is attributed to precursor sources based on the O3 formation regime. CMAQ-ISAM offers a source attribution tool for the purposes of quantifying and understanding sources and impacts of regional air pollution.