Articles | Volume 8, issue 3
https://doi.org/10.5194/gmd-8-697-2015
https://doi.org/10.5194/gmd-8-697-2015
Methods for assessment of models
 | 
23 Mar 2015
Methods for assessment of models |  | 23 Mar 2015

Mechanistic site-based emulation of a global ocean biogeochemical model (MEDUSA 1.0) for parametric analysis and calibration: an application of the Marine Model Optimization Testbed (MarMOT 1.1)

J. C. P. Hemmings, P. G. Challenor, and A. Yool

Related authors

Scenario choice impacts carbon allocation projection at global warming levels
Lee de Mora, Ranjini Swaminathan, Richard P. Allan, Jerry C. Blackford, Douglas I. Kelley, Phil Harris, Chris D. Jones, Colin G. Jones, Spencer Liddicoat, Robert J. Parker, Tristan Quaife, Jeremy Walton, and Andrew Yool
Earth Syst. Dynam., 14, 1295–1315, https://doi.org/10.5194/esd-14-1295-2023,https://doi.org/10.5194/esd-14-1295-2023, 2023
Short summary
The representation of alkalinity and the carbonate pump from CMIP5 to CMIP6 Earth system models and implications for the carbon cycle
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023,https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
UKESM1.1: development and evaluation of an updated configuration of the UK Earth System Model
Jane P. Mulcahy, Colin G. Jones, Steven T. Rumbold, Till Kuhlbrodt, Andrea J. Dittus, Edward W. Blockley, Andrew Yool, Jeremy Walton, Catherine Hardacre, Timothy Andrews, Alejandro Bodas-Salcedo, Marc Stringer, Lee de Mora, Phil Harris, Richard Hill, Doug Kelley, Eddy Robertson, and Yongming Tang
Geosci. Model Dev., 16, 1569–1600, https://doi.org/10.5194/gmd-16-1569-2023,https://doi.org/10.5194/gmd-16-1569-2023, 2023
Short summary
Reproducible and relocatable regional ocean modelling: fundamentals and practices
Jeff Polton, James Harle, Jason Holt, Anna Katavouta, Dale Partridge, Jenny Jardine, Sarah Wakelin, Julia Rulent, Anthony Wise, Katherine Hutchinson, David Byrne, Diego Bruciaferri, Enda O'Dea, Michela De Dominicis, Pierre Mathiot, Andrew Coward, Andrew Yool, Julien Palmiéri, Gennadi Lessin, Claudia Gabriela Mayorga-Adame, Valérie Le Guennec, Alex Arnold, and Clément Rousset
Geosci. Model Dev., 16, 1481–1510, https://doi.org/10.5194/gmd-16-1481-2023,https://doi.org/10.5194/gmd-16-1481-2023, 2023
Short summary
The simulation of mineral dust in the United Kingdom Earth System Model UKESM1
Stephanie Woodward, Alistair A. Sellar, Yongming Tang, Marc Stringer, Andrew Yool, Eddy Robertson, and Andy Wiltshire
Atmos. Chem. Phys., 22, 14503–14528, https://doi.org/10.5194/acp-22-14503-2022,https://doi.org/10.5194/acp-22-14503-2022, 2022
Short summary

Related subject area

Biogeosciences
Lambda-PFLOTRAN 1.0: a workflow for incorporating organic matter chemistry informed by ultra high resolution mass spectrometry into biogeochemical modeling
Katherine A. Muller, Peishi Jiang, Glenn Hammond, Tasneem Ahmadullah, Hyun-Seob Song, Ravi Kukkadapu, Nicholas Ward, Madison Bowe, Rosalie K. Chu, Qian Zhao, Vanessa A. Garayburu-Caruso, Alan Roebuck, and Xingyuan Chen
Geosci. Model Dev., 17, 8955–8968, https://doi.org/10.5194/gmd-17-8955-2024,https://doi.org/10.5194/gmd-17-8955-2024, 2024
Short summary
An improved model for air–sea exchange of elemental mercury in MITgcm-ECCOv4-Hg: the role of surfactants and waves
Ling Li, Peipei Wu, Peng Zhang, Shaojian Huang, and Yanxu Zhang
Geosci. Model Dev., 17, 8683–8695, https://doi.org/10.5194/gmd-17-8683-2024,https://doi.org/10.5194/gmd-17-8683-2024, 2024
Short summary
BOATSv2: new ecological and economic features improve simulations of high seas catch and effort
Jerome Guiet, Daniele Bianchi, Kim J. N. Scherrer, Ryan F. Heneghan, and Eric D. Galbraith
Geosci. Model Dev., 17, 8421–8454, https://doi.org/10.5194/gmd-17-8421-2024,https://doi.org/10.5194/gmd-17-8421-2024, 2024
Short summary
A dynamical process-based model for quantifying global agricultural ammonia emissions – AMmonia–CLIMate v1.0 (AMCLIM v1.0) – Part 1: Land module for simulating emissions from synthetic fertilizer use
Jize Jiang, David S. Stevenson, and Mark A. Sutton
Geosci. Model Dev., 17, 8181–8222, https://doi.org/10.5194/gmd-17-8181-2024,https://doi.org/10.5194/gmd-17-8181-2024, 2024
Short summary
Simulating Ips typographus L. outbreak dynamics and their influence on carbon balance estimates with ORCHIDEE r8627
Guillaume Marie, Jina Jeong, Hervé Jactel, Gunnar Petter, Maxime Cailleret, Matthew J. McGrath, Vladislav Bastrikov, Josefine Ghattas, Bertrand Guenet, Anne Sofie Lansø, Kim Naudts, Aude Valade, Chao Yue, and Sebastiaan Luyssaert
Geosci. Model Dev., 17, 8023–8047, https://doi.org/10.5194/gmd-17-8023-2024,https://doi.org/10.5194/gmd-17-8023-2024, 2024
Short summary

Cited articles

Arhonditsis, G. B., Papantou, D., Zhang, W., Perhar, G., Massos, E., and Shi, M.:. Bayesian calibration of mechanistic aquatic biogeochemical models and benefits for environmental management, J. Marine Syst., 73, 8–30, 2008.
Aumont, O. and Bopp, L.: Globalizing results from ocean in situ iron fertilization studies, Global Biogeochem. Cycles, 20, GB2017, https://doi.org/10.1029/2005GB002591, 2006.
Campbell, J. W.: The lognormal distribution as a model for bio-optical variability in the sea, J. Geophys. Res., 100, 13237–13254, 1995.
Doron, M., Brasseur, P., Brankart, J.-M., Losa, S. N., and Melet, A.: Stochastic estimation of biogeochemical parameters from Globcolour ocean colour satellite data in a North Atlantic 3-D ocean coupled physical-biogeochemical model, J. Marine Syst., 117–118, 81–95, 2013.
Dowd, M.: Estimating parameters for a stochastic dynamic marine ecological system, Environmetrics, 22, 501–515, https://doi.org/10.1002/env.1083, 2011.
Download
Short summary
Effective calibration of global models is inhibited by the computational demands of 3-D simulations. As a solution for the NEMO-MEDUSA model, we present an efficient emulator of surface chlorophyll as a function of MEDUSA’s biogeochemical parameters. The emulator comprises an array of site-based 1-D simulators and a quantification of uncertainty in their predictions. It is able to produce robust probabilistic estimates of 3-D model output rapidly for comparison with satellite chlorophyll.