Articles | Volume 8, issue 3
Development and technical paper
20 Mar 2015
Development and technical paper |  | 20 Mar 2015

Generalized background error covariance matrix model (GEN_BE v2.0)

G. Descombes, T. Auligné, F. Vandenberghe, D. M. Barker, and J. Barré

Related authors

Quantifying errors in surface ozone predictions associated with clouds over the CONUS: a WRF-Chem modeling study using satellite cloud retrievals
Young-Hee Ryu, Alma Hodzic, Jerome Barre, Gael Descombes, and Patrick Minnis
Atmos. Chem. Phys., 18, 7509–7525,,, 2018
Short summary
A method for retrieving clouds with satellite infrared radiances using the particle filter
Dongmei Xu, Thomas Auligné, Gaël Descombes, and Chris Snyder
Geosci. Model Dev., 9, 3919–3932,,, 2016
Short summary

Related subject area

Atmospheric sciences
Effects of vertical grid spacing on the climate simulated in the ICON-Sapphire global storm-resolving model
Hauke Schmidt, Sebastian Rast, Jiawei Bao, Amrit Cassim, Shih-Wei Fang, Diego Jimenez-de la Cuesta, Paul Keil, Lukas Kluft, Clarissa Kroll, Theresa Lang, Ulrike Niemeier, Andrea Schneidereit, Andrew I. L. Williams, and Bjorn Stevens
Geosci. Model Dev., 17, 1563–1584,,, 2024
Short summary
Development of the tangent linear and adjoint models of the global online chemical transport model MPAS-CO2 v7.3
Tao Zheng, Sha Feng, Jeffrey Steward, Xiaoxu Tian, David Baker, and Martin Baxter
Geosci. Model Dev., 17, 1543–1562,,, 2024
Short summary
Impacts of updated reaction kinetics on the global GEOS-Chem simulation of atmospheric chemistry
Kelvin H. Bates, Mathew J. Evans, Barron H. Henderson, and Daniel J. Jacob
Geosci. Model Dev., 17, 1511–1524,,, 2024
Short summary
Spatial spin-up of precipitation in limited-area convection-permitting simulations over North America using the CRCM6/GEM5.0 model
François Roberge, Alejandro Di Luca, René Laprise, Philippe Lucas-Picher, and Julie Thériault
Geosci. Model Dev., 17, 1497–1510,,, 2024
Short summary
Sensitivity of atmospheric rivers to aerosol treatment in regional climate simulations: insights from the AIRA identification algorithm
Eloisa Raluy-López, Juan Pedro Montávez, and Pedro Jiménez-Guerrero
Geosci. Model Dev., 17, 1469–1495,,, 2024
Short summary

Cited articles

Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Avellano, A.: The data assimilation research testbed: A community facility, B. Am. Meteorol. Soc., 90, 1283–1296,, 2009.
Auligné, T., Lorenc, A., Michel, Y., Montmerle, T., Jones, A., Hu, M., and Dudhia, J.: Toward a New Cloud Analysis and Prediction System, B. Am. Meteorol. Soc., 92, 207–210,, 2011.
Austin, J.: Toward the 4-dimensional assimilation of stratospheric chemical-constituents, J. Geophys. Res., 97, 2569–2588, 1992.
Bannister, R. N.: A review of forecast error covariance statistics in atmospheric variational data assimilation. I: Characterisitics and measurements of forecast error covariances, Q. J. Roy. Meteor. Soc., 134, 1951–1970,, 2008a.
Bannister, R. N.: A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error statistics, Q. J. Roy. Meteor. Soc., 134, 1971–1996,, 2008b.