Articles | Volume 8, issue 3
Geosci. Model Dev., 8, 669–696, 2015

Special issue: The community version of the Weather Research and Forecasting...

Geosci. Model Dev., 8, 669–696, 2015

Development and technical paper 20 Mar 2015

Development and technical paper | 20 Mar 2015

Generalized background error covariance matrix model (GEN_BE v2.0)

G. Descombes et al.

Related authors

Quantifying errors in surface ozone predictions associated with clouds over the CONUS: a WRF-Chem modeling study using satellite cloud retrievals
Young-Hee Ryu, Alma Hodzic, Jerome Barre, Gael Descombes, and Patrick Minnis
Atmos. Chem. Phys., 18, 7509–7525,,, 2018
Short summary
A method for retrieving clouds with satellite infrared radiances using the particle filter
Dongmei Xu, Thomas Auligné, Gaël Descombes, and Chris Snyder
Geosci. Model Dev., 9, 3919–3932,,, 2016
Short summary

Related subject area

Atmospheric Sciences
Implementation of a synthetic inflow turbulence generator in idealised WRF v3.6.1 large eddy simulations under neutral atmospheric conditions
Jian Zhong, Xiaoming Cai, and Zheng-Tong Xie
Geosci. Model Dev., 14, 323–336,,, 2021
Short summary
Numerical study of the effects of initial conditions and emissions on PM2.5 concentration simulations with CAMx v6.1: a Xi'an case study
Han Xiao, Qizhong Wu, Xiaochun Yang, Lanning Wang, and Huaqiong Cheng
Geosci. Model Dev., 14, 223–238,,, 2021
Short summary
A multi-year short-range hindcast experiment with CESM1 for evaluating climate model moist processes from diurnal to interannual timescales
Hsi-Yen Ma, Chen Zhou, Yunyan Zhang, Stephen A. Klein, Mark D. Zelinka, Xue Zheng, Shaocheng Xie, Wei-Ting Chen, and Chien-Ming Wu
Geosci. Model Dev., 14, 73–90,,, 2021
Short summary
Ground-based lidar processing and simulator framework for comparing models and observations (ALCF 1.0)
Peter Kuma, Adrian J. McDonald, Olaf Morgenstern, Richard Querel, Israel Silber, and Connor J. Flynn
Geosci. Model Dev., 14, 43–72,,, 2021
Development of an Ozone Monitoring Instrument (OMI) aerosol index (AI) data assimilation scheme for aerosol modeling over bright surfaces – a step toward direct radiance assimilation in the UV spectrum
Jianglong Zhang, Robert J. D. Spurr, Jeffrey S. Reid, Peng Xian, Peter R. Colarco, James R. Campbell, Edward J. Hyer, and Nancy L. Baker
Geosci. Model Dev., 14, 27–42,,, 2021
Short summary

Cited articles

Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Avellano, A.: The data assimilation research testbed: A community facility, B. Am. Meteorol. Soc., 90, 1283–1296,, 2009.
Auligné, T., Lorenc, A., Michel, Y., Montmerle, T., Jones, A., Hu, M., and Dudhia, J.: Toward a New Cloud Analysis and Prediction System, B. Am. Meteorol. Soc., 92, 207–210,, 2011.
Austin, J.: Toward the 4-dimensional assimilation of stratospheric chemical-constituents, J. Geophys. Res., 97, 2569–2588, 1992.
Bannister, R. N.: A review of forecast error covariance statistics in atmospheric variational data assimilation. I: Characterisitics and measurements of forecast error covariances, Q. J. Roy. Meteor. Soc., 134, 1951–1970,, 2008a.
Bannister, R. N.: A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error statistics, Q. J. Roy. Meteor. Soc., 134, 1971–1996,, 2008b.