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Abstract. The specification of state background error statis-

tics is a key component of data assimilation since it affects

the impact observations will have on the analysis. In the vari-

ational data assimilation approach, applied in geophysical

sciences, the dimensions of the background error covariance

matrix (B) are usually too large to be explicitly determined

and B needs to be modeled. Recent efforts to include new

variables in the analysis such as cloud parameters and chem-

ical species have required the development of the code to

GENerate the Background Errors (GEN_BE) version 2.0 for

the Weather Research and Forecasting (WRF) community

model. GEN_BE allows for a simpler, flexible, robust, and

community-oriented framework that gathers methods used

by some meteorological operational centers and researchers.

We present the advantages of this new design for the data

assimilation community by performing benchmarks of dif-

ferent modeling of B and showing some of the new features

in data assimilation test cases. As data assimilation for clouds

remains a challenge, we present a multivariate approach that

includes hydrometeors in the control variables and new cor-

related errors. In addition, the GEN_BE v2.0 code is em-

ployed to diagnose error parameter statistics for chemical

species, which shows that it is a tool flexible enough to im-

plement new control variables. While the generation of the

background errors statistics code was first developed for at-

mospheric research, the new version (GEN_BE v2.0) can be

easily applied to other domains of science and chosen to di-

agnose and model B. Initially developed for variational data

assimilation, the model of the B matrix may be useful for

variational ensemble hybrid methods as well.

1 Introduction

Since the best estimate of the background error covariance

matrix (B) is a key component of data assimilation improve-

ments, various operational meteorological centers such as

the European Centre for Medium-Range Weather Forecasts

(ECMWF), the National Centers for Environmental Predic-

tion (NCEP), and the UK Met Office, continue to develop

new algorithms, techniques, and tools (Bannister, 2008a, b)

to model B within a variational framework. The probabil-

ity errors are supposed to be normally distributed and B is

determined for a limited set of variables, called control vari-

ables. The dimensions of B are also reduced by diagnosing

several parameters that drive a series of operators to model

B. However, necessities to extend the capabilities of B ex-

ist. For example, improving cloud (Auligné et al., 2011) and

pollution forecasts are major drivers of development of cloud

and chemical data assimilation. In the meantime, as more and

more observational data sets coming from radars, satellites,

airplanes, and ground stations become available in real time,

there is a tendency to generalize data assimilation to a large

set of sensors that may involve more variables, which are

present in geophysical numerical models.

The opportunity has been taken to redesign the GEN_BE

code by extending its capabilities to investigate and esti-

mate new error covariances. Originally, the GEN_BE code

was developed by Barker et al. (2004) as a component

of a three-dimensional (3-D) variational data assimilation

(3DVAR) method to estimate the background error of the

fifth-generation Penn State/NCAR mesoscale model (MM5,

Grell et al., 1994) for a limited-area system. Since this ini-
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tial version, various branches of code have been developed

at the National Center for Atmospheric Research (NCAR)

and at the UK Met Office to address specific needs us-

ing different models such as the Weather Research Forecast

(WRF, Skamarock et al., 2008) and the Unified Model (UM,

Davies et al., 2005) on different data assimilation platforms

such as the Weather Research Forecast Data Assimilation

(WRFDA, Barker et al., 2012) system and the Grid point Sta-

tistical Interpolation (GSI, Kleist et al., 2009) system. Dif-

ferent choices of control variables and their correlated er-

rors used to mimic general physical balance (geostrophic,

hydrostatic, etc.) in the atmosphere have been largely inves-

tigated by different operational centers and are referenced

in Banister (2008b). Since then, such multivariate relation-

ship approaches have been studied to characterize heteroge-

neous background errors in precipitating and nonprecipitat-

ing areas for regional applications (Caron and Fillion, 2010;

Montmerle and Berre, 2010). Special emphasis is made in

Michel et al. (2011) to include hydrometeors in the back-

ground error statistics, as their direct analysis increment can

come from data assimilation of radar reflectivity and satellite

radiances. The framework of the GEN_BE code version 2.0

has been developed to merge these different efforts using lin-

ear regression to model the balance between variables, em-

pirical orthogonal function (EOF) decomposition techniques

and the diagnostic of length scales to apply recursive filters

(RFs). It allows reading of input from different models and

provision of output for different data assimilation platforms.

This new flexibility associated with the possibility of defin-

ing a set of control variables and their covariance errors as an

input should potentially reduce further development efforts

of the code and benefit the larger community of geophysical

science in general.

This document describes the methods included in the

GEN_BE code version 2.0 to investigate modeling of B for

cloud and chemical data assimilation applications. Section

2 presents the role of the background error covariance and

how a series of different operators (i.e., balance, vertical and

horizontal transforms) can model B. The third section de-

scribes the general structure of the code, the methods to es-

timate the different parameters that model B, and their role

in the data assimilation processes. It explains how to mod-

ify and extend the control variables and define multivariate

background errors when correlated errors between variables

are modeled by linear regression (i.e., balance transform up).

Section 4 presents results of a benchmark performed on two

different systems of data assimilation (WRFDA and GSI) us-

ing a different model of B based on a WRF model forecast

involving the same set of five control variables (referenced as

CV5 hereafter) available in GSI (Kleist et al., 2009). Finally,

Sect. 5 presents results of a multivariate cloud data assimi-

lation approach that includes hydrometeors as control vari-

ables (referenced as CV9 hereafter) and their correlated er-

ror with humidity. In addition, the diagnostic of parameters

such as standard deviation and vertical and horizontal length

scales are discussed for the chemical species carbon monox-

ide (CO), nitrogen oxides (NOx) and ozone (O3) in a varia-

tional data assimilation framework.

2 Role of the background error covariance matrix in

the variational data assimilation method

2.1 The variational method

The solution of 3-D variational data assimilation (3DVAR)

is sought as the minimum of the following cost function

(Courtier et al., 1994):

J (x)=
1

2
Jb(x)+

1

2
J0(x)=

1

2
(xb− x)TB(xb− x)

+
1

2
[y0−H(x)]

TR−1
[xb−H(x)], (1)

where x is the state vector composed of the model variables

to be analyzed at every grid point of the 3-D model computa-

tional grid. xb is the background state vector, and is usually

provided by a previous forecast. yo is the vector of observa-

tions, and H , called the non-linear observation operator, is

a map from the gridded model variables to the observation

locations. The Jo term contains R, the observational error

covariance matrix. The Jb term contains B, the background

error covariance matrix defined in Eq. (2):

B= (xb− xt)(xb− xt)T, (2)

where xt is the true state vector and the overbar represents an

average over a number of forecasts.

By definition, exact values of R and B would require the

knowledge of the true state of the atmosphere at all times

and everywhere on the model computational grid. This is

not possible, and both matrices have to be estimated in prac-

tice. Often, the R matrix is assumed to be diagonal, i.e., have

uncorrelated observation errors with empirically prescribed

variances. Notice also that the dimension of the B matrix is

the square of the 3-D model grid multiplied by the number

of analyzed variables. For typical geophysical applications as

in meteorology, the size of the B matrix, being comprised of

nearly 108
× 108

= 1016 entries, is too large to be calculated

explicitly and to be stored in present-day computer memo-

ries. As a result, the B matrix needs to be modeled.

2.2 Modeling of the background error covariance

matrix

2.2.1 Control variable transform

The cost function as defined in Eq. (1) is usually minimized

after applying the change of a variable:

δx = (xb− x)= B1/2u, (3)

as it improves the conditioning (Courtier et al., 1994) and

therefore accelerates the convergence. B1/2 is the square root
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of the background error covariance matrix. The variable u is

called the control variable and the cost function becomes

J (u)=
1

2
uT u+

1

2

(
d −HB1/2u

)T
R−1(d −HB1/2u), (4)

where d is the innovation vector defined as d = (yo−

H(xb)), and it represents the difference between observa-

tions and their modeled values using a non-linear observation

operator H . H is the linearized observation operator, which

makes the cost function quadratic and easier to minimize.

2.2.2 Background error covariance matrix modeled by

a succession of operators

The square root of the B matrix as defined in Eq. (3) is de-

composed to a series of sub-matrices, each corresponding to

an elemental transform that can be individually modeled:

B1/2
= UpSUvUh, (5)

where

– the Up matrix, called physical transform or balance op-

erator, defines the set of control variables and their re-

lationships. In practice, the control variables are calcu-

lated using the model variables and selected to mini-

mize their cross-correlations. Also, the existing cross-

correlations, called the balanced part, can be reduced

by applying statistical linear regressions (explained

Sect. 3.2). The idea is that those new variables are less

correlated with each other, and so the corresponding off-

diagonal terms in the matrix vanish.

– the S matrix is diagonal and composed of the standard

deviations of the background errors.

– The Uv matrix, called the vertical transform, defines the

vertical auto-correlations for each of the u control vari-

ables. It is modeled either by homogeneous empirical

orthogonal functions (EOFs) or application of a recur-

sive iterative filter.

– The Uh matrix, called the horizontal transform, defines

the horizontal auto-correlations for the u control vari-

ables. It is modeled through successive applications of

recursive filters (Purser et al., 2003a, b).

Wu et al. (2002), Barker et al. (2004), and Michel and

Auligné (2010) explain in more detail the methods used to

construct these operators.

3 Five stages to generate the background error

covariance statistics (GEN_BE code version 2.0)

The general structure of the GEN_BE code version 2.0 has

been designed to split the input, output, and algorithms into

independent stages. The five steps, from stages 0 to 4, that

Figure 1. General structure of the code to generate a background

error covariance matrix. The input and output are represented by

the orange boxes and the five main stages that lead to model B are

in blue.

model a background error covariance matrix become inde-

pendent of the choice of control variables and model in-

put, which allows for more flexibility (Fig. 1). Stage 0 esti-

mates the perturbations of the control variables based on vari-

ables coming from a numerical weather prediction (NWP)

model forecast. Stage 1 removes the mean of these pertur-

bations and defines the applied binning. Stage 2 defines the

balance operator (Up) by estimating covariance errors be-

tween the control variables using linear regressions. Stage

3 determines the S operator by estimating the standard de-

viation that weighs the analysis increment for a given vari-

able. It also computes the necessary parameters for spread-

ing out the information vertically (Uv) in data assimilation

processes. Stage 4 computes the horizontal length scale pa-

rameter used by the recursive filter to model correlated error

on a 2-D plane (Uh). Technical details are presented in three

Appendices. Appendix A describes the new features of the

codes and should help to compute and implement new mod-

eling of B. Appendix B presents the namelist options and

Appendix C explains how to compile and run the code.

Here, we present results obtained from a numerical ex-

periment with the Advanced Research WRF (WRF-ARW,

called WRF hereafter) model involving an ensemble of 50

members (D-ensemble) over the CONtiguous United States

(CONUS) domain at 15 km resolution (res. 15 km, Fig. 2).

Figure 3 shows the pressure (hPa) against vertical model

levels. Each member is a 6 h forecast valid at 12:00 UTC

on 3 June 2012. The ensemble adjustment Kalman filter

(EAKF), coming from the community system Data Assim-

ilation Research Testbed (DART, Anderson et al., 2009), was

used by Romine et al. (2014) to generate the analysis en-
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semble. Table 2, shown in Sect. 4, contains detailed setup

information of this data assimilation experiment.

3.1 Sampling and binning (stage 0 and stage 1)

Since the background error covariance matrix is a statistical

entity, samples of model forecasts are required to estimate

the associated variances and correlations. Traditionally, two

distinct techniques are used and are available in stage 0 to

compute the perturbations.

– Differences between two forecasts valid at the same

time but initiated at different dates (time-lagged fore-

cast, e.g., 24 h minus 12 h forecasts) can be used to rep-

resent a sample of model background errors. This is an

ad hoc technique, called the NMC (named for the Na-

tional Meteorological Center) method (Parrish and Der-

ber, 1992), which has been widely used in operational

centers where large databases of historical forecasts are

available.

– Background error statistics can be evaluated from an en-

semble of perturbations valid at the same time (Fisher,

2003; Pereira and Berre, 2006). This method tends to

be more accurate because it better represents the back-

ground error of the day, rather than a climatological er-

ror, as with the NMC method. However, more computa-

tional resources are required to run an ensemble simula-

tion, and it may not provide automatically the optimum

B for a particular system (Fisher, 2003).

Pereira and Berre (2006) highlight the consequences of the

evaluation of perturbations using the NMC method ver-

sus an ensemble approach (called ensemble of the day, D-

ensemble). The authors point out that the NMC method tends

to underestimate the background errors in data-sparse areas

(when the forecast comes from cycling analysis). They show

that correlation length scales, as described by Daley (1991),

are smaller in D-ensemble methods compared to NMC. Ta-

ble B1 summarizes the general options for computing these

raw perturbations.

Since the number of sample of perturbations can be lim-

ited, a strategy to model a static error covariance over an en-

tire domain and filter the sampling noise is used. The statis-

tics are spatially averaged by gathering grid points with sim-

ilar characteristics. The different options available for this

technique, referred as binning, are described in Table B2,

and can be set up in the namelist input file (Table B3). The

simplest way to compute statistics for a domain can be done

by vertical levels (bin_type= 5). Moreover, such formulation

of B, which allows modeling of homogeneous and isotropic

covariance, may be inadequate for specifying natural phe-

nomena. Other binning options can be applied to the differ-

ent transforms Up, Uv, Uh and S to have a heterogeneous

formulation of B. For example, options bin_type= 1, 2, 3,

4 compute statistics across the zonally averaged ensemble

Figure 2. WRF domain over the conus area at the resolution of

15 km. Based on this configuration, the 50 members coming from

a 6 h forecast (DART experiment) are used to generate background

error statistics.

perturbations to create a latitude-dependent correlation func-

tion, usually used for large and global domains where lati-

tude flow dependency occurs (Wu et al., 2002). For example,

the statistics of hydrometeors, as cloud liquid water, which

are characterized by a high spatial and temporal variability,

can be skewed (Michel et al., 2011) if, at a given grid point,

only a few members of the D-ensemble indicate the pres-

ence of clouds. For that reason, it may be preferable to use a

cloud mask in the hydrometeor cloud calculations, referred to

as “geographical binning”. Montmerle and Berre (2010) and

Michel et al. (2011) show improvements using a rain mask

(option 7) with the vorticity and divergence control variables

to characterize convection events.

For this reason, the GEN_BE code has been modified to

facilitate the introduction of new binning options for specific

applications (see Appendix B). Stage 1 removes the mean of

the perturbations and defines the binning, which is an im-

portant component in the model of B, as it is applied in the

following stages, especially in stage 2 for the balance opera-

tor.

3.2 Balance through linear regressions (stage 2)

Analysis increment for one variable may impact another if

they have correlated errors. The simplest way to model these

multivariate error cross-covariances is to use linear regres-

sions that mimic physical balance between variables. First,

the regression coefficient between variables can be estimated

by solving Eq. (6) following the example of the regression of

the temperature (t) by the stream function (psi):

αpsi,t(b,k, l) ·VARpsi(b,k)= COVARpsi,t (b,k, l), (6)

where αpsi,t is the regression coefficient estimated,

COVARpsi,t(b,k, l) represents the vertical cross-covariance
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between t and psi averaged over the vertical level k, l for

the given binning class index b, and VARpsi(b,k) is the

variance.

In practice, the regression coefficient can be directly calcu-

lated as the ratio of the inverted variance with the covariance

or by performing a Cholesky decomposition (see Appendix B

for more details). Then, linear regressions are performed to

derive uncorrelated (i.e., unbalanced) perturbations by re-

moving the balanced part from other perturbation variables.

Equation (7) shows how the unbalanced part of the t pertur-

bation (δtu) is calculated by subtracting its full perturbation

(δt) from its balanced part coming from psi:

δtu(i,j,k)= δt (i,j,k)−

Nk∑
j=1

αpsi,t(b,k, l)δpsi(i,j, l), (7)

where b is the index of the binning class according to the

triplet indexes of the grid point position (i,j,k). Nk is the

total number of vertical model levels.

Note that, in variational data assimilation processes, the

balance operator Up is applied to the variables themselves.

It models correlations between variables and allows one to

transform the B matrix as a block diagonal in the control (un-

correlated) space. The GEN_BE code version 2.0 has been

developed to allow the use of a broad set of control variables

(shown in Table 1) and to allow the definition of the Up trans-

form in a namelist input file. For example, Table B4 presents

how to define the balance transform that involves five con-

trol variables (CV5) as it can be used in the GSI system de-

veloped at NCEP for analysis operational purposes (Kleist

et al., 2009). The parameter covar equals 1 means that the

unbalanced part of the velocity potential (chiu), the temper-

ature (tu), and the pressure surface (psu) are calculated by

subtracting their balanced part coming from the stream func-

tion (psi). Benchmark results of a pseudo temperature test in-

volving different modeling of B and the same Up transform

(CV5) are shown in Sect. 4.

Furthermore, Bannister (2008b) described the Up trans-

form used in different operational centers, with special em-

phasis on the definition of the balance operator for humid-

ity. To determine a balance operator, diagnostics of verti-

cal cross-covariance or vertical cross-correlation are help-

ful to analyze the relationship between variables and can

also be done through stage 2. For example, Fig. 4 shows

the cross-correlation between humidity and temperature for

all atmosphere conditions (mixing dry and wet conditions).

The errors are mostly anti-correlated, and specific humidity

(Fig. 4a) has weaker correlated errors with respect to temper-

ature than relative humidity (Fig. 4b). Moreover, the errors

between specific humidity and temperature become highly

correlated close to saturation (Holm et al., 2002; Ménétrier

and Montmerle, 2011). At saturation, these statistics likely

rely on processes of condensation and precipitation when the

released latent heat flux warms the atmosphere (Holm et al.,

2002). These characteristics highlight how binning that dif-

Table 1. Description of the control variables available for the mete-

orology.

Nomenclature of the Description

control variables

psi Stream function (ψ)

chi Velocity potential (χ)

vor Vorticity

div Divergence

u Horizontal wind component in

the x direction

v Horizontal wind component in

the y direction

t Temperature

ps Surface pressure

RH Relative humidity

qs Specific humidity

qcloud Cloud water mixing ratio

qrain Rain water mixing ratio

qice Ice mixing ratio

qsnow Snow mixing ratio

sst Sea surface temperature

Figure 3. Plot of pressure (hPa) against vertical model levels (WRF,

resolution 15 km).

ferentiates background statistics in the presence of clouds

can be important according to the choice of control variables.

Thus, various studies have been dedicated to better estimate

the background error of humidity in cloudy areas (Caron

and Fillon, 2010; Montmerle and Berre, 2010; Ménétrier and

Montmerle, 2011). Carron and Fillon (2010) use the specific

humidity (qs) and show benefit to characterize heterogeneous

formulation of B defined for dry and precipitation areas. For

a winter test case where stratiform-type precipitation is pre-

dominant, they explain that geostrophic imbalance in precip-

itation areas can be characterized by the linear balance oper-

ator between the stream function and the mass fields (t and
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Figure 4. (a) Vertical cross-correlation between temperature (t) and specific humidity (qs); (b) vertical cross-correlation between temperature

(t) and relative humidity (RH); (WRF, res. 15 km, D-ensemble).

ps). Montmerle and Berre (2010) show potential improve-

ments on a convective scale by using a rainy mask in a mul-

tivariate approach for specific humidity that involves vortic-

ity, divergence, temperature and surface pressure variables,

while Ménétrier and Montmerle (2011) show the benefit of

balancing the specific humidity only with the mass fields (t

and ps) for fog data assimilation purposes. Dynamical vari-

ables such as vorticity and divergence are not included in the

balance humidity operator since they do not drive fog forma-

tion processes.

Finally, results of an experiment that include hydrometeors

and its correlated errors with humidity (CV9) are presented

Sect. 5.1 and defined by the namelist input file Table B5.

3.3 Estimation of the vertical correlation and the

variance (stage 3)

After calculating the vertical auto-covariance matrix

(VACM), two techniques are currently available in stage 3

to compute the parameters useful for modeling the mean

vertical auto-correlation transform (Uv). The first method

diagonalizes the VACM, performing an EOF decomposition

(i.e., computing eigenvectors and eigenvalues). The variable

is re-written in this new base for each EOF. Stage 4 will later

evaluate a length scale for each EOF mode. The vertical

transform occurs with the change of base EOF physical

space and the variances are represented by the eigenvalues.

The second method estimates a vertical length scale from

the vertical auto-correlation matrix directly in the physical

space, to propagate the increment via recursive filters. The

diagnostic of the vertical length scale (Lv) comes from

Daley’s formula (1991, p. 110) for a 1-D homogeneous and

isotropic case,

Lv =

√√√√ 1

∂2ρ(0)

∂2z

, (8a)

with ρ(0) the correlation taken at the origin.

Approximating Eq. (8a) with finite difference to the

second-order derivatives of ρ(δz) and assuming ρ is sym-

metric around the origin results in

Lvp =
δz

√
2[1− ρ(δz)]

, (8b)

where Lvp represents the vertical length scale approximated

by a parabolic function.

If the correlation is approximated at the origin by a Gaus-

sian function as follows,

ρ(δz)= exp

(
−

δz

2L2
vg

)
, (9a)

the length scale Lvg can be written as

Lvg =
δz

√
−2lnρ(δz)

. (9b)

Pannekoucke et al. (2008) studied the sensitivity of sam-

pling errors of these formulae and show that the Gaussian

and the parabolic approximation give similar results. Further-

more, the vertical length scale can be computed uniformly by

the vertical model level or binned. Table B6 in Appendix B

contains a description of the namelist option to define the ver-

tical length scale in stage 3 and the horizontal length scale in

stage 4.

Geosci. Model Dev., 8, 669–696, 2015 www.geosci-model-dev.net/8/669/2015/
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Figure 5. Horizontal autocorrelation performed at the center of each square grid over vertical model level 5, around 950 hPa, for control

variables (a) stream function (psi), (b) temperature (t), (c) relative humidity (RH), and (d) cloud mixing ratio (qcloud). Larger correlations

are observed for stream function compared to temperature and relative humidity. Cloud mixing ratio has the smallest correlation due to

theinhomogeneous distribution of hydrometeors (WRF, res. 15 km, D-ensemble).

3.4 Estimation of the horizontal correlation (stage 4)

Horizontal auto-correlations can be computed for each con-

trol variable at each grid point. Figure 5 shows a diagnostic

of correlation for a few selected points of the WRF com-

putational domain around 500 m above the ground (model

level 5). The stream function (5a) and velocity potential con-

trol variables have larger and more isotropic spatial corre-

lations, while the temperature (5b) and the humidity (5c)

control variables show smaller and anisotropic correlations

at different locations. The radius of the area where the cor-

relation overpasses 0.9 is within a range of 100 to 400 km

for stream functions, while this radius reaches its maximum

around 100 km for temperature and humidity. Hydrometeor

mixing ratios show even more local structures due to their

sparse location on the horizontal and the vertical (5d).

In stage 4, we estimate horizontal length scales averaged

by vertical level or EOF mode for a field analysis in a 2-D

plane. It represents the radius of influence, calculated in grid

point space, around the position of an observation, and is an

input parameter for recursive filters to spread out horizon-

tally the increment (Uh). The different options available, as

described below, are also contained in Table B6.

The first method (ls_method= 1) employs a distribution

function to fit the correlation for a 2-D field by vertical level

or by EOF mode as explained in Sect. 3.3. If a Gaussian

function is chosen, the length scale is determined by solving

Eq. (10a):

ρ(r)= exp

(
−
r2

2L

)
, (10a)

where ρ(r) is the correlation calculated for a distance r be-

tween two grid points.

www.geosci-model-dev.net/8/669/2015/ Geosci. Model Dev., 8, 669–696, 2015
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If a second-order autoregressive (SOAR) correlation func-

tion is used, the length scale L is determined by solving

Eq. (10b):

ρ(r)=
(

1+
r

L

)
· exp

(
r2

L

)
. (10b)

However, as this procedure is both computationally ex-

pensive and prone to sampling errors, a second option

(ls_method= 2) based on the ratio of the variance of a field

(φ) and the variance of its Laplacian has been added:

L=

(
8 ·Variance(ϕ)

Variance(∇2ϕ)

)1/4

. (10c)

Equation (11) was used by Wu et al. (2002) and is similar to

the diagnostic of Pereira and Berre (2006), which was ana-

lyzed in Pannekoucke et al. (2008).

The horizontal length scale can be uniformly calculated

over a vertical model level or can be statistically binned.

Homogeneous recursive filters are able to handle a unique

length scale defined by model vertical level, or EOF mode.

Inhomogeneous recursive filters (Purser et al., 2003b), as im-

plemented in GSI, are able to handle heterogeneous length

scales. In this case, the increment is spread out with a length

scale according to the bin class of each grid point. Moreover,

spatial filtering to smooth the length scale may be required

because of recursive filter normalization issues (Michel and

Auligné, 2010).

4 Comparison of different modeling of B for two data

assimilation systems

We present a benchmark of different modeling of B per-

formed on the GSI and WRFDA data assimilation platforms.

Both systems can handle the set of five control variables

(CV5) and their balance operator (Up) defined in Table B4.

By default, the GSI system allows the use of B matrix statis-

tics (Bnam), pre-computed over an enlarged CONUS do-

main, using the NMC method and NAM (North American

Mesoscale) forecasts. Bnam is used with GSI (Wu, 2005) to

produce daily forecasts with NDAS (NAM Data Assimila-

tion System; Rogers et al., 2009). Based on the D-ensemble

data set coming from the DART experiment (i.e., Sect. 3 and

Romine et al., 2014), we present in Sect. 4.1 the parameters

that define the vertical transform Uv by using EOF decom-

position for WRFDA (Beof) and by using recursive filters for

GSI (Brcf). Table 2 gathers the general setup that leads to the

modeling of these three B matrices (Beof, Brcf and Bnam) and

additional information about the used data sets. The physics

of the model can be found in Romine et al. (2014) and Rogers

et al. (2009). Section 4.2 compares the results of a pseudo

single observation test experiment using Beof, Brcf and Bnam

on the WRFDA and GSI data assimilation systems.

Figure 6. Representation of the first five eigenvectors resulting

from the EOF decomposition of the vertical autocovariance matrix,

eigenvectors of (a) psi, (b) chiu, (c) tu, and (d) RH. The eigenvec-

tors are parameters that define the vertical transform (Uv); (WRF,

res. 15 km, D-ensemble, EOFs).

4.1 Statistics of the background error covariance

matrix for different transforms

4.1.1 Decomposition by EOF and length scale

If the EOF decomposition is used, the eigenvectors model the

vertical transform (Uv) and the associated eigenvalues repre-

sent the variance. The length scale is estimated in the EOF

space and represents the horizontal transform (Uh). In the

data assimilation process, the eigenvalues weight the analy-

sis increment and the recursive filter first spreads out the in-

formation in the EOF space according to length scale value.

Then, the transformation from EOF mode to physical space

spreads out the information vertically. The first five eigenvec-

tors are shown in Fig. 6 for the control variables (CV5) and

Fig. 7 shows the associated eigenvalues. 99 % of the vari-

ance of the stream function and the velocity potential are

represented by the first ten and twenty modes, respectively,

while more than 30 modes are useful for temperature and rel-

ative humidity. Also, the EOF decomposition allows option-

ally some filtering; as the largest variances (i.e., eigenvalues)

are associated with the first EOFs, the latest EOFs may not

be taken into account if they mostly represent vertical noise

in the system.

The horizontal length scales, estimated by Eq. (11), are

presented in Fig. 8. The stream function and the velocity po-
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Table 2. Description of the setup of the background error matrix modeling diagnosed over the CONUS domain. Beof and Brcf are diagnosed

using GEN_BE code version 2.0 and the D-ensemble method, while Bnam is performed by NCEP using the NMC method.

B modeling

Beof and Brcf Bnam

Model configuration WRF model, resolution 15 km, 39 vertical lev-

els on a sigma hybrid grid

WRF-NMM model, resolution 12 km, 60 verti-

cal levels on an Eta grid

Data assimilation setup DART, EAKF with adaptive covariance infla-

tion, cycling period of 6 h, perturbed boundary

conditions from GFS, assimilation of conven-

tional and cloud track wind observations

NDAS-GSI system, cycling period of 3 h,

boundary conditions from GFS, assimilation of

conventional and satellite radiances (clear-sky)

observations

Method to compute the

perturbations

D-ensemble method applied to 50 perturbations

coming from 6 h forecasts of the different mem-

bers of the ensemble

NMC method applied to 60 perturbations taken

over a year, coming from time-lagged forecasts

of 12 and 24 h valid at the same time

B transforms CV5 control variables

Brcf: Uh and Uv transforms defined by recur-

sive filters

Beof: Uv transform defined by EOF decompo-

sition

Statistics of Brcf and Beof averaged by vertical

level

CV5 control variables

Bnam: Uh and Uv transforms defined by recur-

sive filters

Statistics of Bnam binned by a latitude band of

1◦

Figure 7. Eigenvalues computed by EOF mode for (a) psi, (b) chiu,

(c) tu and (d) RH. They represent the variance of the control vari-

ables (WRF, res. 15 km, D-ensemble, EOFs).

tential have the largest length scale value, reaching 600 km

(39 grid points) for the first EOF mode, while the unbalanced

temperature length scale has a strong variation for the first

three EOFs passing approximately from 135 to 30 km (nine

to two grid points) and, from there, slightly decreases from

30 km to reach 15 km (two to one point grid) for the last EOF

mode. The relative humidity length scale remains small, de-

creasing from approximately 30 to 15 km as a function of the

EOF mode. The unbalanced temperature and the relative hu-

midity have a relatively small length scale, which means that

they have more local features represented by a small radius

of influence. Thus, the analysis increment from these vari-

ables will remain closer to the observation. As the horizontal

length scale is associated with the EOF mode and is not di-

rectly related to a vertical model level, further discussions on

the association of length scale with physical event may be

difficult.

4.1.2 Horizontal and vertical length scales defined in

physical space

The horizontal correlation is modeled by the application of

recursive filters based on the estimation of the horizontal

length scale solving Eq. (11), applied at every vertical model

level for each variable, as shown in Fig. 9. The horizontal

length scales diagnosed for each control variable by verti-

cal level (Fig. 9) or by EOF mode (Fig. 8) have the same

range of values. The length scales of the stream function and

the velocity potential control variables have the largest val-

ues above 150 km (10 grid points) for all the vertical model

levels, while the length scales of temperature and relative

humidity remain in a range of 30 km to 60 km (1 to 2 grid

points) below the 200 hPa level. Temperature and humidity,

which have more local structures, are modeled with smaller

length scales. Globally, the horizontal length scales of dif-

ferent variables increase from the bottom to the top of the
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Figure 8. Length scales defined in grid point through EOF mode

for CV5. The analysis control variables representing the dynamical

variables, psi and chiu, have longer length scales than tu and RH

(WRF, res. 15 km, D-ensemble, EOFs).

Figure 9. Horizontal length scales for CV5. tu and RH, which have

more local structures, are modeled by shorter length scales (WRF,

res. 15 km, D-ensemble, RFs).

model, as they represent larger-scale events. Direct compar-

ison of these statistics with the Bnam horizontal length scale

is difficult, as they are performed with different methods,

models, configurations, and physical options (i.e., Table 2).

However, it can be noted than the horizontal length scale

was approximately twice as small than those for Bnam (Wu,

2005) performed by using the NMC method. Usually, sharper

correlations are found in the D-ensemble compared to the

NMC method (Fisher, 2003; Pereira and Berre, 2006). Fur-

Figure 10. Vertical length scale for CV5 (WRF, res. 15 km, D-

ensemble, RFs).

thermore, a factor contributing to this difference may arise

from the fact that we are comparing statistics from forecasts

of different lengths.

The vertical correlation is modeled by the application of

recursive filters based on the estimation of the vertical length

scale coming from Eq. (8b). The stream function and the ve-

locity potential in Fig. 10 that represent large-scale horizon-

tal flow have a bigger vertical length scale than those of tem-

perature and humidity. The vertical gradients of temperature

and humidity can vary strongly locally, decreasing the verti-

cal correlation.

4.2 Pseudo single observation test on WRFDA and GSI

data assimilation systems

The single pseudo observation is a powerful way to provide

a benchmark, as it allows visualization of the increment of

an isolated observation and its impact on other variables.

Thus, the following are pseudo observation tests of temper-

ature with an innovation of 1 K and an observation error of

1 K using different modeling of B (Beof, Brcf and Bnam). The

position of the pseudo observation is arbitrarily taken at the

center of the domain and at the 500 hPa pressure level. The

series of plots (Figs. 11–13) represents horizontal and verti-

cal slices of the resulting increment for temperature and wind

components.

As expected, the horizontal cross section at the 500 hPa

level for temperature shows an isotropic response to the in-

novation of 1 K. The maxima of intensity simulated depend

on the standard deviation (diagonal matrix S) value coming

from the B matrix.

On the one hand, the operator (Uv) employs EOF decom-

position; the Jb term of the cost function is weighted by the

standard deviation coming from the square root of the eigen-
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Figure 11. Pseudo observation test of temperature (innovation of

+1 K) from the WRFDA application. The three plots in the left

panel show, from top to bottom, horizontal cross sections (XY ) of

the t (K), U and V wind components (m s−1), respectively. Then,

the right panel shows the corresponding cross section (XZ) of the

former variables (Beof: WRF, res. 15 km, D-ensemble, EOFs).

values of Beof. On the other hand, Uv is modeled by the es-

timation of a length scale and the recursive filters applied on

the vertical (Brcf); the analysis is weighted by the standard

deviation directly averaged on the vertical mesh grid. The in-

crements of temperature are close for the three different tests

and the increment from Bnam is slightly larger than that of

Brcf and Beof. In the case of Bnam, recursive filters spread out

the information in a larger area over a horizontal plane due

to its larger length scales.

For the vertical cross section (XZ), vertical increments

coming from Brcf and Beof spread out in the same range of

altitude (∼ between the 800 and 450 hPa pressure levels).

Based on the same D-ensemble data sets, the Uv operator us-

ing EOF decomposition and recursive filters gives similar re-

sults on different platforms, as expected. Moreover, the tem-

perature increment from Brcf spreads out even more along

the vertical compared to the Bnam experiment on the GSI sys-

Figure 12. Pseudo observation test of temperature (innovation of

+1 K) from the GSI application. The three plots in the left panel

show, from top to bottom, horizontal cross sections (XY ) of the t

(K), U and V wind components (m s−1), respectively. Then, the

right panel shows the corresponding cross section (XZ) of the for-

mer variables (Brcf: WRF, res. 15 km, D-ensemble, RFs).

tem. This discrepancy can be associated with the computed

vertical length scales from two different data sets. The length

scales diagnosed over a D-ensemble are larger in this case for

Brcf than the one averaged over a long period of time in the

NMC method (60 perturbations selected over a year). Also,

statistics of Bnam are performed over an Eta grid of 60 verti-

cal levels of WRF-NMM, while the statistics of Brcf and Beof

come from WRF defined on a hybrid-sigma grid of 39 ver-

tical levels. Thus, the raw statistics of Bnam are interpolated

on the WRF vertical grid in GSI before performing 3DVAR

data assimilation. Furthermore, differences in the definition

of the physics of the model and the assimilated data may be

contributing factors.

Finally, the multivariate approach, defined by CV5, in-

duces increments in the wind components. The horizontal

cross section (XY) plotted for U and V showed dipole lobes,

which can be explained by the geostrophic balance adjust-

www.geosci-model-dev.net/8/669/2015/ Geosci. Model Dev., 8, 669–696, 2015



680 G. Descombes et al.: Generalized background error covariance matrix model

Figure 13. Pseudo observation test of temperature (innovation of

+1 K) from the GSI application. The three plots in the left panel

show, from top to bottom, horizontal cross sections (XY ) of the t

(K), U and V wind components (m s−1), respectively. Then, the

right panel shows the corresponding cross section (XZ) of the for-

mer variables (Bnam: WRF-NMM, res. 12 km, NMC, RFs).

ment that the linear cross-covariance statistics reproduce.

The vertical cross section (XZ) follows the isocontour of

0 m s−1 for U , while some differences can be observed in the

slices of V for the Beof, Brcf, and Bnam experiments. A larger

spread of the V increment along pressure levels is observed

for Beof and Brcf compared to the experiment of Bnam.

These ensemble-based background error Beof and Brcf co-

variance matrices potentially have more skill in estimating

error statistics related to the present meteorological event and

using the same model configuration.

5 Cloud and chemistry variational data assimilation

5.1 Generation of a multivariate background error

covariance for hydrometeors

Code modifications have been done in the WRFDA code to

add a multivariate balance operator for the hydrometeor vari-

ables: cloud liquid water mixing ratio (qcloud), rain mixing

ratio (qrain), ice mixing ratio (qice), and snow mixing ratio

(qsnow), so that the WRFDA minimization is now performed

over nine 3-D fields instead of the five previously included.

The main scientific issue in this task is to define a proper

B matrix and, particularly, the cross-correlation terms that

will ensure that the analysis of the hydrometeors is multi-

variate; i.e., the observed and unobserved model fields are

modified simultaneously and consistently during the analy-

sis. The question of the estimation of the forecast error co-

variance matrix is the focus of this section. Figure 3 provides

the conversion from vertical model level to pressure level.

5.1.1 Definition of the balance operator for

hydrometeors (CV9)

The Up transform CV5 (defined in Table B4) is modified in

the WRFDA code to include a multivariate analysis for hu-

midity and hydrometeors (Eq. 12a–c). In a first approach, rel-

ative humidity (RH) is balanced in Eq. (12a) with the mass

fields of unbalanced temperature (tu) and unbalanced surface

pressure (psu), and does not include dynamic variables such

as the stream function (psi) and the unbalanced velocity po-

tential (chiu):

RHu(i,j,k)=RHu(i,j,k)−

Nk∑
l=1

αRH,tu(b,k, l)tu(i,j,k)

−αRH,psu
(b,k)psu(i,j). (11a)

The statistics coming from the GEN_BE v2.0 code, i.e.,

regression coefficients and the unbalanced part of the vari-

able, can be estimated only by modifying the namelist file

input. In this case, the covar5 line of Table B5 that describes

the covariances between the fifth control variable (relative

humidity) and the third control variables tu and the fourth

psu is covar5= 0, 0, 1, 1, 0, 0, 0, 0, 0, 0. In the meantime,

the control variables are expanded to include the mixing ra-

tios of cloud water condensate (qcloud), rain (qrain), ice (qice)

and snow (qsnow). The hydrometeors qcloud and qice are bal-

anced with respect to relative humidity, as their presence or

absence is directly related. The regression coefficients can be

computed without any assumptions (Fig. 14a–b), or filtered

to take into account the perturbations that represent the tran-

sition of a non-cloudy to a cloudy area only (Fig. 14c–d).

This latter choice is made to intensify the statistical relation-

ship of the statistical balance to be able to remove misplaced

clouds, or to create clouds. However, we may want to local-

ize this balance around a given vertical model level. For this
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Figure 14. (a) Raw vertical cross-correlations between the cloud mixing ratio (qcloud) and relative humidity (RH), (b) filtered vertical cross-

correlations between qcloud and RH, (c) raw vertical cross-correlations between the ice mixing ratio (qice) and RH, and (d) filtered vertical

cross-correlations between qice and RH. Taking into account the perturbations coming from the transition of a cloudy to a non-cloudy area

only when reaching the threshold mixing ratio of 10−6 kg kg−1, this intensifies the vertical correlation (WRF, res. 15 km, D-ensemble).

reason, the line covar6= 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 represented

by Eq. (12b) can be replaced with the line covar6= 0, 0, 0, 0,

2, 0, 0, 0, 0, 0 represented by Eq. (12c). In this case, only the

diagonal terms of the regression coefficient are calculated,

and the increment is spread out by the recursive filters.

qcloud(i,j,k)= qcloud(i,j,k)

−

Nk∑
l=1

αqcloud,RHu(b,k, l)RHu(i,j, l) (11b)

qcloud(i,j,k)= qcloud(i,j,k)

−αqcloud,RHu(b,k)RHu(i,j, l). (11c)

A similar balance is applied to qice. qrain and qsnow are de-

fined as univariate. Table B5 summarizes the definition of

this balance operator called CV9.

5.1.2 Statistics of the background error covariance

matrix for hydrometeors

The vertical and horizontal transforms retained are the recur-

sive filters making the interpretation of the length scale pa-

rameter easier, as they are directly associated with a vertical

model level. The four main hydrometeors have been added

in this study, as they could be useful for data assimilation

in remote sensing such as satellite cloud radiances and radar

reflectivity.

The horizontal length scale values of the different hydrom-

eteors shown in Fig. 15a are smaller in comparison to other

control variables (less than 30 km, two grid points). Signif-

icant values of length scale that overpass 15 km (one grid

point) are related to the presence of hydrometeors: they occur
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Figure 15. Horizontal length scale for the hydrometeors using (a) 50 members and (b) using 5 members. The plots show similar character-

istics regardless of the ensemble members (WRF, res. 15 km, D-ensemble).

below the 150 hPa pressure level for qice and qsnow and below

the 400 hPa pressure level for qcloud and qice. The maximum

of the qcloud length scale, located approximately at 950 hPa,

can be associated with the presence of low maritime clouds

above the Pacific Ocean denoted by the high standard devi-

ation in Fig. 18a and b. In the lower levels of the model, the

length scale of qice vanishes as expected.

The vertical correlation maxima of the precipitating hy-

drometeors are higher compared to that of cloud water or

cloud ice hydrometeors, as they can drop freely through mul-

tiple levels (Fig. 16a). The vertical length scale of qrain in-

creases regularly from around 500 hPa until it reaches a max-

imum at the ground. As the length scale increases quickly

after 800 hPa, where the highest density of the lower levels

occurs, an arbitrary cut-off equal to one-third of the total ver-

tical grid point value is applied in order to avoid spreading

out of increment information outside the area of potential

presence of rain with the recursive filter. The length scale

of qsnow has two local maxima. The first one happens where

the precipitating hydrometeors have the highest density at

around 400 hPa. A steep increase occurs from 950 hPa un-

til it reaches the highest value close to the ground. The low

presence of snow hydrometeors in the first model levels, i.e.,

close to the ground, is characterized by small values of the

mixing ratio, averaged by vertical level, which tends to arti-

ficially reinforce vertical correlation as well.

5.1.3 Example of a pseudo single observation of the

cloud mixing ratio in a multivariate approach

To verify that our analysis is multivariate, we conducted a

series of tests in which pseudo observations of hydromete-

ors were assimilated into WRFDA, and the corresponding

analysis increment was plotted. Figure 17 shows the analysis

response for the qcloud and qvapor model variables when three

simulated observations of cloud liquid water are assimilated.

One observation is taken over the Pacific Ocean, a second

one over Texas, and the last one in Canada.

The intensity of the increment can be weighted by the 1-

D variance or by the 3-D variance (S operator) coming from

the ensemble. The 1-D variance, displayed in Fig. 18a, gives

general information by vertical level and binning type with-

out any assumption of horizontal location. It is mostly used

when the perturbations come from the NMC method or when

the variance is not diagnosed at the analysis time. In our

test case, the increment is modulated by the 3-D variance

computed from a 6 h ensemble forecast with 50 members.

The cloudy area coming from the background of the differ-

ent members is represented by a high value of variance in

Fig. 18b, while low variance takes place in the dry area. The

increment is most likely greater than 10−3 g kg−1 where the

variability of cloud presence exists (Fig. 17). The strongest

increment occurs over the Pacific Ocean for a higher qcloud

standard deviation. A minimum value would likely need to

be set to retain the possibility of increments in the dry area.

The covariance between the mixing ratio of cloud water

condensate and relative humidity, described in Sect. 5.1.1,

can reinforce the ability to add clouds in the dry area or re-

move clouds in the cloudy area. The univariate version of the

balance operator for hydrometeors may be beneficial at the

analysis time, as hydrometeors can be directly assimilated.

The multivariate balance is present to help to propagate the

qcloud increment in the forecast by balancing it with a qvapor

increment.

The determination of the balance of humidity and hy-

drometeors is a difficult task, as it involves the microphys-

ical processes of meteorological NWP models and differ-

ent local phenomena. The use of local covariances com-

ing from the D-ensemble may help to balance those highly

sensitive variables. Furthermore, operational centers such as

Météo-France with the Application of Research to Opera-

tions at Mesoscale system (AROME, Seity et al., 2011) and

the Met Office with the Met Office Global and Regional En-
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Figure 16. Vertical length scale for the hydrometeors using (a) 50 members and (b) using 5 members. The plots show similar characteristics

regardless of the ensemble members (WRF, res. 15 km, D-ensemble).

Figure 17. (a) Horizontal slide (vertical model level 5) of a pseudo observation test of cloud water condensate (innovation and observation

error of 0.1 g kg−1) in a multivariate approach using the 3-D variance; (b) as a consequence, there is a positive increment on cloud vapor

mixing ratio (WRF, res. 15 km, D-ensemble, RFs).

semble Prediction System (MOGREPS, Bowler et al., 2008;

Migliorini et al., 2011) already use ensemble forecasts at

high resolution to more accurately characterize specific me-

teorological events, such as precipitation and convection.

Nowadays, their ensemble size remains small (often fewer

than 10 members) because the cost of CPU (central process-

ing unit) time is still elevated. Studies have been dedicated to

evaluating the sampling errors in the ensemble method and

in the parameters, such as correlation length scales, that usu-

ally model the background errors (Pannekoucke et al., 2008;

Ménétrier et al., 2014). When the ensemble size is small,

methods that combine general statistics of the background

errors and local balance are found to perform better (Hamill

and Snyder, 2000). Figures 15a, b and 16a, b, which display

horizontal and vertical length scale parameters, respectively,

for the hydrometeors in regards of the number of members,

show stable results.

5.2 Background error for chemical species

As a proof of concept, this last section shows the direct ap-

plicability of the GEN_BE v2.0 code as a diagnostic tool

for topics other than meteorology. In recent decades, a large

number of studies that investigate chemical data assimilation

have been conducted. Some of the first studies on strato-

spheric and tropospheric chemistry data assimilation were

performed roughly two decades ago (e.g., Austin, 1992;

Fisher and Lary, 1995; and Elbern et al., 1997). During the

last two decades, efforts have been made in order to im-

prove atmospheric chemical modeling and data assimilation

scheme performances.

Characterization of the background error covariance ma-

trix B in chemistry is a very important aspect of a successful

data assimilation system. During the last few years, different

studies have used different techniques to characterize the B
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Figure 18. (a) Profile of standard deviation of the liquid water condensate mixing ratio (qcloud in g kg−1) averaged along the vertical and

(b) horizontal cross sections of the standard deviation of qcloud at vertical model level 5 (950 hPa). Both plots indicate the presence of low

maritime clouds noted by high standard deviation (WRF, res. 15 km, D-ensemble).

matrix. Barré et al. (2014) and Emili et al. (2014) estimated

a quasi-constant B based on the Ménard and Chang (2000)

and Desroziers et al. (2005) a posteriori statistics for tropo-

spheric and stratospheric ozone data assimilation. Since the

latter studies put their focus on large-scale events (global-

scale chemical assimilation and synoptic events), data as-

similation performs reasonably well with those first-order B

matrix estimations. Depending on the region of the atmo-

sphere that is analyzed, B needs to be updated on different

timescales. Massart et al. (2012) showed the importance of

using a monthly B matrix ensemble estimate for stratospheric

ozone data assimilation purposes. For surface ozone assim-

ilation, Jaumouillé et al. (2012) and Gaubert et al. (2014)

showed that an hourly ensemble estimate of B that represents

diurnal variations of model errors improves the data assimi-

lation skills. In the last few years, studies on aerosol data as-

similation within WRF-Chem (Pagowski et al., 2010, 2014;

Schwartz et al., 2012) showed the importance of having a

detailed estimation of the B matrix.

Statistics were analyzed in detail to ensure that B repro-

duced relevant correlation structures during the data assimi-

lation process. Since data assimilation of chemical species is

more recent than for meteorology, the GEN_BE code version

2.0 may be useful for testing new definitions of background

error covariance matrices and for allowing its usage on dif-

ferent platforms. Several chemical trace gases such as CO

(carbon monoxide), NOx (nitrogen oxides) and O3 (ozone),

but also dust, sea salt and particulate matter (PM), have al-

ready been included as new possible control variables in the

GEN_BE code. Results for CO, NOx and O3 are shown next.

The statistics are estimated using 20 members over the

CONUS domain. Each member comes from a 12 h fore-

cast of WRF-Chem (WRF model coupled with Chemistry,

Grell et al., 2005), valid at 12:00 UTC on 14 June 2008, at

36 km of horizontal resolution and 33 vertical levels. The lat-

eral boundary conditions coming from MOZART (Model for

OZone And Related chemical Tracers, Emmons et al., 2010)

and emission factors coming from MEGAN (Model of Emis-

sions of Gases and Aerosols from Nature, Guenther et al.,

2006) are perturbed using a pseudo-normal random noise. In

order to avoid unphysical or negative values of concentration

and emissions and to keep ensemble mean boundary condi-

tions values close to the original values, we then perturb the

boundary conditions (emissions and boundary conditions) by

using a standard deviation (sigma) of 25 % of the original

boundary condition value, and we limit the perturbation to

no more than 3 sigma (i.e., 75 %).

Figure 19 presents the standard deviations for the chemical

species of interest. The standard deviation of the background

error is directly related to the species concentrations. Most

of the ozone variability takes place in the middle atmosphere

(stratosphere) in the ozone layer around 100 hPa (Fig. 19a).

Figure 19b and c highlight NOx concentration fluctuations,

due to photochemistry in the stratosphere and in the tropo-

sphere. Because the NOx are also emitted from the ground

with a short lifetime, a strong peak of standard deviation is

observed. Carbon monoxide (Fig. 19d), which is also emitted

at the surface and which has a relatively long lifetime (1–2

months), shows significant standard deviation values in all of

the troposphere, with a maximum in the boundary layer.

Figure 20 displays the calculated horizontal chemical

length scales. Ozone shows that horizontal length scales are

around 100 km in the troposphere and around 125 km in the

stratosphere. Pagowski et al. (2010) used a NMC method and

found that ozone horizontal length scales are around 100 km

(150 km) in the troposphere (in the stratosphere). Concerning
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Figure 19. Vertical standard deviation in ppmv of (a) O3, (b) NO2, (c) NO, and (d) CO (WRF-Chem, res. 36 km, D-ensemble).

Figure 20. Horizontal length scale of O3, NO2, NO, and CO (WRF-

Chem, res. 36 km, D-ensemble).

NO2, GEN_BE v2.0 evaluates the tropospheric horizontal

length scale to be between 70 and 90 km. This range of val-

ues is consistent with the values found by Silver et al. (2013),

who use the NMC method. Horizontal length scales increase

in the upper troposphere, mostly due to the strong circulation

(jets) and increased lifetime of species. Then, strong advec-

tion of trace gases that are not short lived (with lifetimes that

are more than a day) are likely to increase the horizontal cor-

relations.

Concerning the vertical correlations (Fig. 21), all the four

species diagnosed present a maximum close to the surface

where they are emitted (or secondarily produced for ozone).

Correlation length scales sharply decrease between 1000

and 850 hPa. Two main reasons explain this: (1) reactions

with other short-lived species emitted near the surface cre-

ate strong correlations in the lowest model levels; and (2) an

increase in first model level layer thickness from the surface

to levels above creates stronger correlations in grid points.

This strong decrease in correlation length scales is not fully

understood and needs further investigations. Above the sur-

face peak, vertical correlation also decreases around 800 hPa

due to weaker vertical mixing above the planetary bound-

ary layer. In the free troposphere, where the vertical mixing

is less significant, the evolution of the vertical length scale

decreases slowly from approximately 70 to 40 km. The ver-

tical diffusion of possible data assimilation increments will

be less significant than in the boundary layer. Compared to

Pagowski et al. (2010), the ozone vertical length scale profile
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Figure 21. Vertical length scale of O3, NO2, NO, and CO (WRF-

Chem, res. 36 km, D-ensemble).

presents the same behavior. Strong vertical correlation close

to the surface, followed by a strong decrease to the levels di-

rectly above, results in lower values in the upper levels of the

boundary layer.

Here we have shown that the GEN_BE v2.0 code is able

to model a B matrix for chemical variables with features

that are associated with physical processes, i.e., ozone layer,

tracer lifetime, emissions and planetary boundary layer mix-

ing. The diagnostics of simple statistics of the background

for chemical species are straightforward with the GEN_BE

v2.0 code. Moreover, data assimilation of chemistry com-

ponents remains a challenge because of the uncertainties of

various parameters that predict chemical processes such as

emission factors, deposition velocity and (photochemical) re-

action constant. For these reasons, the analysis may fit the

observation even if data assimilation does not involve the ori-

gin of the mismatch. Hybrid and ensemble methods may help

to diagnose complex covariance structures in future work.

In this paper, the chemical B matrix generated by GEN_BE

v2.0 has not been extensively diagnosed. More investigations

such as the balance between chemical species, standard devi-

ation and correlation length time and space variability could

be investigated in further studies by the atmospheric chem-

istry modeling community using GEN_BE v2.0.

6 Summary and discussions

While variational methods have been successfully used in

operational centers for a long time, the estimation of back-

ground errors needs to be continuously improved to assim-

ilate new observations and to provide more accurate statis-

tics. The GEN_BE v2.0 code has been developed to inves-

tigate and model univariate or multivariate covariance errors

from control variables defined by a user as an input. It gath-

ers some methods and options that can be easily applied to

different model inputs and used on different data assimilation

platforms by extending its former capabilities. The flexibil-

ity of the framework of the GEN_BE V2.0 code should help

the diagnostics of correlated errors and the implementation

of new background error modeling.

This document describes first the different stages and

transforms that lead to the modeling of the background er-

ror covariance matrix B by performing benchmark tests and

showing examples that use these new functionalities based on

WRF and WRF-Chem forecasts. Parameters such as length

scales, eigenvectors, eigenvalues, standard deviation and lin-

ear regression coefficients were first estimated for the control

variables (CV5) described in Kleist et al. (2009) for the GSI

system developed at NCEP.

Second, the GEN_BE v2.0 code has been validated

through multivariate single observation tests of temperature

using three different modelings of B (Beof, Brcf, and Bnam)

and on two different platforms. Based on the first data set,

D-ensemble, the single observation test performed with Beof

(Uv, EOF decomposition) in WRFDA shows similar results

to the single observation test of temperature performed with

Brcf (Uv recursive filters) in GSI. The increments were spread

out in a larger area along the vertical than those coming from

the test using the Bnam statistics calculated with the NMC

method on a different vertical grid, while the horizontal in-

crements were spread out in a larger area using Bnam.

Third, the GEN_BE code has been used to perform the

statistics over an extended set of control variables that in-

clude the mixing ratio of hydrometeors (CV9) for multivari-

ate cloud data assimilation purposes. As clouds have an in-

termittent presence, the 3-D variance coming from an ensem-

ble of the day gives a spatial envelope useful for weighting

the analysis relative to the observation and the background

confidence. The hydrometeors of cloud and ice condensate

water are also balanced with humidity to be potentially able

to create or remove misplaced clouds. The regression coeffi-

cients calculated can be conserved for a next cycle analysis

as they are averaged by bins or recalculated, as they are not

so expansive with regard to CPU time. In this paper, a pseudo

observation test of cloud mixing ratio was performed using

WRFDA, and the next step is to test cloudy radiance data as-

similation. Finally, statistics of background are estimated for

chemical species such as carbon monoxide (CO), nitrogen

oxides (NOx) and ozone (O3) coming from an ensemble of

forecasts of WRF-Chem, discussed and compared with ex-

isting studies. It has been shown that the statistics diagnosed

are related to physical and chemical processes.

In these previous examples, GEN_BE code version 2.0

can handle input data sets coming from WRF, a model de-

fined on an Arakawa C-grid, and the background error statis-

tic outputs are computed on an unstaggered Arakawa A-grid.

Within minor modifications, the code would be able to han-

dle other horizontal grids. Also, statistics could easily be
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done on models with different vertical grid definitions. If

we consider performing the background error statistics on

an unstructured grid, the structure of the code can remain

the same, but a few mathematical operators, such as differ-

ential and Laplacian, and estimation of the distance between

two grid points, would need to be re-defined according to the

grid. In fact, the Up transform needs to be performed in the

unstructured grid according to the user’s choice of control

variables. The Uv transform will remain identical and the Uh

transform would be modified according to the mathematical

operators. Another option would be first to interpolate the

input data set on a regular grid according to the data assim-

ilation system used and then to compute the statistics. Thus,

implementation of models with different grids can be done in

the GEN_BE v2.0 code based on its general framework, and

may be completed by adding new diagnostics.

The current trend is to model a more complex background

error, expanding the control variables and correlated errors

and using techniques to achieve more heterogeneity and

anisotropy. The geographical binning and the 3-D variance

available in the GEN_BE v2.0 code can be utilized with new

data assimilation algorithms. For example, hybrid data as-

similation that combines variational and ensemble methods

may be helpful especially by adding flow dependence in the

estimation of the background error while keeping a reduced

ensemble size due to CPU time constraints (Hamill and Sny-

der, 2000). Wang et al. (2008a, b) performed a study us-

ing a hybrid 3DVAR-ETKF (ensemble transform Kalman fil-

ter) technique that combines static (modeled) and ensem-

ble background error covariances. Better results were ob-

tained over North America at a coarse resolution (200 km),

especially in data-sparse areas compared to those performed

solely with 3DVAR. The extended control variable tech-

nique (Lorenc, 2003) allows blending of flow-dependent er-

rors with static covariance errors. Bannister et al. (2011) in-

vestigated the benefit of a convection-permitting prediction

system ensemble (24 members) on a finer scale (i.e., 1.5 km

of resolution) for nowcasting purposes based on MOGREPS

(Migliorini et al., 2011). Even though the authors show

how general balances that drive synoptic flow, in particular

geostrophic balance, can diminish in convective situations

on small scales, they highlight the necessity for a data as-

similation system to better represent both the large-scale and

mesoscale components of the flow. In addition, Ménétrier et

al. (2014) studied heterogeneous flow-dependent background

error covariances on a convective scale and showed that a

small ensemble (six members from AROME) contains rel-

evant information together with sampling noise, which can

be reduced through filtering. Finally, the GEN_BE v2.0 code

may be a tool to diagnose inhomogeneous 3-D localization

parameters in ensemble methods. The code has been tested

in atmospheric science, but the flexibility of the code may be

useful in other geophysical applications.

www.geosci-model-dev.net/8/669/2015/ Geosci. Model Dev., 8, 669–696, 2015



688 G. Descombes et al.: Generalized background error covariance matrix model

Appendix A: FORTRAN code and input/output

description

New FORTRAN modules have been developed to general-

ize the calculation of the error covariance matrix from dif-

ferent input models and for new control variables. Table A1

contains a complete list of these modules and their con-

tents. All the algorithms from stage 1 to stage 4 are now

independent of the choice of control variables and driven

by a unique namelist file, called namelist.input, and read

by FORTRAN module configure.f90. Flexibility has been

added for future experiments. Few modifications are needed

in stage 0 to add new control variables. FORTRAN module

io_input_models.f90 converts the standard variables from a

given model to the analysis variables. The interface is al-

ready made with the WRF model. Only FORTRAN module

io_input_model.f90 needs to be updated to implement new

model input and to run the different stages. The NetCDF for-

mat has been chosen to improve robustness and flexibility in

the input and output of the different stages, as shown in Ta-

ble A2. The final NetCDF output file (be.nc) contains all the

information needed for a variational data assimilation sys-

tem, as shown in Table A3. Several converters from NetCDF

format to binary have been developed to ensure backward

compatibility to another data assimilation system. A be.dat

binary file can be generated for the WRFDA application us-

ing the gen_be_diags.f90 program, and a be_gsi.dat binary

file can be created for GSI using the gen_be_nc2gsi.f90 con-

verter.

Table A1. FORTRAN code description of the GEN_BE v2.0 framework.

FORTRAN modules Comments

variables_types.f90 It defines, declares and allocates new types such as state_type, mesh_type,

bin_type, and state_matrix. Some basic operations such as addition, subtrac-

tion, and calculation of variance and covariance are available.

configure.f90 It reads the namelist.input file and initializes the variables.

io_input_models.f90 It reads input standard variables from a model defined by the user and converts

them into control variables. If the user needs to introduce a new input model,

only this module needs to be updated to read and transform the data.

io_input.f90 It reads NetCDF input data and initializes new types.

io_output.f90 It writes the NetCDF output format for all new types.

io_output_applications.f90 It writes output for different application needs.
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Table A2. Input and output of the different components of the GEN_BE v2.0 code.

Programs Input Output Comments

gen_be_stage0.F Various models (ex: WRF) pert.ccyymmddhh It contains the perturbations for all the control variables

defined in the namelist.

mesh_grid.nc

All_mesh.grid.nc

It contains all the static data as a latitude array, longi-

tude array, and map factors.

mask.ccyymmddhh This file exists only with the dynamical_mask option,

which is activated with bin_type=7 or bin_type=8.

standard_variable.txt

control_variable.txt

It contains the list of the control variables in ASCII for-

mat.

gen_be_stage1.F pert.ccyymmddhh var. ccyymmddhh The input file is split per variable.

bins.nc All the information related to the binning options is in-

cluded in this file.

gen_be_stage2.F var. ccyymmddhh gen_be_stage2_regcoeff.nc All the regression coefficients are included in this file.

var(_u) ccyymmddhh If a linear regression is applied to the current variable to

remove its balanced part, an unbalanced output variable

is written under this nomenclature.

gen_be_stage3.F var(_u). ccyymmddhh gen_be_stage3_vert_lenscale.var(_u).nc It contains the vertical length scale parameter for the

full or unbalanced part of the variable.

gen_be_stage3_varce.var(_u).nc Variance three dimensions by grid point

gen_be_stage3_vert_varce(_u).nc Binned vertical variance

var(_u).ccyymmddhh.ennn.kkk Intermediate binary files split by vertical level

gen_be_stage4.F var(_u).ccyymmddhh.ennn.kkk sl_print.blll.qcloud Intermediate ASCII file format that contains the hori-

zontal length scale.

gen_be_diags.F Results of the precedent stages from 2 to 4 be.nc Final netcdf file that contains all the information to

model B.

gen_be_nc2gsi.F be.nc be_gsi_little_endian.gcv

be_gsi_big_endian.gcv

Binary format directly readable by GSI

Table A3. Content of the final output file be.nc (NetCDF format) of the GEN_BE v2.0 code.

Name of the field Description

Fields defined by control variable name (e.g., cv1)

Lenscale_cv1 Horizontal length scale in EOF space or physical space

vert_lenscale_cv1 Vertical length scale available only if the flag data_on_levels is true and the

control variable number 1 is 3-D

vert_variance_cv1 Vertical variance of the control variable number 1 per bin

eigen_value_cv1 Eigenvalue of the control variable number 1 only available if the flag

data_on_levels is false

eigen_vector_cv1 Eigenvector of the control variable number 1 only available if the flag

data_on_levels is false

varce_cv1 Variance 3-D

Regression coefficients

list_regcoeff Complete list of the regression coefficients used in the balance constraint

regcoeff_cv1_cv2 Example of regression coefficient between control variables 1 and 2. It can be

1-D, 2-D or 3-D.

vert_autocov_cv1 Vertical autocovariance of the control variable number 1

Binning parameters

bin_type Bin_type option selected

bin2d Binning field 2-D array

bins Binning field 3-D array
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Appendix B: Description of the namelist options

The “namelist.input” file that drives the different stages 0 to

4 contains four different sections.

The “&gen_be_info” namelist section, described in Ta-

ble B1, defines the options for computing perturbations in

stages 0 and 1 from an input forecast model (e.g., WRF).

Also, the data assimilation system can be specified.

Table B2 presents eight available binning options

and Table B3 explains how to set up namelist section

“&gen_be_bin”. In GEN_BE code version 2.0, all the in-

formation that defines a binning option is encapsulated in

type bins_type. Since the algorithms of the different stages

from 1 to 4 do not make any specific assumption about

the binning option used, the implementation of the new op-

tion is simplified, as it needs to be defined just once in the

da_create_bins FORTRAN routine of module io_input.f90.

In the case of implementing a geographical mask, develop-

ers have to introduce the method to update the mask in the

update_dynamical_mask routine. All information related to

binning is contained in the NetCDF bin.nc file created in

stage 1.

The Up transform is defined in section “&gen_be_cv”,

where the used control variables and balance operator are set

up. Table B4 presents the CV5 control variable currently used

in the GSI system (Kleist et al., 2009). In this example, the

use of the relative humidity (RH) (line covar5) allows statis-

tics in GEN_BE to be performed for the normalized relative

humidity described by Holm et al. (2002) and implemented

in GSI. Furthermore, when the regression coefficients are

computed for a GSI regional application, a Cholesky de-

composition is used, and additional filtering is applied to

the regression coefficients between stream function and tem-

perature, and between stream function and pressure surface.

This part of the code coming from the NCEP is flagged

with the use_cholesky variable in the gen_be_stage2.F FOR-

TRAN program, and the called subroutines are contained

in the io_output_applications.f90 FORTRAN module. Table

B5 shows the Up transform, called CV9, which includes hy-

drometeors in a multivariate approach.

Table B6 contains namelist section “&gen_be_lenscale”

to diagnose parameters of the Uv and Uh transforms for

stage 3 and stage 4, respectively. The vertical transform Uv

can be performed by estimating a vertical length scale by

model levels (data_on_level= true) or by a EOF decomposi-

tion (data_on_level= false). By default, statistics are binned

with the same option-defined section (“&gen_be_bin”) of the

namelist.input file. Otherwise, the statistics are averaged by

vertical level if the global_bin flag is true (which is equiva-

lent to the definition of bin_type= 5).
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Table B1. General information defining the experiment in the namelist input file (&gen_be_info part).

&gen_be_info Namelist options Description

Model “WRF” Setting up the acronym for the model input allows GEN_BE to read

different input models in stage 0.

Application “WRFDA” The “WRFDA” and “GSI” interfaces have been developed and tested.

be_method “ENS” or “NMC” Compute perturbations from an ensemble or from a different time-

lagged forecast.

ne Number of members If NMC method ne= 1.

cut 0, 0, 0, 0, 0, 0 Allows one to subset an area of a domain, defined in grid points: imin,

imax, jmin, jmax, kmin, kmax.

use_mean_ens “false” If be_method= “ENS” is selected, the perturbation can be calculated

from the mean of all the members or from two different members.

start_date “_START_DATE_” Initial date, format ccyymmddhh.

end_date “_END_DATE_” Final date, format ccyymmddhh.

Interval “hh” Frequency of the historical date data available, defined in hours (useful

for the NMC method only).

Table B2. Description of the binning options.

Bin_type Description

0 Binning by grid point.

1 Binning by vertical level along the× direction point of the model.

2 Binning by vertical heights and by latitude num_bins_lat. The parameters binwidth_lat and

binwidth_hgt define the width that splits the bins.

3 Binning by vertical model level and latitude dependent. The parameters lat_min and lat_max

are computed from the model input data and the parameter binwidth_lat is defined in the

namelist.input file.

4 Binning by vertical model level and along the y direction.

5 Binning on vertical model level including all the horizontal point.

6 Average over all points.

7 Binning rain/no-rain by vertical model level and based on thresholds in the model background

(Michel et al., 2011).

Table B3. Parameters defining the binning options of the namelist input file (&gen_be_bin part).

&gen_be_bin Namelist options Description

bin_type 0–7 Bin type option

lat_min, lat_max Minimum and maximum of latitude defined in

degrees. Used if bin_type = 2.

binwidth_lat 5.0 Width of the bins defined by latitude in degrees

Used if bin_type = 2, 3, 4.

hgt_min 1000.0 Used if bin_type = 2 (height, meters).

binwidth_hgt 2000.0 Width of bins defined by height in meters

Used if bin_type = 2 (meters).
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Table B4. Information related to the control variables and their covariance errors in the namelist input file (&gen_be_cv part, example CV5).

At present, the parameter covar can take three values, 0, 1, and 2, meaning “no regression”, “full regression” and “diagonal only”.

&gen_be_cv Namelist options Description

nb_cv 5 Number of control variables

cv_list ’psi’, ’chi’, ’t’, ’ps’, ’rh’ Variables used for the analysis

fft_method 1, 2 Conversion of u and v to psi and chi

1= cosine; 2= sine transform

covar1 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 First variable does not have covariance.

covar2 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 Covariance of variable 1 (psi) and variable 2 (chi)

covar3 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 Covariance of variable 1 (psi) with variable 3 (t)

covar4 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 Covariance of variable 1 (psi) with variable 3 (ps)

covar5 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 Relative humidity univariate

covar6 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 Other possible variables

use_chol_reg “false” By default, compute the regression coefficient as a ratio of covariance

by variance. If true, use a Cholesky decomposition (specific to GSI and

CV5).

Table B5. Information related to the control variables and their covariance errors in the namelist input file (&gen_be_cv part, example CV9,

definition of multivariate humidity and hydrometeor error covariance matrix).

&gen_be_cv Namelist options

nb_cv 9

cv_list ’psi’, ’chi’, ’t’, ’ps’, ’rh’, ’qcloud’, ’qice’, ’qrain’, ’qsnow’

covar1 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

covar2 1, 0, 0, 0, 0, 0, 0, 0, 0, 0

covar3 1, 0, 0, 0, 0, 0, 0, 0, 0, 0

covar4 1, 0, 0, 0, 0, 0, 0, 0, 0, 0

covar5 0, 0, 1, 1, 0, 0, 0, 0, 0, 0

covar6 0, 0, 0, 0, 2, 0, 0, 0, 0, 0

covar7 0, 0, 0, 0, 2, 0, 0, 0, 0, 0

covar8 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

covar9 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

Table B6. Description of the options available in the namelist input file (&gen_be_lenscale part) to diagnose the length scale parameter.

&gen_be_lenscale Namelist options Description

data_on_levels “true” The statistics can be computed by vertical model level

(GSI) or by EOF mode (WRFDA) in stage 3.

vert_ls_method 1, 2 Estimate the vertical length scale (stage 3).

Option 1: parabolic approximation formula

Option 2: Gaussian approximation formula

ls_method 1, 2 Estimate horizontal length scale (stage 4).

See Sect. 3.4 for more details.

use_med_ls “false” Estimate the length using the median value or not.

stride 1 Subset of point to speed up stage 4

n_smth_ls 2 Number of points to smooth the length scale

use_global_bin “false” The statistics can be binned (use_global_bin= false) or

not in stages 3 and 4. Only inhomogeneous recursive

filters can handle a binned length scale.
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Appendix C: Installation, compilation, setup and

visualization

The GEN_BE code version 2.0 is a stand-alone package that

can be installed on different UNIX/LINUX systems. It has

been tested with the Intel FORTRAN compiler, the Port-

land Group FORTRAN compiler, and the GNU FORTRAN

compiler. It requires compilation of NetCDF libraries. First,

a configuration file needs to be created using the command

configure in the main directory of the code. Then, the com-

pilation is launched by the command compile gen_be. Once

successfully completed, the executables are created in the src

directory.

Korn-shell scripts available in the scripts directory al-

low one to set up the experiment. The wrapper script,

named gen_be_wrapper.ksh, sets up some global vari-

ables and launches the main script (gen_be.ksh). The user

needs to set up most of the other options that determine

the way to model the B matrix in the namelist.template

file. The gen_be.ksh script fills out the initial date and

the final dates, the frequency of date available (interval)

coming from the global variable setup in the wrapper

script and in the gen_be_set_defaults.ksh script, and gen-

erates a namelist.input file in the working directory dur-

ing the first stage. The namelist.input file contains four

main parts presented in Appendix B. Each stage can then

be run successively by setting the environmental vari-

able RUN_GEN_BE_STAGE [0,1,2,3,4] to true in the

gen_be_set_defaults.ksh script. The output of stages 0, 1, 2,

and 3 and the be.nc file can easily be visualized with existing

tools (Ncview, NCL, Python, MatLab).
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The Supplement related to this article is available online

at doi:10.5194/gmd-8-669-2015-supplement.
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