Reply to Comments from Reviewer #1

Comments: The subject is appropriate to GMD. This manuscript presents results of a comprehensive comparative evaluation using the CAM5-chem within the CESM with two most commonly-used gas-phase chemical mechanisms: CB05_GE and MOZART-4x. The results showed that the two CAM5-chem simulations with CB05_GE and MOZART-4x predict similar chemical profiles for major gases compared to the aircraft measurements, with generally better agreement for NOy profile by CB05_GE than MOZART-4x. They also found that the concentrations of SOA at four sites over continental US (CONUS) and organic carbon (OC) at the IMPROVE sites were well predicted by MOZART-4x but moderately underpredicted by CB05_GE. The results showed that the two simulations have similar cloud/radiative predictions, with slightly better agreement with observed CCN profile over Beijing by MOZART-4x. A lot of model evaluations have been done with tremendous observational data. Therefore I recommend clearly the acceptance for publication of this manuscript after minor revisions.

Reply:

We thank the reviewer for the positive comments. We have addressed all the comments, please see below our point-by-point reply.

Several editorial comments for improving the information content and presentation of the paper are listed as follows:

1. Abstract: Please use "continental US (CONUS)" instead of "CONUS" in the abstract.

Reply:

The suggested change has been made in the revised paper.

2. P3, L10-15: please add some references for these statements.

Reply:

A few references have been added in the Introduction section in the revised paper.

3. P4, L12-15: Regarding the possible effects of different chemical mechanisms on the performance of CMAQ, please add discussions about the recent work for the CMAQ (such as Yu, Shaocai, R. Mathur, G. Sarwar, D. Kang, D. Tong, G. Pouliot, and J. Pleim, 2010. Eta-CMAQ air quality forecasts for O3 and related species using three different photochemical mechanisms (CB4, CB05, SAPRC-99): comparisons with measurements during the 2004 ICARTT study, Atmos. Chem. Phys., 10, 3001-3025.)

The suggested discussions have been added along with the reference in the Introduction section in the revised paper.

4. P12, L24-26: Please cite the definitions of MB, NMB, RMSE etc for some references (such as Yu, Shaocai, Brian Eder, Robin Dennis, Shao-hang Chu, Stephen Schwartz, 2006. New unbiased symmetric metrics for evaluation of air quality models. Atmospheric Science Letter, 7, 26-34.).

Reply:

We have added the suggested references for this part in Section 3.3 in the revised paper.

5. P13, L1: CERES doesn't provide SWCF and LWCF. Please give more information about how to calculate them.

Reply:

The observed SWCF and LWCF data are from Clouds and Earth's Radiant Energy Systems (CERES) Energy Balanced and Filled (EBAF). We have included this information in Sections 3.2 and 3.3 in the revised paper.

6. P14-15, L25 (P14)-L1 (P15): The statement "The overpredictions of the NH3 concentrations result in the overpredictions of the NH+4 concentrations at the surface" is not necessary true. Please rewrite it. Regarding the bad performance of NH3 and NO3-, one of the reasons is because of partition of total (NH3+NH4+) (and total (HNO3+NO3-)) between gas and aerosol phases as discussed by Yu et al. (Yu, Shaocai, Robin Dennis, Shawn Roselle Athanasios Nenes, John Walker, Brian Eder, Kenneth Schere, Jenise Swall, Wayne Robarge, 2005. An assessment of the ability of 3-D air quality models with current thermodynamic equilibrium models to predict aerosol NO3- Journal of Geophysical Research, 110, D07S13, doi:10.1029/2004JD004718.). Please add this discussion.

Reply:

We have added additional discussion along with the suggested reference for this part in Section 4.1.1.

7. Regarding Figures 1, 4 and 9: They are too small to be seen clearly. Please enlarge them.

Reply:

We have enlarged the plots in Figures 1, 4, and 7 (original Figure 9).

Reply to Comments by Reviewer #2

General comments:

The authors implemented two different gas-phase chemical mechanisms (CB05_GE and MOZART-4x) into the CESM/CAM5 model and performed model simulations for three years. Model predictions obtained with one mechanism are compared to those obtained with the other mechanism and also to measurements from a large number of observational datasets. The article will be useful to air quality scientists and merits publication. However, several issues need to be addressed. Specific comments are provided below:

Reply:

We thank the reviewer for the positive review. We have addressed all the comments, please see below our point-by-point reply. The page and section numbers correspond to those in the manuscript with revision in track mode.

Specific comments:

Grid issue

Large horizontal grids are employed in the simulation since a global model is used in the study. Surface measurements are generally done at fixed locations. Large spatial variations exist in pollutant concentrations (especially between urban, semi-urban and rural areas). A global model utilizing coarse horizontal grids is unable to capture such spatial variation. Presumably model comparisons with observed data from the Air Quality System (AQS) in the US are not performed for such reason. Comparison of model predictions employing large grids to observed data from fixed surface monitors contain inherent uncertainty. The readers will benefit from a general discussion on the ability of such models to capture spatial gradients of pollutants (especially near urban areas) and comparison with observed data.

Reply:

We agree with the reviewer that there may be large uncertainties associated with comparison of grid averaged model output with pointwise observations. The horizontal grid used in this work is $0.9 \,^{\circ} \times 1.25^{\circ}$. For model evaluation, there may be multiple observational sites located in one grid cell, so all the observations within one grid cell are averaged and compared to the simulated results in that grid cell. While using grid averaged observations helps reduce the uncertainties to some extent, this approach cannot address the inherent uncertainties associated with the evaluation of the model results obtained at a coarse grid resolution.

To address the reviewer's comments, we have provided more information regarding the evaluation and also indicated the inherent uncertainties associated with the approach we used in Section 3.3.

NOx issue

Column (Table 3) and zonal NOx (Figure 3) are over-predicted. In contrast, NOx from surfacebased monitors (Table 3) and aircraft based monitors (Figure 4) are under-predicted. Despite under-prediction of NOx compared to observations from surface-based and aircraft based monitors, model over-predicts NOx compared to satellite data. Can the authors discuss some reasons for such behavior?

A presentation on the comparison of model and satellite NO2 is available at: (https://www.cmascenter.org/conference/2012/slides/yarwood_evaluating_nox_2012.pdf)

Reply:

The underpredictions of NO_x against surface-based observations can be attributed to the uncertainties in the anthropogenic NO_x emissions as well as vertical transport. It is likely that more NO_x are transported into upper layers, resulting in the underpredictions in surface NO_x predictions. The underpredictions of NO_x against aircraft based observations may be due in part to the uncertainties in the measurements. Some field campaigns (e.g., ARCPAC) focused on the polluted regions with a significant contribution from biomass burning and local sources (Tilmes et al., 2015). The underestimations of emissions from these sources and uncertainties in the vertical mixing scheme can result in the underpredictions of their profiles.

The comparison of tropospheric NO_2 column against satellite data (e.g., SCIAMACHY) can be attributed to the uncertainties in NO_x emissions and the satellite retrievals. As indicated in Yarwood et al. (2012), errors in satellite NO_2 retrievals are dominated by atmospheric mass factor, which has a large uncertainty due to errors in specification of clouds, surface albedo, a priori NO_2 profile shape, and aerosols. Boersma et al. (2004) found there is an error of 35-60% in the tropospheric NO_2 retrievals, especially over polluted areas.

To address the reviewer's comments, we have included the above points along with relevant references in the revised paper, Section 4.2.

Ozone issue

The model over-predicts ozone for both mechanisms compared to the observed data (Table 3). The over-predictions has been liked to less titration resulting from the under-prediction of NOx, coarse resolution, as well as dilution of NOx. It is well-known that the addition of more NOx reduces ozone only in NOx rich areas. As the additional NOx is transported to outside the NOx rich areas, it increases ozone in those areas. Thus, the addition of NOx may not necessarily reduce overall ozone. I think the use of coarse resolution is diluting NOx; thus coarse resolution and dilution of NOx are not independent reasons. In addition, model under-predicts VOC. If the model is revised to add corrected amount of VOC emissions, then it will produce more ozone which will further deteriorate the model performance.

We agree with the reviewer that O_3 titration is more important over NO_x rich areas and diluting NO_x associated with coarse resolution can be one of the reasons for O_3 overpredictions. VOCs are underpredicted in the current model, so it cannot explain the O_3 overpredictions. Another possible reason for O_3 overpredictions may be underestimation in dry deposition. For example, Martin et al. (2014) reported the uncertainties in O_3 dry deposition associated with vegetation phenology in CAM-chem, which were responsible for the mean positive biases of 16 ppb in summertime surface O_3 mixing ratios over eastern U.S. and 8 ppb over Europe, respectively. Therefore, uncertainties in O_3 dry deposition can also partly explain the O_3 overpredictions.

To address the reviewer's comments, we have included the above discussion in the revised paper.

While the model under-predicts NOx, its NOY predictions agree closer to observed data (Figure 4). If the model is revised to use corrected NOx, then it is likely to over-predict NOY. Predictions with the CB05-GE mechanism agree better with observed NOY. Column NOY obtained with MOZART-4x is 46% lower than that that with CB05-GE (section 4.2) which suggests that NOx is processed quite differently in the two mechanisms. Which specific chemical reactions are causing such a large difference in NOY predictions and how are they different in the two mechanisms? What are the largest 2 chemical species in NOY and how they differ between the two mechanisms?

Reply:

To address the reviewer's comments, we have performed additional analyses and added a new Table (Table S2) and two new figures, i.e., Figure S1, to show the dominant species in NO_y for both MOZART-4x and CB05_GE, and Figure S2 to show the absolute and relative differences for major NO_y species between MOZART-4x and CB05_GE. As shown in Figure S1, NO_x, HNO₃, and TPAN (PAN+PANX for CB05_GE and PAN+MPAN for MOZART-4x) are the major components for NO_v concentrations, with ratios of 90.5% and</sub> 91.7%, respectively, for the sum of the mixing ratios of the top three species to that of NO_y. NO_x dominates over East Asia, eastern U.S., and western Europe, whereas TPAN dominates over most oceanic area. As shown in Figure S2, MOZART-4x predicts lower TPAN by 2.9×10^{19} molecules m⁻² (or by 63.4%), which dominates the differences in NO_y predictions between the two simulations. The differences in TPAN predictions can be attributed to the differences in the kinetic reactions. Table S2 lists the reactions involving TPAN. As shown in Table S2, besides the differences in the reaction rate calculation, MOZART-4x includes one additional reaction for PAN destruction by OH, which is not included in CB05 GE. In addition, OH levels are higher in MOZART-4x than CB05 GE, which could result in more TPAN loss through oxidation by OH. These differences can explain the lower TPAN in MOZART-4x than in CB05_GE. We have included the above information in the revised paper, see pages 35-36.

Some of the nitrogen species partition into aerosol nitrate. Does the difference in NOY between two mechanisms decrease if aerosol nitrate is accounted in the NOY definition? How does the model predictions compare to observed data (Figure 4) if aerosol nitrate is accounted in the NOY definition?

Reply:

Table S3 lists the NO_y species used in the calculation for Figure 4 and other NO_y related comparisons. Note that Figure 8b includes the column comparison of aerosol nitrate. To address the reviewer's questions, we have included aerosol nitrate in the NO_y calculation and replace the NO_y plots in Figures 4 and 8a by those plots accounting for aerosol nitrate in NO_y. Figure S3 shows the absolute differences in NO_y (with and without inclusion of aerosol nitrate) between MOZART-4x and CB05_GE. If aerosol nitrate is accounted for in the NO_y definition, the differences in NO_y between two mechanisms decrease over East Asia, eastern U.S., Europe, and middle Africa as aerosol nitrate is higher in MOZART-4x over these regions (see Figure 6b). For the rest of areas, the differences in NO_y between two mechanisms increase if aerosol nitrate is accounted for in the NO_y definition.

To address the reviewer's comments, we added the above discussions in page 36.

NOY definition includes BrONO2 which suggests bromine chemistry is being used in the model. Which bromine emissions are used in the model?

Reply:

We have bromine chemistry included in both MOZART-4x and CB05_GE. For bromine/chlorine species (e.g., CF2CLBR, CF3BR, CFC11, CFC12, CH3BR, and CH3CL), their surface concentrations are specified using the historical reconstruction from Meinshausen et al. (2011). No bromine emissions were included.

The above point was added in Section 3.1.

Also, need to clarify that section 4.2 contains only model-to-model comparison.

Reply:

This has been clarified in Section 4.2.

HNO3 issue

The model over-predicts HNO3 over CONUS while under-predicting it over Europe. Underprediction of HNO3 over Europe is linked to under-prediction on NOx. Surface NO2 comparison for CONUS is not shown in Table 3. Does the over-prediction of HNO3 over CONUS occur due to over-prediction on NOx?

To address the reviewer's comment, we have included NO₂ evaluation against AQS sites over CONUS. The results show that both CB05_GE and MOZART-4x underpredict surface NO₂ concentrations, with NMBs of -52.2% and -51.4%, respectively. The overpredictions of HNO₃ over CONUS are mainly due to more total nitrate partitioned into HNO₃ (which is reflected by the underpredictions of NO₃⁻ over CONUS) resulted from the overpredictions of SO₄²⁻ over CONUS. Compared to NO₃⁻, SO₄²⁻ can more easily combine with NH₄⁺ to stay in aerosol phase. There are not enough NH₄⁺ to neutralize NO₃⁻, driving NO₃⁻ to HNO₃ in the gas-phase resulting in overpredictions of HNO₃ over CONUS. We have included this explanation in the revised paper, Section 4.1.1.

Cl- issue

The model under-predicts Cl- over CONUS while over-predicting it over Europe. Overprediction of Cl- over Europe has been linked to gas/particle partitioning. Can the authors suggest any reasons for under-prediction of Cl- over CONUS? Reff et al. (2009) suggest many sources can emit Cl-; are emissions from these sources included in the study? Reff, et al.: Emissions inventory of PM2.5 trace elements across the United States, Environmental Science & Technology, 43, 5790–5796, 2009.

Reply:

We did not include any anthropogenic Cl⁻ emissions in the model except from sea-salt emissions, which is calculated online in CESM/CAM5. The missing sources can contribute to the underpredictions of Cl⁻. On the other hand, due to the overpredictions of SO₄²⁻, there are less NH₄⁺ available to neutralize Cl⁻, driving Cl⁻ to HCl in the gas-phase, resulting in underpredictions of Cl⁻. In addition, the performance of Cl⁻ over CONUS is only for fine Cl⁻ (Aitken, accumulation, fine sea-salt, and fine dust modes), whereas the performance of Cl⁻ over Europe is for fine and coarse Cl⁻ (all seven modes). As the thermodynamic equilibrium is not treated for coarse particles (the irreversible condensation of HCl is assumed to occur on the surface of coarse particles), it is likely that the model overpredicts coarse Cl⁻, but underpredicts fine Cl⁻ due to the missing sources.

To address the reviewer's comments, we have clarified the above issues in page 23, Section 4.1.1.

SO2/SO42-issue

The model over-predicts surface SO2/SO42-compared to the observed data (Table 3). The overestimation of SO2 has been explained with SO2 emissions, injection height uncertainty, and vertical mixing issue while the over-prediction of SO2 has been suggested to be the reason for over-prediction of SO42-. Most models over-predict surface SO2 and tend to under-predict surface SO42-compared to observed data. Here, the model over-predicts both surface SO2/SO42-. Interestingly column SO2 is underpredicted which suggests possible problem with vertical mixing in the model that may have contributed to the over-prediction of surface SO2.

As we explained, the overpredictions of surface SO_2 concentrations may be due to the uncertainties in the SO_2 emissions, injection height uncertainty, and vertical mixing. The underpredictions of column SO_2 can also be attributed to the uncertainties in the vertical mixing as well as uncertainties in the satellite retrievals. For example, Lee et al. (2009) found that there is an overall error in the annual SO_2 retrievals of 45-80% over polluted regions, especially over eastern China. Therefore, the uncertainties in the satellite SO_2 retrievals can affect the model evaluation. The overpredictions of SO_4^{2-} can be due to the overpredictions of SO_2 as well as uncertainties in the SO_4^{2-} emissions. CESM/CAM5 also reads the default vertical SO_4^{2-} emission profiles for the simulations. The uncertainties in the SO_4^{2-} as well.

To address the reviewer's comments, we have included the above explanation in the revised paper in Section 6.

Other factors may also affect SO42-predictions. Aqueous-phase reaction with H2O2 and gasphase reaction with OH tend to be the most important pathways for the conversion into SO42-. The article does contain any discussion of predicted oxidant levels (H2O2 and OH). If the predicted oxidant levels are too high, SO42-predictions will also be high. I am not suggesting to perform any detailed comparison of predicted H2O2 and OH with observed data but some discussion of predicted oxidants levels and typical observed values will be helpful to readers.

Reply:

We agree with the reviewer that aqueous phase reaction with H_2O_2 and gas-phase reaction with OH are important pathways for SO_4^{2-} formation. We have added the comparisons of OH and H_2O_2 profiles with aircraft measurements in Figure 4 in the revised paper. As shown in Figure 4, both OH and H_2O_2 are underpredicted, but MOZART-4x predicts slightly higher H_2O_2 within 4-km above the surface compared to CB05_GE. However, the performance here only represents the local condition, instead of global condition.

To address the reviewer's comment, we also compared the global mean tropospheric OH concentrations with other studies. The simulated air-mass weighted tropospheric mean OH concentrations predicted by MOZART-4x and CB05_GE are both 13.1×10^5 molec cm⁻³, which is slightly higher than Naik et al. (2013) with present-day tropospheric mean OH levels of 11.1 ± 1.6 molec cm⁻³. So both CB05_GE and MOZART-4x tend to predict higher OH levels, which may partly explain the overpredictions of SO4²⁻. We have included this explanation in the revised paper, Section 4.1.1.

The model under-predicts cloud liquid water path compared to MODIS data (Table 5). If the model is revised to include the correct amount of cloud liquid water, then it will produce more SO42-and the model performance for SO42-will further deteriorate and the model performance for SO2 will improve. It is also possible that the model produces more SO42- by placing clouds in incorrect vertical layers. Inadequate precipitation in the model may also lead to higher than observed SO42-in the model.

Cloud liquid water path (LWP) is moderately underpredicted by both MOZART-4x and CB05_GE against MODIS data, but it is relatively well predicted against Bennartz (2007), which filtered out large uncertainties associated with MODIS retrievals. Therefore, the model predicts LWP relatively well against Bennartz (2007). But we agree with the reviewer that the model may inaccurately predict clouds vertically as the simulations with both MOZART-4x and CB05_GE show moderate biases for COT and CDNC.

We also agree with the reviewer that inadequate precipitation can contribute to the overpredictions of SO_4^{2-} . Both simulations are driven by prescribed meteorology, so we did not compare meteorology from the two simulations. To address the reviewer's comment, we evaluated precipitation and the results show that precipitation is well predicted by both MOZART-4x and CB05_GE, with NMBs of 1.9% and 1.6%, respectively. Therefore, the overpredictions of SO_4^{2-} are not due to the insufficient precipitation.

SOA issue

The model is able to capture observed SOA (Table 3 and Figure 2). However, VOCs are underpredicted. If the model is revised to use corrected amount of VOC emissions, then SOA predictions will be higher. Does the model capture SOA for the correct reason? Again, discussion of predicted oxidant levels with typical observed values will also be helpful for discussing SOA predictions?

Reply:

We agree with the reviewer that using correct VOCs emissions can increase the SOA concentrations. As we discussed above, our model tends to predict higher OH levels on a global scale, which can partly explain the well predicted SOA despite the underpredictions of VOCs. Also, the SOA statistics are calculated using only four pairs of seasonal mean values at four sites in the U.S. where the observed SOA data are available during 2008-2010; they, therefore, are not be representative of the entire CONUS because of limited data used for calculation. We have indicated this limitation in the paper.

Minor editorial suggestions

The objectives of the study are to examine the differences in the SOA predictions, and study the sensitivity of air quality and climate predictions to different gas-phase chemical mechanisms (introduction section). However, the title does not reflect that SOA predictions are being examined. Perhaps the authors can reconcile the apparent difference.

Reply:

SOA is part of the global air quality, so the title does include examination of SOA predictions from both simulations.

Most chemical species in the article have been defined. However, some have not been defined. For example, CO, HOx, and NOx in line 24 (page 7191) are not defined. I suggest that the authors check the entire article and define the chemical species when it is used first time.

In the description, two names for α -pinene (alpha-pinene and α -pinene) and β -pinene are used. One name should be used throughout the article (Chemical mechanism - 2.1)

Reply:

We have checked the paper thoroughly and defined all the species and we also use consistent names for the species in the revised paper.

Figure 1 also contains a comparison of SOA which is not mentioned in the caption

Reply:

SOA has been added in the Figure 1 caption in the revised paper.

Conclusion section is long and can be shortened

Reply:

l

Conclusion has been shortened in the revised paper.

References cited in this reply

- Boersma, K. F., Eskes, H. J., and Brinksma E. J.: Error analysis for tropospheric NO2 retrieval from space, J. Geophys. Res., 109, D04311, doi:10.1029/2003JD003962, 2004.
- Lee, C., Martin, R. V., Donkelaar, A. van, O'Byrne, G., Krotkov, N., Richter, A., Huey, L. G., and Holloway, J. S.: Retrieval of vertical columns of sulfur dioxide from SCIAMACHY and OMI: Air mass factor algorithm development, validation, and error analysis, J. Geophys. Res., 114, D22303, doi:10.1029/2009JD012123, 2009.
- Martin, M. V., Heald, C. L., and Arnold, S. R.: Coupling dry deposition to vegetation phenology in the Community Earth System Model: Implications for the simulation of surface O3, Geophys. Res. Lett., 41, 2988-2996, doi:10.1002/2014GL059651, 2014.
- Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J.-F., Matsumoto, K., Montzka, S., Raper, S., Riahi, K., Thomson, A., Velders, G. J. M., and van Vuuren, D. P.: The RCP Greenhouse Gas Concentrations and their Extensions from 1765 to 2300, Climatic Change, 109, 213-241, 2011.
- Naik, V., Voulgarakis, A., Fiore, A. M., Horowitz, L. W., Lamarque, J.-F., Lin, M., Prather, M. J., Young, P. J., Bergmann, D., Cameron-Smith, P. J., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty, R., Eyring, V., Faluvegi, G., Folberth, G. A., Josse, B., Lee, Y. H., MacKenzie, I. A., Nagashima, T., van Noije, T. P. C., Plummer, D. A., Righi, M., Rumbold, S. T., Skeie, R., Shindell, D. T., Stevenson, D. S., Strode, S., Sudo, K., Szopa, S., and Zeng, G.: Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 13, 5277-5298, doi:10.5194/acp-13-5277-2013, 2013.
- Tilmes, S., Lamarque, J.-F., Emmons, L. K., Kinnison, D. E., Ma, P.-L., Liu, X., Ghan, S., Bardeen, C., Arnold, S., Deeter, M., Vitt, F., Ryerson, T., Elkins, J. W., Moore, F., Spackman, R., and Martin, M. V.: Description and evaluation of tropospheric chemistry and aerosols in the Community Earth System Model (CESM1.2), Geosci. Model Dev., 8, 1395-1426, doi:10.5194/gmd-8-1395-2015, 2015.
- Yarwood, G., Kemball-Cook, S., Johnson, J, Wilson, G, Dornblaser, B, and Estes, M: Evaluating NO_x Emission Inventories for Air Quality Modeling Using Satellite, Model and SEARCH NO₂ Data, 11th Annual CMAS Conference, Chapel Hill, NC, October 16, 2012.

Reply to Comments by Reviewer #3

This manuscript documents the comprehensive evaluations and comparisons of two chemistry mechanisms (CB05-GE and MOZART-4) in CESM/CAM5. The topics are well within the scope of GMD. I recommend the acceptation for the publication after following comments are addressed.

Reply:

We thank the reviewer for the positive comments. We have addressed all the comments, please see below our point-by-point reply.

1. Many fields related to chemical species, aerosol species, CCN, clouds are discussed and evaluated in the study. To improve the clarity and readability, the authors may consider to use another way of presentation in section 4. For example, you may consider to add subtitle for different types of gas and aerosol species, e.g., NOx, NOy, O3, HNO3, aerosols (BC, OC, SOA, SO4 and associated precursors), CCN, cloud, radiation.

Reply:

To improve the readability, we added subtitles for evaluation of different types of species and variables in the revised paper.

2. The organization of section 4 is somehow confusing. How about putting all the evaluations in one subsection 4.1 and all the comparisons in the other subsection 4.2. Within each subsection there are different components (e.g., surface, vertical profile, column evaluations..).

Reply:

To avoid confusion, we have split the original Section 4 into Sections 4 and 5 in the revised paper.

Specific comments: 1. Abstract. Line 19, what is CONUS?

Reply:

CONUS is continental U.S. We have added the full name in the Abstract in the revised paper.

2. Abstract. Line 23, why the biogenic emissions are different between the two mechanisms.

The different biogenic emissions are mainly due to the different BVOCs mapping for MOZART-4x and CB05_GE. As discussed in Section 2.1 in the paper, both MOZART-4x and CB05_GE include α -pinene (APIN), β -pinene (BPIN), limonene, and ISOP as precursors for biogenic SOA. CB05_GE also includes additional biogenic precursors such as speciated ocimene (OCI), humulene (HUM) and terpinene (TER). However, in MOZART-4x, the species mapping for MEGAN emission calculation is slightly different. For example, α -pinene and other compounds (e.g., α -thujene, p-cymene, and o-cymene) are mapped into APIN; β -pinene and other compounds (e.g., sabinene and camphene) are mapped into BPIN; limonene and other compounds (e.g., ocimene) are mapped into LIMON; myrcene and other sesquiterpenes (e.g., humulene and α -bergamotene) are mapped into BCARY. Due to the different mapping for MEGAN species, biogenic emissions between MOZART-4x and CB05_GE are different.

To address the reviewer's comments, we have provided an explanation for different biogenic emissions between MOZART-4x and CB05_GE in the revised paper, see Section 2.1.

3. Page 7198. Line 12, which analysis fields are nudged?

Reply:

The nudged meteorological fields include surface pressure, meridional wind, zonal wind, zonal surface stress, meridional surface stress, snow height, solar flux at surface, soil moisture fraction, surface temperature, temperature, specific humidity, surface geopotential, orography flag, surface water flux, and surface sensible flux. We have included this info in the revised paper, Section 3.1.

4. Page 7201. Line 13-14, please compute PM2.5 accurately since the MAM aerosol scheme predicts the aerosol size distributions for different aerosol modes.

Reply:

In this work, lognormal size distribution is used for each mode, with prognostic mode dry and wet radius based on number and total dry and wet volume change. The geometric standard deviation (σ_g) of each mode is prescribed and given in Table S1 in the supplementary material, along with the size range of each mode used in this work.

To address the reviewer's comments, we have calculated PM_{2.5} concentrations based on prescribed mode dry radius and geometric standard deviation for mode 6 (coarse sea-salt mode) as all other modes are within the diameter $\leq 2.5 \mu m$. We have updated results in the revised paper.

5. Page 7203 and follow many pages. There are many "likely". I would like to have more certain assessments.

Reply:

We were trying to include all likely causes for the model performance. However, it is not possible to pin-point exact causes without carrying out a large number of sensitivity simulations, which is beyond the scope of current work and may be a subject of future work. To address the reviewer's comment, we have included some references to support our explanations and speculations in the revised paper.

6. Page 7208. Line 26, change "include" to "included"

Reply:

The suggested change has been made in the revised paper.

7. Page 7211. Please compare your SOA treatment with the Shrivastava et al. (2014) "Global transformation and fate of SOA: Implications of lowvolatility SOA and gas-phase fragmentation reactions" in JGR for treatment of SOA in CAM5 and simulation results if possible.

Reply:

Our SOA treatments include volatile SOA formation from anthropogenic VOCs (AVOCs) and biogenic VOCs (BVOCs) and semi volatile SOA from primary organic aerosol (POA). We also implemented functionalization and fragmentation treatments based on Shrivastava et al. (2013). We still use nine volatility bins to represent the aging and gas-particle partitioning of SOA, instead of five volatility bins used in Shrivastava et al. (2015). In addition, compared to the reaction (3) in Shrivastava et al. (2015), we do not have the third term, which denotes additional fragmentation where 10% of the mass results in low carbon number species with very high volatility that is eventually oxidized to CO/CO2 and/or removed by dry deposition. In our model treatment, the remaining mass is assumed to be lost to species with a volatility higher than the volatility values in the VBS structure.

Our model (i.e., MOZART-4x) predicts POA burden of 0.36 Tg, which is about 0.1 Tg lower than Shrivastava et al. (2015), indicating that POA may be too volatile with the current implementation in our model and uncertainties in POA emissions used in our simulations. Our model (i.e., MOZART-4x) predicts SOA burden of 1.82 Tg, which is slightly higher (by 0.05 Tg) than the FragSVSOA case in Shrivastava et al. (2015). This can be attributed to the different emissions used in both work and the fact that more POA is allowed to age to SOA in our model comparing to the FragSVSOA case in Shrivastava et al. (2015).

To address the reviewer's comment, we have provided a description on the SOA treatment in Section 2.2 in the paper. We also compared our POA and SOA burdens with those of Shrivastava et al. (2015).

Reference cited in this reply

Shrivastava, M., Easter, R., Liu, X., Zelenyuk, A., Singh, B., Zhang, K., Ma, P-L, Chand, D., Ghan, S., Jimenez, J.L., Zhang, Q., Fast, J., Rasch, P. and Tiitta, P.: Global transformation and fate of SOA: Implications of low volatility SOA and gas-phase fragmentation reactions, J. Geophys. Res. Atmos., 120, 4169-4195, doi:10.1002/2014JD022563, 2015.

I

1	CESM/CAM5 Improvement and Application: Comparison and Evaluation of Updated
2	CB05_GE and MOZART-4 Gas-Phase Mechanisms and Associated Impacts on Global
3	Air Quality and Climate
4 5	Jian He ¹ , Yang Zhang ^{1*} , Simone Tilmes ² , Louisa Emmons ² , Jean-Francois Lamarque ² , Tim Glotfelty ¹ , Alma Hodzic ² , and Francis Vitt ²
6	¹ Department of Marine, Earth, and Atmospheric Science, North Carolina State
7	University, Raleigh, NC
8	² National Center for Atmospheric Research, Boulder, CO
9	-
10	Abstract: Atmospheric chemistry plays a key role in determining the amounts and
11	distributions of oxidants and gaseous precursors that control the formation of secondary
12	gaseous and aerosol pollutants; all of those species can interact with the climate system.
13	To understand the impacts of different gas-phase mechanisms on global air quality and
14	climate predictions, in this work, a comprehensive comparative evaluation is performed_
15	using the Community Atmosphere Model (CAM) Version 5 with comprehensive
16	tropospheric and stratospheric chemistry (CAM5-chem) within the Community Earth
17	System Model (CESM) with two most commonly-used gas-phase chemical mechanisms:
18	the 2005 Carbon Bond mechanism with Global Extension (CB05_GE) and the Model of
19	OZone and Related chemical Tracers version 4 (MOZART-4) mechanism with additional
20	updates (MOZART-4x). MOZART-4x and CB05_GE use different approaches to
21	represent volatile organic compounds (VOCs) and different surrogates for secondary
22	organic aerosol (SOA) precursors. MOZART-4x includes a more detailed representation
23	of isoprene chemistry compared to CB05_GE. CB05_GE includes additional oxidation of

^{*} Corresponding author: Yang Zhang, Email: <u>yang_zhang@ncsu.edu</u>, Phone: (919)-515-9688

24	SO_2 by O_3 over the surface of dust particles, which is not included in MOZART-4x. The
25	results show that the two CAM5-chem simulations with CB05_GE and MOZART-4x
26	predict similar chemical profiles for major gases (e.g., O ₃ , CO, and NO _x) compared to the
27	aircraft measurements, with generally better agreement for NO _y profile by CB05_GE
28	than MOZART-4x. The concentrations of SOA at four sites in <u>continental U.S.</u>
29	(CONUS)CONUS and organic carbon (OC) over the IMPROVE sites are well predicted
30	by MOZART-4x (with NMBs of -1.9% and 2.1%, respectively) but moderately
31	underpredicted by CB05_GE (with NMBs of -23.1% and -20.7%, respectively). This is
32	mainly due to the higher biogenic emissions and OH levels simulated with MOZART-4x
33	than with CB05_GE. The concentrations of OC over Europe are largely underpredicted
34	by both MOZART-4x and CB05_GE, with NMBs of -73.0% and -75.1%, respectively,
35	indicating the uncertainties in the emissions of precursors and primary OC and relevant
36	model treatments such as the oxidations of VOCs and SOA formation. Uncertainties in
37	the emissions and convection scheme can contribute to the large bias in the model
38	predictions (e.g., SO ₂ , CO, black carbon, and aerosol optical depth). The two simulations
39	also have similar cloud/radiative predictions, with slightly better performance of domain
40	average cloud condensation nuclei (CCN) at supersaturation of 0.5% by CB05_GE, but
41	slightly better agreement with observed CCN (at supersaturation of 0.2%) profile over
42	Beijing by MOZART-4x. The two gas-phase mechanisms result in a global average
43	difference of 0.5 W m ⁻² in simulated shortwave cloud radiative forcing, with significant

44 differences (e.g., up to 13.6 W m⁻²) over subtropical regions.

45 Keywords: CB05_GE, MOZART-4, CAM5-chem, atmospheric gas-phase chemistry,
46 secondary organic aerosol, model evaluation

47

48 1. Introduction

49 Atmospheric chemistry plays an important role in the perturbation of climate 50 system by determining the amounts and distributions of important oxidants and gaseous 51 precursors for secondary air pollutants such as ozone (O_3) and aerosols (IPCC, 2013). 52 Aerosols can influence the Earth's radiative balance by directly scattering and absorbing 53 radiation and indirectly affecting cloud properties through acting as cloud condensation 54 nuclei (CCN) and ice nuclei (IPCC, 2013). The aerosol effects on radiation depend 55 critically on their chemical composition and physical properties. Therefore, atmospheric 56 chemistry is an important component for atmospheric and Earth system models. Different 57 chemical mechanisms (e.g., different chemical reactions and kinetic parameters) can lead 58 to differences in the predictions of gases, secondary aerosols, as well as climatic variables 59 such as CCN, cloud droplet number concentration (CDNC), and radiative forcings 60 (Luecken et al., 2008; Sarwar et al., 2008; Zhang et al., 2012a; Lamarque et al., 2013). 61 There are generally two types of species in the gas-phase mechanisms: inorganic 62 and organic. Although most mechanisms include the same important inorganic species 63 (e.g., O₃, <u>carbon monoxide</u> (CO), HO_x (<u>odd hydrogen = hydroxyl radical</u> (, OH) +

64	<u>hydroperoxyl_radical ($-HO_2$)</u> , and <u>nitrogen oxides (NOx)</u> , the predicted amounts can
65	vary greatly among different mechanisms (Knote et al., 2014a). Some mechanisms ignore
66	reactions with very low reaction rates since they do not affect results significantly. Also,
67	some reactions may use different rate coefficients with different dependence on
68	atmospheric temperature and pressure due to the uncertainties in the laboratory
69	measurements or the use of mechanisms that have not been updated in time. Unlike
70	inorganic species, there are more significant differences in the representation of organic
71	species. Light organic species with low molecular weight are often explicitly treated (e.g.,
72	methane, formaldehyde (HCHO)), whereas lumped or surrogate species are used to
73	represent more complex mixtures of heavy organic compounds with high molecular
74	weight (e.g., aromatics, organic nitrates). There are three most common representations
75	of organic chemistry, including the lumped structure technique, the surrogate species
76	approach, and the lumped species method (Zhang et al., 2004). For example, the Carbon
77	Bond mechanism version IV (CB-IV, Gery et al., 1989), which uses the lumped structure
78	approach for volatile organic compounds (VOCs), has been widely used in air quality
79	modeling systems through urban to regional scales for many years. This mechanism has
80	later been extensively updated in 2005 (CB05, Yarwood et al., 2005), and has been
81	implemented into the Community Multiscale Air Quality model (CMAQ, Sarwar et al.,
82	2008) and the Weather Research and Forecasting model with Chemistry (WRF-Chem,
83	Wang et al., 2014). CB05 has been further expanded to include more than 120 reactions

84	that are important on global scale (CB05 with global extension (CB05_GE),
85	Karamchandani et al., 2012) and implemented into global models, such as the
86	Global-through-Urban WRF/Chem (GU-WRF/Chem, Zhang et al., 2012a) and the
87	Community Atmosphere Model version 5 (CAM5), the atmospheric component of the
88	Community Earth System Model (CESM/CAM5, He and Zhang, 2014). The Model of
89	OZone and Related chemical Tracers version 4 (MOZART-4, Emmons et al., 2010)
90	mechanism, which uses the lumped species approach for VOCs, has also been used in
91	WRF-Chem (Knote et al., 2014b), and CAM with extensive tropospheric and
92	stratospheric chemistry (CAM-chem) Versions 4 and 5 (Lamarque et al., 2012; Tilmes et
93	al., 2015). Different gas-phase mechanisms have also been compared in several studies,
94	however, most of which are conducted in box models or using regional models (Kim et
95	al., 2009; Kim et al., 2011a, b <u>; Yu et al., 2010</u>). For example, using WRF-Chem, Zhang et
96	al. (2012b) found that three different mechanisms (i.e., the Carbon Bond Mechanism-Z
97	(CBM-Z), the 1999 Statewide Air Pollution Research Center Mechanism (SAPRC99),
98	and the CB05) can predict different O ₃ concentrations up to 5 ppb at surface in July, 2001.
99	Yu et al. (2010) compared the O ₃ predictions from three different mechanisms (i.e., CB4,
100	CB05, and SAPRC99) using Eta-CMAQ and found that at the AIRNow surface sites,
101	<u>CB05 gives the best O₃ performance followed by CB4 and SAPRC-99 for observed O₃ \geq</u>
102	<u>75 ppb, whereas CB4 gives the best O_3 performance for observed $O_3 < 75$ ppb. Knote et </u>
103	al. (2014a) also compared seven chemical mechanisms using a box model and found that

the differences in daytime OH radical concentrations can be up to 40%.

105	Climate change can also strongly influence atmospheric chemistry and aerosols
106	and therefore air quality. For example, photolysis and temperature-dependent reactions
107	can be directly impacted by climate change (Jacob and Winner, 2009). Due to the
108	nonlinear relationships between chemistry, aerosols, and climate, it is important to
109	accurately represent their interactions in a three-dimensional global model. Several
110	studies have demonstrated the capability of CAM-chem to represent tropospheric
111	(Aghedo et al., 2011; Lamarque et al., 2010, 2011a, b; Tilmes et al., 2015) and
112	stratospheric (Lamarque et al., 2008; Lamarque and Solomon, 2010) conditions. The
113	chemical mechanism used in CAM-chem is based on MOZART-4, with detailed
114	stratospheric chemistry of Kinnison et al. (2007). In this work, two most commonly used
115	gas-phase mechanisms: the extended MOZART-4 (with updates as described by Knote et
116	al. (2014b) and additional updates in this work) (referred to as MOZART-4x) and the
117	CB05_GE chemical mechanisms are compared using the latest CESM/CAM5. The
118	objectives are to examine the differences in the secondary organic aerosols (SOA)
119	predictions resulted from the two gas-phase chemical mechanisms and study the
120	sensitivity of air quality and climate predictions to different gas-phase chemical
121	mechanisms.

2. Model Descriptions

124	The CESM/CAM5 used in this work is based on CAM version 5.3 of CESM
125	version 1.2.2, coupled to comprehensive tropospheric and stratospheric chemistry
126	(CAM5-chem, Tilmes et al., 2015) using the 7-mode Modal Aerosol Model (MAM7)
127	(Liu et al., 2012). This version of CAM5-chem was further developed and improved at
128	North Carolina State University (NCSU) in collaboration with NCAR, as described below.
129	A more detailed description of this version of CESM CAM5-chem (referred to as
130	CAM5-NCSU hereafter) used in this study can be found in He and Zhang (2014) and He
131	et al. (2015).
132	
133	2.1 Chemical Mechanisms
134	In this study, CB05_GE has been updated to include additional kinetic reactions
135	describing interactions between functionalization and fragmentation processes during
136	gas-phase oxidation of anthropogenic and biogenic VOCs by OH (Glotfelty et al., 2015).
137	The products of those reactions are linked with the organic gas/particle partitioning for
138	SOA formation. Heterogeneous reactions on tropospheric aerosols and stratospheric
139	clouds are also added as same as those in MOZART-4x (Tilmes et al., 2015) with one
140	additional pathway in CB05_GE to simulate sulfate formation through oxidation of sulfur
141	dioxide (SO ₂) by O ₃ on the surface of dust particles.
142	MOZART-4x used in this work extends the MOZART chemical mechanism used
143	in Lamarque et al. (2012) and Tilmes et al. (2015) to include several updates as described

144	in Knote et al. (2014b). These updates include (1) detailed treatments of monoterpenes
145	(α -pinene, β -pinene, and limonene) and 2-methyl-3-buten-2-ol (MBO); (2) detailed
146	treatments of aromatics (e.g., benzene, toluene, and xylenes); (3) additional glyoxal
147	(C ₂ H ₂ O ₂) production from oxidized VOCs products; and (4) an updated isoprene (ISOP)
148	oxidation scheme. In this work, the oxidation of anthropogenic and biogenic VOCs and
149	subsequent aging processes are also included in MOZART-4x, and the products of those
150	reactions are linked with the organic gas/particle partitioning for SOA formation.
151	Table 1 shows the gas-phase organic precursors for SOA formation treated in
152	MOZART-4x and CB05_GE. For aromatic precursors of SOA, MOZART-4x includes
153	benzene, toluene (TOL), xylenes, and cresol. Although CB05_GE does not include
154	benzene, it includes polycyclic aromatic hydrocarbons (PAH) as a SOA precursor. For
155	alkane precursors of SOA, MOZART-4x includes BIGALK (lumped alkanes with carbon
156	(C) number $>$ 3), whereas CB05_GE includes ALKH (long-chain alkanes, with C $>$ 6).
157	For anthropogenic alkene precursors of SOA, MOZART-4x includes propene (C_3H_6) and
158	BIGENE (lumped alkenes with C $>$ 3), whereas CB05_GE includes terminal olefin (OLE)
159	and internal olefin (IOLE). The emissions for biogenic alkene precursors are from the
160	Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1,
161	Guenther et al., 2012). Both MOZART-4x and CB05_GE include $\underline{\alpha}$ -pinene (APIN),
162	β -pinene (BPIN), limonene, and ISOP as precursors for biogenic SOA. CB05_GE also
163	includes additional biogenic precursors such as speciated ocimene (OCI), humulene

164	(HUM) and terpinene (TER). However, in MOZART-4x, the species mapping for
165	MEGAN emission calculation is slightly different. For example, α -pinene and other
166	compounds (e.g., α -thujene, p-cymene, and o-cymene) are mapped into APIN, β -pinene
167	and other compounds (e.g., sabinene and camphene) are mapped into BPIN, limonene
168	and other compounds (e.g.; phellandrene and terpinene) are mapped into LIMON,
169	myrcene and other compounds (e.g., ocimene) are mapped into MYRC, and
170	beta-caryophyllene and other sesquiterpenes (e.g., humulene and α -bergamotene) are
171	mapped into BCARY. Due to the different mapping for MEGAN species, biogenic
172	emissions between MOZART-4x and CB05_GE are different, which can result in
173	different biogenic SOA predictions. On the other hand, the rate coefficients for the
174	oxidations of biogenic VOCs (e.g., APIN, BPIN, and limonene) are constant in
175	CB05_GE, whereas they are temperature dependent in MOZART-4x, such a difference
176	can result in different SOA predictions as well. In addition, there are uncertainties in the
177	HO _x recycling associated with isoprene chemistry in CB05_GE (Karamchandani et al.,
178	2012), whereas MOZART-4x used in this work includes OH recycling from improved
179	isoprene chemistry. For example, in CB05_GE, ISOP is oxidized by OH to generate 91.2%
180	molar yield of HO ₂ . In MOZART-4x, the isoprene peroxy radical from the oxidation
181	ISOP by OH (i.e., ISOPO2) has different yields of HO ₂ through reactions with <u>nitrogen</u>
182	monoxide (NO), nitrate radical (NO ₃), methylperoxy radical (CH ₃ O ₂), and acetylperoxy
183	radical (CH ₃ CO ₃), and it can also consume HO ₂ itself. These reactions have different

reaction rate coefficients. These differences can affect O₃, OH, and NO_x predictions, and
thus the oxidation of VOCs.

186

187 2.2 Aerosol/Cloud Treatments

188 In CAM5-NCSU, the aerosol module is based on MAM7 of Liu et al. (2012), 189 with improvements in terms of condensation, nucleation, aerosol thermodynamics, and 190 aerosol activation (He and Zhang, 2014; Gantt et al., 2014). The major updates include: 191 (1) the new particle formation treatments with a combination of the default nucleation 192 parameterizations of Vehkamaki et al. (2002), Merikanto et al. (2007), and a newly added 193 ion-mediated aerosol nucleation (Yu, 2010) above the planetary boundary layer (PBL), 194 and a combination of the three and an additional parameterization of Wang and Penner 195 (2009) in the PBL; (2) the inorganic aerosol thermodynamics based on ISORROPIA II of 196 Fountoukis and Nenes (2007), which explicitly simulates the thermodynamics of sulfate 197 (SO_4^{2-}) , ammonium (NH_4^+) , nitrate (NO_3^-) , sodium (Na^+) , and chloride (Cl^-) in the Aitken, 198 accumulation, and fine sea-salt modes, as well as the impact of crustal species associated 199 with the fine dust mode; (3) an advanced aerosol activation scheme based on Fountoukis 200 and Nenes (2005) with additional updates based on Kumar et al. (2009) and Barahona et 201 al. (2010), which accounts for adsorption activation from insoluble CCN and giant CCN 202 equilibrium timescale on aerosol activation.

203

CAM5-NCSU also includes an advanced treatment for SOA formation based on a

204	volatility-basis-set (VBS) approach that has been coupled with CB05_GE by Glotfelty et
205	al. (2015) and is also coupled with MOZART-4x in this work. This approach consists of
206	two primary components: (1) volatile SOA (VSOA) formation from anthropogenic VOCs
207	(AVOCs) and biogenic VOCs (BVOCs) and (2) the volatility and aging of primary
208	organic aerosol (POA) and the repartitioning of the semi/intermediate volatility
209	compounds (S/IVOC) into SOA. The VSOA treatment is based on the treatment of
210	Tsimpidi et al. (2010). The products of VOC oxidation are mapped onto the volatility
211	distribution using the aerosol mass yields listed in Tsimpidi et al. (2010) using the
212	CB05_GE species that represent those precursor VOCs. An additional pathway for the
213	formation of SOA from PAH is also added in CB05_GE. The SOA mass yields for PAHs
214	are derived from the laboratory measurements of Chan et al. (2009) following the
215	approach of Stainer et al. (2008), where the SOA mass yields for naphthalene,
216	1-methylnaphthalene, and 2-methylnaphthalene are averaged as surrogates for PAHs. The
217	volatility of POA and the subsequent formation of SOA from POA vapors are based on
218	the work of Robinson et al. (2007) and Shrivastava et al. (2008). POA emissions are
219	distributed into nine logarithmically-spaced volatility bins with effective saturation (C*)
220	values ranging from 10^{-2} to 10^{6} µg m ⁻³ . An updated emission spectrum is used to
221	distribute the POA emissions into the volatility bins as the emission spectrum used in
222	Robinson et al. (2007) has been shown to be too volatile (Cappa and Jimenez, 2010;
223	Hodzic et al., 2010; Jathar et al., 2011). This new emission spectrum maps the

224	anthropogenic POA emissions onto the volatility distribution based on thermodenuder
225	measurements of gasoline exhaust and also contains separate emissions fractions for
226	biomass burning aerosol which is less volatile than anthropogenic POA (May et al.,
227	2013a, b). The emission spectrum of Robinson et al. (2007), also assumes that the
228	emissions of SVOCs are fully captured by the original POA emissions and missing
229	IVOCs are assumed to be equivalent to 1.5 times the POA emissions inventory with these
230	additional emissions placed in the three highest volatility bins. However, because the
231	estimations of the missing IVOC emissions are poorly constrained, the 1.5 times the POA
232	mass for IVOCs is not included in this study.
233	In additional to the classic 1-D VBS treatment as described above,
234	functionalization and fragmentation treatment described in Shrivastava et al. (2013) are
235	included in this version of VBS for both VSOA and S/IVOCs (referred to as 1.5 D VBS).
236	In this treatment, the VSOA and S/IVOCs in each volatility bin are split into three
237	different species representing three generations of oxidation. During the first two
238	generations of oxidation the mass of the VSOA and S/IVOCs grows by 15%, reflecting
239	the addition of oxygen atoms. In this aging scheme not only do the masses of VSOA and
240	S/IVOCs increase in generation when oxidized by OH (at a rate of 1.0×10^{-11} and
241	4.0×10^{-11} cm ³ molecule ⁻¹ s ⁻¹ , respectively) but also their volatility decrease as they are
242	moved into smaller volatility bins. Fragmentation occurs once the VSOA and S/IVOCs
243	have aged to the third generation. This represents the breaking of carbon bonds, which

244	can increase volatility of the organic species thus reducing SOA formation. This is
245	parameterized by allowing 17.25% of the organic mass to pass to the next lowest
246	volatility bin but passing 75% of the VSOA and S/IVOC to the highest volatility bin in
247	the VBS structure. The remaining mass is assumed to be lost to species of higher
248	volatility than the VBS structure. There are several differences between the VBS used in
249	this work and Shrivastava et al. (2015). For example, nine volatility bins are used in this
250	work to represent the aging and gas-particle partitioning of POA, instead of five volatility
251	bins used in Shrivastava et al. (2015). In addition, compared to the reaction (3) in
252	Shrivastava et al. (2015), we do not have the third term, which denotes additional
253	fragmentation where 10% of the mass results in low carbon number species with very
254	high volatility that is eventually oxidized to CO/CO ₂ and/or removed by dry deposition.
255	In ourthe model treatment used in this work, the remaining mass is assumed to be lost to
256	species with a volatility higher than the volatility values in the VBS structure. A more
257	detailed description of SOA formation from the VBS approach is summarized in
258	Glotfelty et al. (2015).
259	
260	3. Model Configurations and Evaluation Protocols
261	3.1 Model Setup and Inputs
262	The simulations are performed with specified dynamics configuration, of which

263 winds and temperature are driven by the Goddard Earth Observing System Model,

264	Version 5 (GEOS-5) meteorology. The internally-derived meteorological fields are
265	nudged every time step (30 min) by 10% towards analysis fields from GEOS-5. The
266	nudged meteorological fields include surface pressure, meridional wind, zonal wind,
267	zonal surface stress, meridional surface stress, snow height, solar flux at surface, soil
268	moisture fraction, surface temperature, temperature, specific humidity, surface
269	geopotential, orography flag, surface water flux, and surface sensible flux. The
270	simulations are conducted for a 3-year period of 2008-2010 at a horizontal resolution of
271	$0.9^{\circ} \times 1.25^{\circ}$ and a vertical resolution of 56 layers for CAM5. The initial chemical
272	conditions are generated with same configurations with 1-year spinup.
273	The offline emissions used in this work are based on those used in Tilmes et al. (2015), of
274	which the anthropogenic and biofuel emissions are from the Monitoring Atmospheric
275	Composition and Climate/CityZen (MACCity) emission data set (Granier et al., 2011),
276	and biomass burning emissions are taken from the Atmospheric Chemistry and Climate
277	Model Intercomparison Project (ACCMIP) historical emissions dataset (Lamarque et al.,
278	2010). The ACCMIP emissions are extrapolated for 2008-2010 with the Representative
279	Concentration Pathway (RCP) 8.5 scenario and extended for VOCs and several other
280	species for MOZART-4x species. MOZART-4x species are then mapped into CB05_GE
281	species to generate emissions for CB05_GE species. Although both MOZART-4x and
282	CB05_GE simulates bromine chemistry, no bromine emissions are included. For
283	bromine/chlorine species (e.g., CF2CLBR, CF3BR, CFC11, CFC12, CH3BR, and

1	
284	CH3CL), their surface concentrations are specified using the historical reconstruction
285	from Meinshausen et al. (2011). No bromine emissions were included.
286	The online emissions include biogenic VOCs from MEGAN2.1 (Guenther et al.,
287	2012), lightning NOx (Price and Rind, 1992; Price et al., 1997), mineral dust (Zender et
288	al., 2003), and sea-salt (Martensson et al., 2003).
289	
290	3.2 Available Measurements for Model Evaluation
291	A number of observational datasets from surface networks and satellites are used
292	for model evaluation. They are summarized along with the variables to be evaluated in
293	Table 2. The global surface network includes data sets from the National Oceanic and
294	Atmospheric Administration Climate Diagnostics Center (NOAA/CDC). The satellite
295	datasets include the Moderate Resolution Imaging Spectroradiometer (MODIS) for the
296	retrievals of cloud properties, the Clouds and Earth's Radiant Energy System (CERES)
297	Energy Balanced and Filled (EBAF) for the retrievals of radiation fluxes at surface and
298	top of atmosphere, the Aura Ozone Monitoring Instrument in combination with Aura
299	Microwave Limb Sounder (OMI/MLS) for the tropospheric ozone retrieval, the
300	Measurements Of Pollution In The Troposphere (MOPITT) for tropospheric carbon
301	monoxide (CO) retrieval, and the SCanning Imaging Absorption spectroMeter for
302	Atmospheric CHartographY (SCIAMACHY) for the retrievals of tropospheric nitrogen
303	dioxide (NO ₂), HCHO, and C ₂ H ₂ O ₂ . Other satellite-based data include the

305	Regional observational networks include the Clean Air Status and Trends
306	Network (CASTNET), the Interagency Monitoring of Protected Visual Environments
307	(IMPROVE), the Speciation Trends Network (STN), and the Air Quality System (AQS)
308	over CONUS; the European Monitoring and Evaluation Program (EMEP), the Base de
309	Données sur la Qualité de l'Air (BDQA, France), and the European air quality database
310	(AirBase) over Europe; the Ministry of Environmental Protection of China (MEPC), the
311	National Institute for Environmental Studies of Japan (NIESJ), the Korean Ministry Of
312	Environment (KMOE), and Taiwan Air Quality Monitoring Network (TAQMN) over
313	East Asia. In addition to the data from the above networks, SOA measurements collected
314	by Lewandowski et al. (2013) at four field study sites including Cleveland and Medina,
315	OH (July-August, 2009), and Bakersfield and Pasadena, CA (May-June, 2010) are used
316	to evaluate SOA predictions.
317	Aircraft measurements include aircraft campaigns from Aerosol, Radiation, and
318	Cloud Processes affecting Arctic Climate (ARCPAC), Stratosphere-Troposphere
319	Analyses of Regional Transport in 2008 (START08), California Nexus 2010 (CalNex),
320	Arctic Research of the Composition of the Troposphere from Aircraft and Satellites
321	(ARCTAS), and CCN measurements in China (CCN_China). ARCPAC (Brock et al.,
322	2011) was conducted during March-April 2008 in the troposphere of the Alaskan Arctic,
323	including particle size distributions, composition, and optical properties. START08 (Pan

304 MODIS-derived CDNC and cloud liquid water path (LWP) by Bennartz (2007).

324	et al., 2010) was conducted during April-June 2008 to study the chemical and transport
325	characteristics of the extratropical upper tropospheric and lower stratospheric region over
326	central North America. CalNex (Ryerson et al., 2013) was conducted during May-July
327	2010 to provide improved scientific knowledge for emission control strategies to
328	simultaneously address the interrelated issues of air quality and climate change. ARCTAS
329	(Jacob et al., 2010) was conducted during April-June 2008 to investigate the chemistry of
330	the Arctic's lower atmosphere. CCN_China (Zhang et al., 2011) was conducted over
331	Beijing during July-September 2008, to investigate the impacts of aerosols on cloud
332	formation.
333	
334	3.3 Evaluation Protocol
335	The protocols for performance evaluation include spatial distributions and
	F F
336	statistics, following the approach of Zhang et al. (2012b). The aircraft profile evaluation
336 337	statistics, following the approach of Zhang et al. (2012b). The aircraft profile evaluation is based on the Atmospheric Model Working Group (AMWG) diagnostics package
336 337 338	statistics, following the approach of Zhang et al. (2012b). The aircraft profile evaluation is based on the Atmospheric Model Working Group (AMWG) diagnostics package (Tilmes et al., 2015). Monthly-mean model results are compared for corresponding
336 337 338 339	statistics, following the approach of Zhang et al. (2012b). The aircraft profile evaluation is based on the Atmospheric Model Working Group (AMWG) diagnostics package (Tilmes et al., 2015). Monthly-mean model results are compared for corresponding regions and seasons of the field campaign. The analysis of the performance statistics will
 336 337 338 339 340 	statistics, following the approach of Zhang et al. (2012b). The aircraft profile evaluation is based on the Atmospheric Model Working Group (AMWG) diagnostics package (Tilmes et al., 2015). Monthly-mean model results are compared for corresponding regions and seasons of the field campaign. The analysis of the performance statistics will focus on mean bias (MB), normalized mean bias (NMB), normalized mean error (NME),
 336 337 338 339 340 341 	statistics, following the approach of Zhang et al. (2012b). The aircraft profile evaluation is based on the Atmospheric Model Working Group (AMWG) diagnostics package (Tilmes et al., 2015). Monthly-mean model results are compared for corresponding regions and seasons of the field campaign. The analysis of the performance statistics will focus on mean bias (MB), normalized mean bias (NMB), normalized mean error (NME), and root mean square error (RMSE) defined by Yu et al. (2006) and Zhang et al. (2006).
 336 337 338 339 340 341 342 	statistics, following the approach of Zhang et al. (2012b). The aircraft profile evaluation is based on the Atmospheric Model Working Group (AMWG) diagnostics package (Tilmes et al., 2015). Monthly-mean model results are compared for corresponding regions and seasons of the field campaign. The analysis of the performance statistics will focus on mean bias (MB), normalized mean bias (NMB), normalized mean error (NME), and root mean square error (RMSE) defined by Yu et al. (2006) and Zhang et al. (2006). The radiative/cloud variables are evaluated annually, including outgoing longwave

344	downwelling longwave radiation (FLDS), shortwave cloud forcing (SWCF), and
345	longwave cloud forcing (LWCF) from CERES-EBAF; cloud fraction (CF), aerosol
346	optical depth (AOD), cloud optical thickness (COT), precipitating water vapor (PWV),
347	and CCN from MODIS, as well as CDNC and LWP from Bennartz (2007). CDNC is
348	calculated as an average value of layers between 850 and 960 hPa for comparison with
349	the satellite-derived values. Chemical concentrations evaluated include CO, O ₃ , SO ₂ ,
350	ammonia (NH ₃), NO ₂ , nitric acid (HNO ₃), VOCs (i.e., formaldehyde, isoprene, and
351	toluene), particulate matter (PM) with diameter less than and equal to 10 μm (PM_{10}) and
352	2.5 μ m (PM _{2.5}), and PM _{2.5} major components (e.g., SO ₄ ²⁻ , NH ₄ ⁺ , NO ₃ ⁻ , black carbon (BC),
353	organic carbon (OC), and total carbon (TC)) for CONUS and Europe. The chemical
354	observations over East Asia are very limited, which only include surface observations of
355	CO, SO ₂ , NO ₂ , and O ₃ from Hong Kong, South Korea, and Japan, and PM_{10} over
356	mainland China (derived from air pollution index), Hong Kong, South Korea, and Japan.
357	Since PM _{2.5} and PM ₁₀ are not explicit species simulated in MAM7, their concentrations
358	are estimated based on prescribed size distributions of dry particles predicted by used in
359	MAM7.simply assumed to be the particles in the first 5 modes (i.e., Aitken, accumulation,
360	primary carbon, fine sea salt, and fine dust modes) and the total 7 modes (i.e., Aitken,
361	accumulation, primary carbon, fine sea-salt, fine dust, coarse sea-salt, and coarse dust-
362	modes), respectively. The properties of the particle size distribution for MAM7 are
363	summarized in Table S1 in the supplementary material.

364	Column concentrations of tropospheric CO, NO ₂ , HCHO, C ₂ H ₂ O ₂ , and
365	tropospheric O3 residual (TOR) are evaluated for globe. The CO column evaluation
366	follows the AMWG diagnostics approach, which applies $1^{\circ} \times 1^{\circ}$ monthly mean Level 3
367	MOPITT a priori and averaging kernels to monthly mean model results to account for the
368	a priori dependence and vertical resolution of the MOPITT data. The measured NO_2 and
369	HCHO columns are derived from the satellite retrievals from SCIAMCHY, which are
370	monthly mean gridded data on a $0.25^{\circ} \times 0.25^{\circ}$ horizontal grid resolution for the period of
371	2008-2010. The measured glyoxal column is derived from the satellite retrievals from
372	SCIAMCHY, which are monthly mean gridded data on a $0.125^{\circ} \times 0.125^{\circ}$ horizontal grid
373	resolution for the period of 2008. The measured O_3 is derived from the combing retrievals
374	from the Aura Ozone Monitoring Instrument and Microwave Limb Sounder observations,
375	which are monthly mean gridded data on a $1.25^{\circ} \times 1.25^{\circ}$ horizontal grid resolution for the
376	period of 2008-2010.
377	All surface observational data used for evaluating 2008-2010 simulations are
378	available throughout 2008-2010 except for several variables with data during a limited
379	time period of 2001-2010 including OC from EMEP, SOA from Lewandowski et al.
380	(2013), and OA from Zhang et al. (2007) and Jimenez et al. (2009). For one grid cell
381	containing multiple observational sites, all the observations within the grid cell are
382	averaged and compared to the simulated results in that grid cell. While using grid
383	averaged observations helps reduce, to some extent, the uncertainties in comparing grid

<u>averaged model output with pointwise observations, this approach cannot address the</u>
 <u>inherent uncertainties associated with the evaluation of the model results obtained at a</u>
 <u>coarse grid resolution.</u>

387

388 4 <u>Model</u> Evaluations

4.1 Surface Evaluation

- **<u>4.1.1 Inorganic gGases and aAerosols</u>**
- 391 Table 3 summarizes the performance statistics for major chemical species for
- 392 CAM5-NCSU simulations with MOZART-4x and CB05_GE. Figure 1 shows the scatter
- 393 plots between observations and model results. The statistical performance of
- 394 MOZART-4x and CB05_GE are similar for most chemical species. As shown in Table 3,
- 395 CO is underpredicted over East Asia by both MOZART-4x and CB05_GE, with NMBs of
- -65.6% and -65.7%, respectively. The underprediction of CO is mainly due to the
- underestimation of CO emissions from biomass burning (Tilmes et al., 2015). The
- 398 underestimations in CO emissions lead to underpredictions of column CO concentrations,
- 399 with NMBs of -25.8% and -24.4% for MOZART-4x and CB05_GE, respectively. Both
- 400 MOZART-4x and CB05_GE largely overpredict the concentrations of SO₂ over CONUS
- 401 (with NMBs of 580.2% and 561.6%, respectively), East Asia (with NMBs of 47.0% and
- 402 35.5% %, respectively), and Europe (with NMBs of 100.9% and 94.1%, respectively),
- 403 likely due to the overestimation of SO₂ emissions, the uncertainties in the emission
| 404 | injection heights as well as the vertical mixing scheme used. For example, several |
|-----|--|
| 405 | modeling studies over East Asia reported the underestimates of emissions of PSO2 and |
| 406 | NO _x are a main cause for poor model performance (e.g., Liu et al., 2010; Zhang et al., |
| 407 | <u>2015a, b).</u> The overpredictions of surface SO_2 concentrations result in the overpredictions |
| 408 | of the concentrations of SO_4^{2-} at the surface. <u>The overpredictions of surface SO_4^{2-}</u> |
| 409 | concentrations can also be attributed to the uncertainties in the OH predictions. The |
| 410 | air-mass weighted tropospheric mean OH concentrations predicted by MOZART-4x and |
| 411 | <u>CB05_GE are both 13.1×10^5 molec cm⁻³, which is slightly higher than the present-day</u> |
| 412 | tropospheric mean OH levels of 11.1 ± 1.6 molec cm ⁻³ of Naik et al. (2013). The higher |
| 413 | <u>OH levels can result in higher oxidation of SO₂ to produce more SO₄²⁻.</u> Surface NH ₃ |
| 414 | concentrations from MOZART-4x and CB05_GE are overpredicted over Europe (with |
| 415 | NMBs of 112.4% and 104.3%, respectively), likely due to the overestimation of NH_3 |
| 416 | emissions. The overpredictions of the NH_3 concentrations <u>can potentially</u> result in the |
| 417 | overpredictions of the NH ₄ ⁺ concentrations at the surface. <u>On the other hand, the</u> |
| 418 | overpredictions of the NH ₄ ⁺ concentrations at the surface are also related to the |
| 419 | overpredictions of the concentrations of SO_4^{2-} at the surface. The concentrations of NO_2 |
| 420 | from MOZART-4x and CB05_GE are largely underpredicted over <u>CONUS (with NMBs</u> |
| 421 | of -51.4% and -52.2%, respectively), Europe (with NMBs of -61.4% and -62.1%, |
| 422 | respectively), and East Asia (with NMBs of -74.1% and -74.8%, respectively), which is |
| 423 | likely due to the uncertainties in estimating total NO _x emissions and emission injection |

424	heights as well. As shown in Figure 1, the concentrations of O_3 from MOZART-4x and
425	CB05_GE are overpredicted over CONUS (with NMBs of 29.0% and 28.2% over the
426	CASTNET sites, respectively), Europe (with NMBs of 19.3% and 22.2% over the EMEP
427	sites, respectively) and East Asia (with NMBs of 68.8% and 65.7% over the KMOE sites,
428	respectively). This is likely due to the less O ₃ titration resulted from the underpredictions
429	of NO _x , the dilution of NO _x emissions resulted from the use of a coarse grid resolution, as
430	well as possible underestimates in O ₃ dry deposition. Martin et al. (2014) reported the
431	uncertainties in O ₃ dry deposition associated with vegetation phenology in CAM-chem,
432	which led to positive biases of 16 ppb over eastern U.S. and 8 ppb over Europe,
433	respectively, for summertime surface $O_{3.}$ The overpredictions of SO_4^{2-} result in the
434	underpredictions of NO ₃ ⁻ and Cl ⁻ , through thermodynamic equilibrium, and therefore
435	overpredictions of HNO ₃ over CONUS. <u>As more NH_4^+ are needed to neutralize $SO_4^{2^-}$</u> ,
436	less NH ₄ ⁺ are available to neutralize NO ₃ ⁻ and or Cl ⁻ , driving total nitrate and total
437	chlorine to partition into the gas-phase to produce more HNO ₃ and HCl. Yu et al. (2005)
438	also found that the model biases in total nitrate (TNO ₃ = HNO ₃ + NO ₃ ⁻) predictions can be
439	attributed to measurement errors in SO_4^{2-} and total ammonium ($TNH_4 = NH_3 + NH_4^+$) as
440	well as the inaccurate predictions in SO_4^{2-} and TNH_4 . In addition, Reff et al. (2009)
441	suggested several sources for Cl ⁻ (e.g., biomass burning and wildfires), which are not
442	included in this work. There are no anthropogenic Cl ⁻ emissions included in this work
443	except from sea-salt emissions, which is calculated online in CESM/CAM5. Omission of

444	additional chlorine emissions may also partly explain the underpredictions of Cl ⁻ over
445	CONUS. HNO ₃ is underpredicted over Europe, which is mainly due to the
446	underpredictions of NO _x . The concentration of Cl^{-} is overpredicted over Europe, which is
447	likely due to the uncertainties for the gas/particle partitioning over coarse modes (He and
448	Zhang, 2014). Unlike the performance of Cl ⁻ over CONUS, which is only for fine Cl ⁻ (in
449	Aitken, accumulation, fine sea-salt, and fine dust modes), the performance of Cl ⁻ over
450	Europe is for fine and coarse Cl ⁻ (in all seven modes). As the thermodynamic equilibrium
451	is not treated for coarse particles (the irreversible condensation of HCl is assumed to
452	occur on the surface of coarse particles), it is likely that the model overpredicts coarse Cl ⁻ ,
453	but underpredicts fine Cl ⁻ due to the missing sources. Both MOZART-4x and CB05_GE
454	overpredict PM _{2.5} over CONUS, however, they underpredict PM ₁₀ over the AQS sites,
455	with NMBs of -38.6% and -38.9%, respectively. The underpredictions of PM_{10} are
456	mainly due to the inaccurate predictions of coarse particles. Both MOZART-4x and
457	CB05_GE underpredict $PM_{2.5}$ and PM_{10} over Airbase and BDQA sites, however, they
458	overpredict PM_{10} by 3.14 μg m^-^3 (or by 22.2%) and 3.43 μg m^-^3 (or by 24.2%) over the
459	EMEP sites, respectively, which is <u>mainly</u> due to the overpredictions of coarse particles
460	(e.g., Cl ⁻) over these sites and uncertainties in the sea-salt and dust emissions. Both
461	MOZART-4x and CB05_GE underpredict PM $_{10}$ by 33.61 μ g m ⁻³ (or by 33.4%) and 26.71
462	μ g m ⁻³ (or by 26.6%) over the MEPC sites in mainland China, respectively, which is
463	mainly due to the uncertainties in the emissions in primary gases (e.g., SO ₂ , NO _x , NH ₃ ,

464	and VOCs) and particulate species (e.g., SO4 ²⁻ , BC, and POA). Granier et al. (2011)
465	compared the regional emissions among different inventories and indicated large
466	uncertainties in the emissions over China. For example, the differences of BC biomass
467	burning emissions over China among different inventories can be as large as a factor of
468	2.1, and the differences of SO_2 anthropogenic emissions can be as large as a factor of 1.8.
469	<u>4.1.2 VOCs and oOrganic aAerosols</u>
470	VOCs species such as HCHO, ISOP, and TOL are underpredicted over CONUS,
471	likely due to the uncertainties in the biogenic emissions from MEGAN2.1, anthropogenic
472	emissions (e.g., HCHO and TOL) and the chemical reactions as well as a coarse
473	horizontal resolution used in this work. Both MOZART-4x and CB05_GE underpredict
474	BC with NMBs of -29.3% and -29.3%, respectively. The underpredictions of BC are
475	likely due to the underestimations of BC emissions, as well as uncertainties in the
476	transport and wet removal by convection (Ma et al., 2013; Wang et al., 2013; Tilmes et al.,
477	2015).
478	OC is slightly overpredicted with an NMB of 2.1% by MOZART-4x over
479	CONUS, whereas it is moderately underpredicted with an NMB of -20.7% by CB05_GE.
480	OC is evaluated against observations at the IMPROVE sites, and SOA dominates OC at
481	these sites for both simulations with MOZART4-x and CB05_GE, with SOA/OC ratios
482	of 83.0% and 59.6%, respectively. Although no SOA measurements are available from
483	IMPROVE for evaluation, the differences in OC predictions can be attributed to the

484	differences in SOA predictions because of dominances of SOA in total OC. Compared to
485	the SOA observations at the four sites in the U.S. from Lewandowski et al. (2013),
486	MOZART-4x underpredicts SOA by 0.03 $\mu g~m^{\text{-3}}$ (or by 1.9%), whereas CB05_GE
487	underpredicts SOA by 0.4 μ g m ⁻³ (or by 23.1%). Note that the SOA statistics are
488	calculated using only four pairs of seasonal mean values at four sites in the U.S. where
489	the observed SOA data are available during 2008-2010; they therefore may not be
490	representative because of limited data used for calculation. Figure 2 compares simulated
491	and observed SOA concentrations at the four sites. MOZART-4x predicts higher SOA
492	than CB05_GE at all four sites, which reduces underpredictions at Cleveland and Medina,
493	OH but increases overpredictions at Bakersfield and Pasadena, CA. This indicates a
494	better capability of MOZART-4x to simulate SOA at sites with relatively high SOA
495	concentrations ($\geq 1 \ \mu g \ m^{-3}$) compared to CB05_GE despite its tendency of
496	overpredictions at sites with lower SOA levels. The higher SOA concentrations predicted
497	by MOZART-4x can be attributed to the higher OH levels and higher biogenic emissions
498	in MOZART-4x. However, the concentration of OC is largely underpredicted by both
499	MOZART-4x and CB05_GE over Europe, with NMBs of -74.2% and -75.1%,
500	respectively, indicating the uncertainties in the emissions of SOA precursors and SOA
501	formation treatment. For example, the aqueous-phase oxidation of VOCs in clouds is not
502	taken into account in this work, which, however, can contribute several percentages of
503	SOA in some areas and seasons over Europe (Couvidat et al., 2013). The

504	hydrocarbon-like organic aerosol (HOA) predicted by MOZART-4x and CB05_GE
505	correlated well with the observations at 33 sites in the Northern Hemisphere (e.g., with
506	correlation coefficients of 0.93 for both simulations) but the amount is largely
507	underpredicted by both MOZART-4x and CB05_GE, with NMBs of -77.2% and -76.7%,
508	respectively, indicating that the POA may be too volatile with the implementation
509	currently in the model. Oxygenated organic aerosol (OOA), which is roughly equivalent
510	to the sum of SOA and SVOA, is also largely underpredicted at the 33 sites by both
511	MOZART-4x and CB05_GE, with NMBs of -56.5% and -62.3%, respectively. This is
512	mainly due to the uncertainties in the oxidation rate and fragmentation rates as well as
513	SOA formation treatment. The underpredictions of HOA and OOA result in an
514	underprediction of total organic aerosol (TOA) by both MOZART-4x and CB05_GE,
515	with NMBs of -67.8% and -71.2%, respectively.
516	4.2 <u>Chemical Column</u> Evaluation
517	Figure 3 shows the zonal mean of column concentrations of CO, HCHO, glyoxal,
518	NO ₂ , and TOR for June, July, and August during 2008-2010. In general, MOZART-4x
519	and CB05_GE predict similar zonal mean profiles of these species. Both MOZART-4x
520	and CB05_GE underpredict column CO, due to a significant underestimation of CO
521	emissions (Tilmes et al., 2015) and uncertainties in OH predictions. During summer,
522	column HCHO is overpredicted over middle latitudes (30-60° N) in the Northern
523	Hemisphere and tropical regions (0-10° S) in the Southern Hemisphere, while it is largely

524	underpredicted over the rest of regions. The underprediction of column HCHO is likely
525	due to the uncertainties in the emissions of HCHO and its precursors as well as pathways
526	for secondary HCHO formation. Both MOZART-4x and CB05_GE underpredict column
527	glyoxal, with more underpredictions in CB05_GE. The underpredictions of glyoxal are
528	mainly due to the uncertainties in the glyoxal chemical production and removal (Knote et
529	al., 2014b). Several studies indicate that aromatics, isoprene, and ethyne are the major
530	contributors to glyoxal formation (Washenfelder et al., 2011; Knote et al., 2014b). In
531	MOZART-4x, glyoxal can be produced from photolysis of the oxidation products of
532	toluene, and oxidation products of aromatics (e.g., benzene, toluene, and xylenes),
533	isoprene, and ethyne. CB05_GE does not include pathways for glyoxal production
534	through photolysis, but includes glyoxal production from oxidation of alkenes (e.g., OLE,
535	IOLE, ethene, and ISOP) and aromatics (e.g., toluene and xylenes). Uncertainties in the
536	emissions of these precursors and the production pathways can propagate into the
537	predicted glyoxal concentrations. MOZART-4x includes additional pathways for glyoxal
538	production through photolysis and improved treatments for glyoxal production from
539	additional oxidized VOCs (e.g., benzene) products (Knote et al., 2014b), which can result
540	in higher glyoxal than in CB05_GE. The major chemical loss of glyoxal includes
541	photochemical loss and oxidation by OH. The uncertainties in OH levels can propagate
542	into glyoxal predictions as well. In addition, CB05_GE includes an additional pathway
543	for glyoxal loss through its uptake by aerosols, which is not included in MOZART-4x.

544	This can explain in part the lower glyoxal concentrations predicted by CB05_GE than by
545	MOZART-4x. An advanced treatment for glyoxal formation should be therefore
546	developed in the future. Both MOZART-4x and CB05_GE overpredict column NO ₂ ,
547	likely due to the uncertainties in the NO2 aircraft emissions and overpredictions of
548	lightning NO _x , as well as the satellite retrievals. The lightning NO _x emissions are
549	calculated online (i.e., 6.2 and 6.4 TgN yr ⁻¹ in CB05_GE and MOZART-4x, respectively),
550	which is about 1.2-2.2 TgN yr ⁻¹ higher than that in Lamarque et al. (2012) and Tilmes et
551	al. (2015). Tilmes et al. (2015) have shown that increased lightning NO_x emissions in
552	CAM-chem can lead to an increase in OH levels and therefore a decrease in the lifetime
553	of methane and an underestimation of CO in the model. As discussed in Yarwood et al.
554	(2012), the errors in satellite NO ₂ retrievals are dominated by atmospheric mass factor,
555	which has a large uncertainty due to errors in the specification of clouds, surface albedo,
556	a priori NO ₂ profile shape, and aerosols. For example, Boersma et al. (2004) also reported
557	that the error in the tropospheric NO ₂ retrievals is 35-60%, especially over polluted areas.
558	These can partly explain the overpredictions of column NO ₂ . The higher zonal-mean
559	concentrations of NO ₂ in CB05_GE than those in MOZART-4x are likely due to
560	additional NO ₂ production from the reactions of VOCs with NO ₃ radical in CB05_GE
561	(e.g., reactions of NO ₃ with OLE, IOLE, and ethene). The zonal-mean distribution of
562	summer TOR from CB05_GE is similar to that from MOZART-4x. TOR is overpredicted
563	over 40° S-50° N, and underpredicted over 40° S-60° S. The higher TOR from CB05_GE

is mainly due to higher O₃ production from higher NO₂ and lower O₃ loss from lower OH
in CB05_GE than in MOZART-4x.

566	4.3 Vertical Profile Evaluation
567	Figure 4 compares the vertical profile of major gases against the aircraft
568	observations (i.e., ARCPAC, ARCTAS, START08, and CalNex). Compared with aircraft
569	measurements, MOZART-4x and CB05_GE predict similar O3 and CO profiles, whereas
570	there are large differences in NO _x (above 9 km) and NO _y profiles (below 12 km). O ₃
571	profiles from MOZART-4x and CB05_GE overall agree well with aircraft measurements,
572	although O ₃ is slightly overpredicted near the surface. As discussed previously, the
573	significant underpredictions of CO profiles in both MOZART-4x and CB05_GE are
574	mainly due to the underestimations of CO biomass burning emissions and uncertainties in
575	OH predictions. Both MOZART-4x and CB05_GE underpredict the vertical
576	concentrations of NO _x at higher altitudes (e.g., above 9 km in ARCTAS and STRAT08),
577	with a slightly better agreement in CB05_GE than in MOZART-4x. The concentrations of
578	NO _x near the surface are slightly overpredicted by both simulations. The underpredictions
579	of the concentrations of NO _x at higher altitudes are likely due in part to the uncertainties
580	in the NO _x emissions, the chemical reactions of nitrogen cycles (e.g., heterogeneous
581	reactions of NO ₂ , NO ₃ , and N ₂ O ₅ over the surface of aerosol particles), the convection
582	scheme, as well as the aircraft campaign data. Some field campaigns (e.g., ARCPAC)
583	focus on the polluted regions with a significant contribution from biomass burning and

584	local sources (Tilmes et al., 2015). The underestimations of emissions from these sources
585	and uncertainties in the vertical mixing scheme can result in the underpredictions of their
586	profiles. NOy includes all the reactive nitrogen species. The simulated NOy profiles from
587	CB05_GE agree better with those observed during APCPAC, ARCTAS, and CalNex than
588	those from MOZART-4x, whereas MOZART-4x predicts slightly better NO _y profile
589	against START08 in the lower troposphere than CB05_GE. OH concentrations are
590	underpredicted by both MOZART-4x and CB05_GE against ARCTAS observations,
591	whereas H ₂ O ₂ mixing ratios are well predicted above 4 km but underpredicted below 4
592	km. Compared to CB05_GE, MOZART-4x predicts slightly higher H ₂ O ₂ within 4-km
593	above the surface. However, the performance here only represents the local conditions,
594	instead of global conditions. Figure 5 compares the vertical profile of simulated CCN
595	against the aircraft observations from CCN_China. Both MOZART-4x and CB05_GE
596	slightly overpredict CCN (at supersaturation of 0.2%) profile over Beijing area, with less
597	overpredictions in MOZART-4x.
598	4.4 Cloud/Radiative Evaluation
599	Table 54 shows the statistical performance for major cloud/radiative variables for
600	MOZART-4x and CB05_GE simulations. Radiative variables such as OLR, FSDS, and

- 601 FLDS show excellent agreement with observations, with NMBs within $\pm 8\%$ for both
- 602 simulations. However, SWCF is overpredicted by both MOZART-4x and CB05_GE, with
- 603 NMBs of 26.4% and 27.7%, respectively, and LWCF is underpredicted by both

604	MOZART-4x and CB05_GE, with NMBs of -21.6% and -16.7%, respectively. All	

605	predicted radiative variables show high correlation with observations, with correlation
606	coefficients of 0.9 to 0.99. CF is well predicted by MOZART-4x, with an NMB of 6.3%,
607	whereas CCN5, CDNC, COT, and LWP are moderately overpredicted or underpredicted,
608	with NMBs of -32.1%, 19.7%, -26.0%, and 2.8%, respectively. The performance of cloud
609	variables is similar in CB05_GE, with NMBs of 6.0%, -29.0%, 20.8%, -26.0%, and 1.7%
610	for CF, CCN5, CDNC, COT, and LWP, respectively. AOD is also underpredicted by both
611	MOZART-4x and CB05_GE, with NMBs of -23.9% and -24.6%, respectively.
612	Figure <u>86</u> shows the Taylor diagram (Taylor, 2001) comparing the model
613	performance of MOZART-4x with that of the CB05_GE for cloud and radiative
614	predictions. The similarity between the two patterns is quantified in terms of their
615	correlations (i.e., angle), their standard deviations (i.e., y axis), and the ratio of their
616	variances (i.e., x axis). In general, the performance of major cloud/radiative variables
617	between MOZART-4x and CB05_GE are similar. The major differences in the
618	performance of cloud/radiative variables between MOZART-4x and CB05_GE are the
619	variances of CCN5, CDNC, and SWCF, which is mainly due to the predicted aerosol
620	distributions (see Figure 6b). The larger deviation of COT and LWP from observations
621	(i.e., the two points located outside the diagram in Figure 86) suggests the uncertainties
622	both in the model treatments for cloud dynamics and thermodynamics as well as in the
623	satellite retrievals.

624	Due to the underpredictions of cloud variables (e.g., COT and CCN5), OLR is
625	slightly overpredicted by 7.8 W m ⁻² (or by 3.6%), and LWCF is underpredicted by 4.8 W
626	$\rm m^{-2}$ (or by 21.6%) in MOZART-4x. Similarly, OLR is slightly overpredicted by 6.7 W $\rm m^{-2}$
627	(or by 3.1%) and LWCF is underpredicted by 3.7 W m ⁻² (or by 16.7%) in CB05_GE.
628	Figure $\underline{7}$ shows the comparisons of satellite observations with model predictions for AOD,
629	CCN5, CDNC, COT, and SWCF averaged during 2008-2010. The underpredictions of
630	AOD over oceanic areas can be attributed to the uncertainties in the sea-salt emissions
631	and inaccurate predictions of other PM components (e.g., marine organic aerosols) over
632	the ocean and overestimation of oceanic AOD in the MODIS collection 5.1 (Levy et al.,
633	2013). The underprediction of AOD over land (e.g., tropical islands) is mainly due to the
634	significant underestimation of biomass burning emissions in the model (Tilmes et al.,
635	2015). AOD is higher in MOZART-4x over most land areas (except East Asia and Europe)
636	than in CB05_GE. The higher AOD in MOZART-4x is mainly due to higher SOA (e.g.,
637	over most land areas) and higher NO3 ⁻ (e.g., over CONUS) in MOZART-4x. The lower
638	AOD over East Asia and Europe in MOZART-4x is mainly due to the lower SO_4^{2-} as
639	there is an additional pathway of SO ₂ (oxidized by O ₃) included in CB05_GE but it is not
640	included in MOZART-4x and lower NH_4^+ to neutralize lower SO_4^{2-} through
641	thermodynamic equilibrium. This additional pathway also results in higher H ₂ SO ₄
642	predictions in CB05_GE and higher aerosol number concentration through homogeneous
643	nucleation. Therefore, CCN5 is higher in CB05_GE than in MOZART-4x (see Figure 7).

644	CDNC is moderately overpredicted for both cases. Cloud droplet formation is sensitive to
645	both particle number concentrations and updraft velocity (Reutter et al., 2009). The
646	overprediction of CDNC is due partly to high activation fractions (e.g., inclusion of
647	adsorption activation from insoluble CCN and effective uptake coefficient of 0.06 used in
648	this work) (Gantt et al., 2014) as well as the uncertainties in the model treatments for
649	cloud microphysics (e.g., resolved clouds and subgrid-scale cumulus clouds) and satellite
650	retrievals (e.g., error propagation of the input variables to derive CDNC) (Bennartz,
651	2007). COT is largely overpredicted over Southeast Asia and South America and
652	underpredicted over polar regions for both simulations. Overpredictions in CDNC and
653	COT can increase cloud albedo and therefore, increase SWCF over the low and middle
654	latitudes. The large underpredictions of COT over polar regions can be attributed to the
655	uncertainties in plane-parallel visible-near-infrared retrievals with low solar zenith angle
656	(Seethala and Horváth, 2010) and the influence of radiatively active snow on overlying
657	cloud fraction (Kay et al., 2012). Due to the different gas-phase mechanisms, the
658	predicted SWCF (Figure 7) and LWCF (Figure not shown) are different, with a global
659	average difference of 0.5 W m ⁻² and 1.1 W m ⁻² , respectively. However, the absolute
660	differences in simulated SWCF can be as large as 13.6 W m^{-2} as shown in Figure 7. The
661	large differences of SWCF and LWCF between MOZART-4x and CB05_GE are mainly
662	over subtropical regions (e.g., 20 °S - 20 °N), which is mainly due to lower COT in
663	MOZART-4x than in CB05_GE.

665 <u>5. Model-to-Model</u> Comparisons

666 <u>5.1 Column Comparisons</u>

667 <u>5.1.1 Column Gases</u>

668 Figures $\frac{5a}{8a}$ and b compare the column mass abundance of major gaseous and 669 aerosol species simulated by MOZART-4x and CB05_GE. As shown in Figure 6a8a, column CO predicted by MOZART-4x is about 2.4×10^{20} m⁻² (or by 2.3%) lower than that 670 671 by CB05_GE in the global mean. The different column CO concentrations are due to 672 different pathways for chemical production and loss of CO between MOZART-4x and 673 CB05_GE, and different OH levels in MOZART-4x and CB05_GE. The chemical 674 production of CO is mainly from photolysis and oxidation of VOCs species, and the 675 chemical loss of CO is mainly from the oxidation by OH. Different concentrations of 676 VOCs species can result in different chemical production of CO. Meanwhile, the only 677 chemical loss of CO in CB05_GE is the oxidation of CO by OH, which produces HO₂ 678 and CO₂. Higher OH levels in MOZART-4x can result in more CO loss. MOZART-4x 679 includes an additional loss pathway of CO oxidized by OH to produce CO₂ and H. As a 680 result, the combined rate constant for both pathways of CO oxidation by OH in 681 MOZART-4x is about 4% higher than in CB05_GE. All these differences result in 2301 682 and 2265 Tg yr⁻¹ chemical loss of CO in MOZART-4x and CB05_GE, respectively. 683 The global mean differences in the simulated column concentrations of SO₂ and

684	NH ₃ between MOZART-4x and CB05_GE are 2.0×10^{18} m ⁻² (or by 12.5%) and 1.9×10^{17}
685	$m^{\text{-}2}$ (or by 3.1%), respectively. The lower column abundance of SO ₂ in CB05_GE is
686	mainly due the additional pathway for SO_2 loss through oxidation by O_3 over the surface
687	of dust particles, which is not included in MOZART-4x. This pathway can produce more
688	$\mathrm{SO_4}^{2\text{-}}$ and therefore, more NH ₃ is partitioned into the particulate phase to form NH ₄ ⁺
689	which can neutralize additional SO_4^{2-} , resulting in lower column abundance of NH_3 in
690	CB05_GE. Both column concentrations of NO_x and NO_y from MOZART-4x are about
691	9.4 $\times 10^{17}$ m^-² (or by 9.5%) and 3.6 $\times 10^{19}$ m^-² (or by 46.3%) lower than that from
692	CB05_GE. The higher NO _x in CB05_GE is mainly due to the lower OH available for the
693	chemical loss through the reaction of NO ₂ with OH. NO _y in MOZART-4x includes NO _x ,
694	nitrate radical (NO ₃), nitrogen pentoxide (N ₂ O ₅), HNO ₃ , peroxynitric acid (HO ₂ NO ₂),
695	chlorine nitrate (ClONO ₂), bromine nitrate (BrONO ₂), peroxyacetyl nitrate (PAN),
696	organic nitrate (ONIT), methacryloyl peroxynitrate (MPAN), peroxy radical from the
697	reaction of NO ₃ with ISOP (ISOPNO3), and lumped isoprene nitrate (ONITR), whereas
698	NO _y in CB05_GE includes NO _x , NO ₃ , N ₂ O ₅ , HNO ₃ , HO ₂ NO ₂ , ClONO ₂ , BrONO ₂ , nitrous
699	acid (HONO), PAN, higher peroxyacyl nitrates (PANX), and organic nitrate (NTR). The
700	reactions for reactive nitrogen species are different in MOZART-4x and CB05_GE,
701	resulting in different NO _y predictions. Figure S1 in the supplementary material shows the
702	dominant species in NO _y predicted by the simulations using both MOZART-4x and
703	CB05_GE. As shown in Figure S1, NO _x , HNO ₃ , and TPAN (PAN+MPAN for

704	MOZART-4x and PAN+PANX for CB05_GE) are the major components for NO _y
705	concentrations, with the ratios of 90.5% and 91.7%, respectively, for the sum of the
706	mixing ratios of top three species to that of NO _y . NO _x dominates over East Asia, eastern
707	U.S., and western Europe, whereas TPAN dominates over most oceanic area. Figure S2 in
708	the supplementary material shows the absolute and relative differences for major NO _y
709	species between MOZART-4x and CB05_GE. As shown in Figure S2, MOZART-4x
710	predicts lower column TPAN by 2.9×10^{19} molecules m ⁻² (or by 63.4%), which dominates
711	the differences in NO _y predictions between the two simulations. The differences in TPAN
712	predictions can be attributed to the differences in the kinetic reactions. Table S2 in the
713	supplementary material lists the reactions involving TPAN. As shown in Table S2,
714	besides the differences in the reaction rate calculation, MOZART-4x includes one
715	additional reaction, i.e., PAN destruction by OH, which is not included in CB05_GE. In
716	addition, simulated OH levels are higher in MOZART-4x than those in CB05_GE, which
717	could result in more TPAN loss through oxidation by OH. These differences can explain
718	the lower TPAN mixing ratios in MOZART-4x than those in CB05_GE and thus lower
719	column NO _y mass abundances in MOZART-4x than those in CB05_GE. Table S3 in the
720	supplementary material lists the NO _y species used in the calculation for Figure 4 and
721	other NO _y related comparisons. Figure S3 in the supplementary material shows the
722	absolute differences in NO _y (with and without inclusion of aerosol nitrate) between
723	MOZART-4x and CB05_GE. If aerosol nitrate is accounted for in the NO _y definition, the

 $\frac{\text{differences in NO}_{y} \text{ between the two mechanisms decrease over East Asia, eastern U.S.,}}{\text{differences in NO}_{y} \text{ between the two mechanisms decrease over East Asia, eastern U.S.,}}$

Europe, and middle Africa as aerosol nitrate is higher in MOZART-4x over these regions

(see Figure 6b). For the rest of areas, the differences in NO_y between the two mechanisms

increase if aerosol nitrate is accounted for in the NO_y definition.

728 The tropospheric column O_3 from MOZART-4x is about 1.5 DU (or by 4.7%) 729 lower than that from CB05_GE. Table 5 shows the tropospheric O₃ budget from 730 MOZART-4x and CB05_GE. The burdens of tropospheric O₃ from MOZART-4x and 731 CB05_GE are 325 Tg and 333 Tg, respectively, which is comparable to the previous 732 studies using CAM (Lamarque et al., 2012; Young et al., 2013). The O₃ burden from 733 MOZART-4x in this work is about 12 Tg (or 3.8%) higher than that in Tilmes et al. 734 (2015), which is mainly due to the additional kinetic reactions included in this version of 735 MOZART-4x. The dry deposition flux of O_3 from MOZART-4x is 679 Tg yr⁻¹, which is 736 about 3.7% lower than that from CB05 GE (i.e., 705 Tg yr⁻¹). The lower O_3 dry 737 deposition flux is mainly due to the lower O₃ concentration simulated by MOZART-4x. 738 The O₃ chemical production and loss from CB05 GE and MOZART-4x are roughly 739 within the range of Young et al. (2013). The O₃ chemical production from MOZART-4x 740 is comparable to that of Lamarque et al. (2012), but the O₃ chemical production from 741 CB05_GE is about 12.8% higher than Lamarque et al. (2012). In this table, chemical 742 production is calculated mainly from reactions of NO with peroxy radicals and chemical 743 loss is calculated mainly from the oxygen radical in the reaction of excited oxygen atom

744	(O^1D) with water vapor (H ₂ O) and from the reactions of O ₃ with the HO ₂ , OH, and
745	alkenes. Different peroxy radicals and alkenes treated and different reaction rates used in
746	the two mechanisms can contribute to the different chemical production and chemical
747	loss of O_3 . The O_3 lifetime is calculated based on the ratio of O_3 burden to the total O_3
748	loss (dry deposition + chemical loss). The O_3 lifetime from CB05_GE is comparable to
749	those reported by Young et al. (2013), and the O_3 lifetime from MOZART-4x is
750	comparable to those reported by Lamarque et al. (2012) and Tilmes et al. (2015).
751	Column concentrations of OH, HCHO, and ISOP from MOZART-4x are higher
752	than CB05_GE, with global mean values of 9.7 $\times 10^{13}$ m ⁻² (or by 0.8%), 3.5 $\times 10^{17}$ m ⁻² (or
753	by 1.3%), and 1.1 $\times 10^{18}$ m $^{-2}$ (or by 25.6%), respectively. The higher column
754	concentrations of OH and HCHO are likely due to the photolysis of more peroxide
755	species, better HO _x recycling, and higher precursors for secondary HCHO (e.g., ISOP) in
756	MOZART-4x. MOZART-4x includes detailed organic peroxide species, whereas in
757	CB05_GE, all the organic peroxide species are lumped into one species (i.e., ROOH).
758	The uncertainties in HO _x recycling in CB05_GE can also result in uncertainties in OH
759	predictions. The higher ISOP is mainly due to higher biogenic emissions and less
760	chemical loss in MOZART-4x than that in CB05_GE. In MOZART-4x, the chemical loss
761	of ISOP is mainly from the oxidation of ISOP by OH, O ₃ , and NO ₃ . However, in
762	CB05_GE, the chemical loss of ISOP includes not only the oxidation of ISOP by OH, O ₃ ,
763	and NO ₃ , but also the consumption of ISOP by atomic oxygen (i.e., O), NO ₂ , and Cl.

764 <u>5.1.2 Column Aerosols</u>

765	As shown in Figure <u>8b</u> , the differences in the domain average column mass
766	abundances of most aerosol species (e.g., NH4 ⁺ , BC, Cl ⁻ , and POA) between
767	MOZART-4x and CB05_GE are within \pm 0.02 mg m ⁻² . The differences in the column
768	SO_4^{2-} vary from -25.2 to 0.4 mg m ⁻² , with the global mean of -0.2 mg m ⁻² . The simulated
769	column concentrations of SO_4^{2-} from MOZART-4x are much lower than those from
770	CB05_GE over East Asia, west Europe, and Middle Africa. SO ₂ can be oxidized by O_3 to
771	form SO ₄ ²⁻ on the surface of dust particles in CB05_GE, which explains additional
772	formation of SO ₄ ²⁻ by CB05_GE over these regions. The differences of the spatial
773	distributions and magnitudes in the column concentrations of NH_4^+ are similar to those of
774	SO_4^{2-} over land areas, which is associated with thermodynamic equilibrium. The column
775	concentrations of NO3 ⁻ simulated by MOZART-4x are higher over East Asia, India, and
776	Europe than those by CB05_GE, which is mainly due to its competition with SO_4^{2-} in
777	forming ammonium salts in the particulate phase in those regions where the column NH_3
778	concentrations are high (Figure 8a). Dust emissions are very sensitive to the wind speed.
779	Slightly changes in wind speeds can result in significant change in dust emissions, thus,
780	dust concentrations.
781	The column concentrations of SOA predicted by MOZART-4x are about 0.18 mg
782	m^{-2} (or by 8.4%) higher than those predicted by CB05_GE. The higher SOA column
783	concentrations are mainly over most continental areas in the middle and low latitudes.

The SOA mainly includes biogenic SOA, anthropogenic SOA, and semi-volatile SOA.

785 The differences of SOA are mainly due to the higher BVOCs emissions and higher OH

186 levels in MOZART-4x than in CB05_GE. Different branching ratios used in

787 MOZART-4x and CB05_GE can also contribute to the different SOA predictions.

788 MOZART-4x includes explicit species and more types of precursors for alkylperoxy

radicals (RO₂), and different reaction rate constants for different reactions, whereas in

- 790 CB05_GE, all oxidized VOCs are lumped as one species (i.e., RO₂) and branching ratios
- are estimated based on the only three reactions (i.e., reactions of RO₂ with NO, HO₂, and

RO₂). These differences can contribute to the differences in the estimation of branching

ratios, and therefore, affect the partitioning between organic gas and aerosols through the

1.5 D VBS treatment implemented in CAM5-NCSU.

795

796 <u>5.2</u> SOA Comparisons

Figure 9 shows the contributions to total SOA (TSOA) concentrations from anthropogenic sources (ASOA), biogenic sources (BSOA), glyoxal (GLSOA), and semi-volatile organic aerosol (SVSOA) over Australia, Europe, North America, South Africa, South America, and East Asia over 2008-2010. The contributions of ASOA to TSOA predicted by MOZART-4x and CB05_GE are about 17-44%, and 10-47%, respectively, with South America the least and East Asia the most. The contributions of

BSOA to TSOA predicted by MOZART-4x and CB05_GE are about 31-75%, and

804	26-76%, respectively, with East Asia the least and South America the most. The
805	contribution of GLSOA to TSOA predicted by CB05_GE is about 2-6%. CB05_GE used
806	in this work includes a simple conversion of glyoxal to condensable VOCs, which can be
807	uptaken by preexisting particles to form SOA. However, this conversion is not included
808	in MOZART-4x. Therefore, there is no GLSOA predicted by MOZART-4x despite it
809	predicts higher glyoxal as shown in Figure 3. The contributions of SVSOA to TSOA
810	predicted by MOZART-4x and CB05_GE are about 8-37%, and 8-41%, respectively, with
811	South America the least and South Africa the most. Among four types of SOA, both
812	MOZART-4x and CB05_GE predict BSOA as the main contributor over most regions
813	(e.g., Australia, North America, South Africa, and South America) and ASOA as the main
814	contributor over East Asia, which is mainly due to the much higher anthropogenic
815	emissions over East Asia. Europe is a different example. MOZART-4x predicts BSOA as
816	the top contributor (44%) and ASOA as the second largest contributor (40%), whereas
817	CB05_GE predicts ASOA as the top contributor (45%) and BSOA as the second largest
818	contributor (36%). Both MOZART-4x and CB05_GE predict ASOA as the top
819	contributor (46-59%) for spring, fall, and winter, and BSOA as the top contributor (57%
820	and 47%, respectively) for summer over Europe. Since MOZART-4x predicts higher
821	BSOA than CB05_GE, BSOA is dominant in MOZART-4x on the annual average. The
822	higher BSOA from MOZART-4x than CB05_GE is mainly due to the higher BVOCs
823	emissions in MOZART-4x and higher OH levels in MOZART-4x. The total BVOCs

824	emission in MOZART-4x is about 2.5×10^{-3} kg m ⁻² yr ⁻¹ , which is about 7.2×10^{-5} kg m ⁻²
825	yr ⁻¹ (or 2.9%) higher than CB05_GE. The higher BVOCs emissions in MOZART-4x are
826	mainly due to the different species mapping for MEGAN emission calculations. The
827	differences of SOA from biogenic alkenes between MOZART-4x and CB05_GE are
828	MYRC and BCARY in MOZART-4x, and OCI, HUM, and TER in CB05_GE (as shown
829	in Table 1). In CAM-chem that uses MOZART, MEGAN calculates all of the individual
830	species and CAM-chem sums them up to map with the MOZART mechanism species.
831	For example, MYRC emissions consist of myrcene and ocimene, BCARY emissions
832	consist of beta-caryophyllene, alpha-bergamotene, beta-bisabolene, beta-farnescene, and
833	alpha-humulene, and LIMON emissions consist of limonene, phellandrene, and terpinene.
834	Therefore, the biogenic emissions for more types of VOCs in MOZART-4x are higher
835	than those in CB05_GE, resulting in higher BSOA in MOZART-4x. The differences in
836	SOA from aromatics between MOZART-4x and CB05_GE are BENZENE in
837	MOZART-4x and PAH in CB05_GE (as shown in Table 1). The emissions of PAH are
838	higher over Europe, East Asia, eastern U.S., and South Africa. The benzene emissions are
839	about 1 order of magnitude higher than the emissions of PAH, and the rate constant of the
840	oxidation of benzene by OH is temperature dependent whereas it is constant for oxidation
841	of PAH by OH. In addition, OH levels are higher in MOZART-4x than those in
842	CB05_GE. These differences could result in different ASOA between two simulations.
843	Both MOZART-4x and CB05_GE predict higher SVSOA contributions over South Africa

than other regions, which is mainly due to the higher POA emissions (e.g., biomassburning) over this region.

846	Although the percentage contributions of different types of SOA predicted by
847	MOZART-4x and CB05_GE are similar over most regions, the absolute mass
848	concentrations of different types of SOA are different. For example, TSOA predicted by
849	MOZART-4x is about 0.02-2.0 mg m ⁻² higher than by CB05_GE over these regions.
850	ASOA predicted by MOZART-4x is about 0.068-1.017 mg m ⁻² higher than predicted by
851	CB05_GE over most regions except Europe (0.054 mg m ⁻² lower) and East Asia (0.062
852	mg m ⁻² lower). BSOA predicted by MOZART-4x is about 0.162-1.365 mg m ⁻² higher
853	than predicted by CB05_GE over most regions except Australia (0.003 mg m ⁻² lower).
854	MOZART-4x includes SOA formation from benzene, which can predict higher ASOA
855	formation. In addition, OH predicted by MOZART-4x is higher than CB05_GE (See
856	Figure 6a8a), which can produce more condensable SOA gaseous precursors through
857	oxidations of VOCs. The higher BVOCs emissions in MOZART-4x due to different
858	mapping for MEGAN species can also contribute to the higher BSOA formation in
859	MOZART-4x.
860	Both MOZART-4x and CB05_GE predict POA burdens of 0.36 Tg, which is
861	about 0.1 Tg lower than those by Shrivastava et al. (2015), indicating that POA may be
862	too volatile with the current implementation of VBS SOA in CESM/CAM5 and possible
863	lower POA emissions used in this work. MOZART-4x predicts SOA burden of 1.82 Tg,

864	which is slightly higher (by 0.05 Tg) than that predicted by Shrivastava et al. (2015). This
865	can be attributed to different emissions used in CESM/CAM5 and Shrivastava et al.
866	(2015), as well as differences in the model treatment for SOA formation in both work.
867	For example, nine volatility bines are used in this work to represent the aging and
868	gas-particle partitioning of POA, instead of five volatility bins used in Shrivastava et al.
869	(2015). In addition, compared to the reaction (3) in Shrivastava et al. (2015), we simply-
870	assume the remaining mass is assumed to be lost to a species with a volatility higher than
871	the volatility values in the VBS structure, instead of to-being oxidized to form CO/CO2.
872	
873	6. Conclusions
874	In this work, MOZART-4x and CB05_GE are coupled with CAM5-NCSU.
875	MOZART-4x uses lumped species approach to represent organic chemistry whereas
875 876	MOZART-4x uses lumped species approach to represent organic chemistry whereas CB05_GE uses lumped structure approach. MOZART-4x and CB05_GE include different
875 876 877	MOZART-4x uses lumped species approach to represent organic chemistry whereas CB05_GE uses lumped structure approach. MOZART-4x and CB05_GE include different surrogates for SOA precursors, which can result in different SOA predictions.
875 876 877 878	MOZART-4x uses lumped species approach to represent organic chemistry whereas CB05_GE uses lumped structure approach. MOZART-4x and CB05_GE include different surrogates for SOA precursors, which can result in different SOA predictions. MOZART-4x includes HO _x recycling associated with improved isoprene chemistry
875 876 877 878 878	MOZART-4x uses lumped species approach to represent organic chemistry whereas CB05_GE uses lumped structure approach. MOZART-4x and CB05_GE include different surrogates for SOA precursors, which can result in different SOA predictions. MOZART-4x includes HO _x recycling associated with improved isoprene chemistry whereas CB05_GE contains simpler isoprene chemistry, which can result in different OH
875 876 877 878 879 880	MOZART-4x uses lumped species approach to represent organic chemistry whereas CB05_GE uses lumped structure approach. MOZART-4x and CB05_GE include different surrogates for SOA precursors, which can result in different SOA predictions. MOZART-4x includes HO _x recycling associated with improved isoprene chemistry whereas CB05_GE contains simpler isoprene chemistry, which can result in different OH and isoprene predictions and thus, SOA predictions. CB05_GE includes additional
875 876 877 878 879 880 881	MOZART-4x uses lumped species approach to represent organic chemistry whereas CB05_GE uses lumped structure approach. MOZART-4x and CB05_GE include different surrogates for SOA precursors, which can result in different SOA predictions. MOZART-4x includes HO _x recycling associated with improved isoprene chemistry whereas CB05_GE contains simpler isoprene chemistry, which can result in different OH and isoprene predictions and thus, SOA predictions. CB05_GE includes additional oxidation of SO ₂ by O ₃ over the surface of dust particles to produce additional SO4 ²⁻ ,
875 876 877 878 879 880 881 881	MOZART-4x uses lumped species approach to represent organic chemistry whereas CB05_GE uses lumped structure approach. MOZART-4x and CB05_GE include different surrogates for SOA precursors, which can result in different SOA predictions. MOZART-4x includes HO _x recycling associated with improved isoprene chemistry whereas CB05_GE contains simpler isoprene chemistry, which can result in different OH and isoprene predictions and thus, SOA predictions. CB05_GE includes additional oxidation of SO ₂ by O ₃ over the surface of dust particles to produce additional SO4 ²⁻ , which is not included in MOZART-4x. These differences can result in different secondary

884	The comparisons between the two gas-phase mechanisms are conducted in terms
885	of chemical and cloud/radiative predictions. Predictions of major gases and inorganic
886	aerosols predicted by MOZART-4x and CB05_GE are overall similar. Significant
887	differences in some species (e.g., NO _y , glyoxal, and SOA) predictions are mainly due to
888	the different reaction pathways treated in the two mechanisms. Large biases exist for
889	surface SO ₂ , CO, NH ₃ , PM _{2.5} and PM ₁₀ predictions against available observations, which
890	is likely due to the uncertainties in the emissions or emission injection heights. Several
891	studies indicate that the uncertainties in regional emissions (e.g., BC and SO ₂) can be
892	expected to be as large as a factor of 2 or larger (Bond et al., 2007; Smith et al., 2011).
893	Large discrepancies still remain for major species such as SO ₂ , NO _x , BC, and CO among
894	different inventories (Granier et al., 2011). Both surface CO mixing ratios and column
895	CO mass abundances are underpredicted, which is mainly due to underestimations in the
896	CO emissions from biomass burning and possible uncertainties in the OH production.
897	Surface SO ₂ mixing ratio is overpredicted whereas column SO ₂ abundance is
898	underpredicted, indicating the uncertainties in the vertical mixing scheme or emission
899	injection heights as reported in East Asia (Zhang et al., 2015a, b), as well as satellite
900	retrievals. For example, Lee et al. (2009) found that there is an overall error in the annual
901	SO ₂ retrievals of 45-80% over polluted regions, especially over eastern China.
902	Uncertainties in online dust and sea-salt emissions can also result in inaccurate
903	predictions in PM _{2.5} and PM ₁₀ . Both MOZART-4x and CB05_GE overpredict surface O ₃

904	over CONUS, Europe, and East Asia, which is due in part to less O ₃ titration resulted
905	from underpredictions of NO _x , <u>the dilution of NO_x emissions resulted from</u> the use of a
906	coarse grid resolution, as well as <u>uncertainties in the O₃ dry deposition simulated in the</u>
907	<u>model</u> .
908	The concentration of OC over CONUS is well predicted by MOZART-4x, with an
909	NMB of 2.1%, whereas it is moderately underpredicted by CB05_GE, with an NMB of
910	-20.7%. Compared to the observations at the four sites in the U.S. from Lewandowski et
911	al. (2013), SOA is well predicted by MOZART-4x, with an NMB of -1.9%, whereas it is
912	moderately underpredicted by CB05_GE, with an NMB of -23.1%, indicating a better
913	capability to predict SOA over these sites by MOZART-4x despite its tendency to
914	overpredict SOA concentrations at sites with low SOA levels such as Bakersfield and
915	Pasadena, CA. However, the concentrations of OC over Europe areis largely
916	underpredicted by both MOZART-4x and CB05_GE, with NMBs of -74.2% and -75.1%,
917	respectively, indicating the uncertainties in the emissions, chemical reactions, as well as
918	SOA formation treatment. The different AOD predictions between CB05_GE and
919	MOZART-4x are mainly due to the different predictions in SOA, SO ₄ ²⁻ , NH ₄ ⁺ , NO ₃ ⁻ , and
920	dust concentrations.
921	The cloud/radiative predictions from the two simulations are also similar, with
922	slightly better domain average performance of CCN5, LWP, and LWCF in CB05_GE.
923	But MOZART-4x predicts slightly better CCN profile over Beijing than CB05_GE

924	compared to aircraft measurements. The different gas-phase mechanisms result in
925	different predictions in aerosols and clouds, and therefore, a domain average difference of
926	0.5 W m ⁻² in simulated SWCF, which can be as large as 13.6 W m ⁻² over subtropical
927	regions.
928	In summary, MOZART-4x and CB05_GE differ in their approaches to represent
929	VOCs and surrogates for SOA precursors. MOZART-4x includes a more detailed
930	representation of isoprene chemistry compared to CB05_GE. Based on the above
931	comparisons of simulations using both mechanisms and evaluation against available
932	measurements in this study, MOZART-4x with the 1.5 D VBS SOA module in
933	CESM-NCSU generally gives a better agreement with observations for surface
934	concentrations of O ₃ over Europe, HNO ₃ , HCHO, ISOP over CONUS ₇ , SOA, SO ₄ ²⁻ , NO ₃ ⁻ ,
935	and NH_4^+ over CONUS and Europe, – and column mass abundances of HCHO, $C_2H_2O_2$,
936	SO _{2,_and O₃, whereas CB05_GE generally gives a better agreement for surface}
937	concentrations of SO ₂ , NH ₃ , O ₃ over CONUS and East Asia, HNO ₃ over Europe, $PM_{2.5}$
938	and PM_{10} over Europe, PM_{10} over East Asia, vertical profiles of NO_y , and column mass
939	abundances of COBoth simulations give predictions of cloud/radiative variables with
940	slightly better domain average performance of CCN5, LWP, and LWCF in CB05_GE.
941	7. Code and Data Availability
942	The presented results in our this paper are based on output from simulations
943	performed with the NCAR Community Earth System Model (CESM) version 1.2.2

944	(https://www2.cesm.ucar.edu/models/current) with additional model development and
945	modifications by our group the Air Quality Forecasting Laboratory, North Carolina State
946	University, Raleigh, NC, U.S.A. OurThe added codes have been provided to NCAR for
947	potential future release to NCAR for community use. Upon request, we can provide the
948	inputs, the namelist file, a brief instruction, and sample output for a 1-day test case.
949	

950 Acknowledgments

- 951 This work is sponsored by the U.S. National Science Foundation EaSM program
- 952 AGS-1049200 and NCAR Advanced Study Program. MODIS data and CERES data are
- 953 provided by NASA via http://ladsweb.nascom.nasa.gov/data/search.html and
- 954 http://ceres.larc.nasa.gov/order_data.php, respectively. CDNC data are provided by Ralf
- 955 Bennartz. Other surface network data were downloaded from their respective web sites.
- 956 ARCPAC and CalNex data are from NOAA, STRAT08 data are from NCAR, ARCTAS
- data are from NASA, CCN_China are from Zhang et al. (2011), and SOA data of
- 958 Lewandowski et al. (2013) are provided by Tadeusz Kleindienst, U.S. EPA. We would like
- to acknowledge high-performance computing support from Yellowstone
- 960 (ark:/85065/d7wd3xhc) provided by NCAR's Computational and Information Systems
- 961 Laboratory, sponsored by the U.S. National Science Foundation. The National Center for
- 962 Atmospheric Research is operated by the University Corporation for Atmospheric
- 963 Research with funding from the National Science Foundation.

965	References
966 067	Aghedo, A. M., Bowman, K. W., Worden, H. M., Kulawik, S. S., Shindell, D. T.,
907	vertical distribution of ozone instantaneous radiative forcing from satellite and
969	chemistry climate models. I. Geophys. Res. 116, D01305
970	doi:10.1029/2010JD014243, 2011.
971	Barahona, D., West, R. E. L., Stier, P., Romakkaniemi, S., Kokkola, H., and Nenes, A.:
972	Comprehensively accounting for the effect of giant CCN in cloud activation
973	parameterizations, Atmos. Chem. Phys., 10(5), 2467-2473,
974	doi:10.5194/acp-10-2467-2010, 2010.
975	Bennartz, R.: Global assessment of marine boundary layer cloud droplet number
976	concentration from satellite, J. Geophys. Res., 112, D02201, doi:
977	10.1029/2006JD007547, 2007.
978	Boersma, K. F., Eskes, H. J., and Brinksma E. J.: Error analysis for tropospheric NO ₂
979	retrieval from space, J. Geophys. Res., 109, D04311, doi:10.1029/2003JD003962,
980	2004.
1 981	Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Roden, C., Streets, D. G., and
982	Trautmann, N. M.: Historical emissions of black and organic carbon aerosol from
983	energy-related combustion, 1850-2000, Global Biogeochem. Cy., 21, GB2018,
984	doi:10.1029/2006GB002840, 2007.
985	Brock, C. A., Cozic, J., Bahreini, R., Froyd, K. D., Middlebrook, A. M., McComiskey, A.,
986	Brioude, J., Cooper, O. R., Stohl, A., Aikin, K. C., de Gouw, J. A., Fahey, D. W.,
987	Ferrare, R. A., Gao, RS., Gore, W., Holloway, J. S., Hübler, G., Jefferson, A., Lack,
988	D. A., Lance, S., Moore, R. H., Murpphy, D. M., Nenes, A., Novelli, P. C., Nowak, J.
989	B., Ogren, J. A., Peischl, J., Pierce, R. B., Pilewskie, P., Quinn, P. K., Ryerson, T. B.,
990	Schmidt, K. S., Schwarz, J. P., Sodemann, H., Spackman, J. R., Stark, H., Thomson,
991	D. S., Thornberry, T., Veres, P., Watts, L. A., Warneke, C., and Wollny, A. G.:
992	Characteristics, sources, and transport of aerosols measured in spring 2008 during the
993	aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project,
994	Atmos. Chem. Phys., 11, 2423-2453, doi:10.5194/acp-11-2423-2011, 2011.
995	Cappa, C. D. and Jimenez, J. L.: Quantitative estimates of the volatility of ambient
996	organic aerosol, Atmos. Chem. Phys., 10, 5409-5424, doi:10.5194/acp-10-5409-2010,
997	2010.

998 999 1000 1001 1002	 Chan, A. W. H., Kautzman, K. E., Chhabra, P. S., Surratt, J. D., Chan, M. N., Crounse, J. D., Kürten, A., Wennberg, P. O., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalens: implications for oxidation of intermediate volatility organic compounds (IVOCs), Atmos. Chem. Phys., 9, 3049-3060, 2009.
1003 1004 1005	Couvidat, F., Kim, Y., Sartelet, K., Seigneur, C., Marchand, N., and Sciare, J.: Modeling secondary organic aerosol in an urban area: application to Paris, France, Atmos. Chem. Phys., 13, 983-996, 2013.
1006 1007 1008 1009 1010	 Emmons, L. K., Walters, S., Hess, P. G., Lamarque, JF., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43-67, doi:10.5194/gmd-3-43-2010, 2010.
1011 1012 1013	Fountoukis, C. and Nenes, A.: Continued Development of a Cloud Droplet Formation Parameterization for Global Climate Models, J. Geoph. Res., 110, D11212, doi:10.1029/2004JD005591, 2005.
1014 1015 1016 1017	Fountoukis, C and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K ⁺ - Ca ²⁺ -Mg ²⁺ -NH ₄ ⁺ -Na ⁺ -SO ₄ ²⁻ -NO ₃ ⁻ -Cl ⁻ -H ₂ O aerosols, Atmos. Chem. Phys., 7, 4639-4659, doi:10.5194/acp-7-4639-2007, 2007.
1018 1019 1020	Gantt, B., He, J., Zhang, X., Zhang, Y., and Nenes, A.: Incorporation of advanced aerosol activation treatments into CESM/CAM5: model evaluation and impacts on aerosol indirect effects, Atmos. Chem. Phys., 14, 7485-7497, doi:10.5194/acp-14-7485-2014.
1021 1022 1023	Gery, M. W., Whitten, G. Z., Killus, J. P., and Dodge, M. C.: A photochemical kinetics mechanism for urban and regional scale computer modeling, J. Geophys. Res., 94(D10), 12,925-12,956, doi:10.1029/JD094iD10p12925, 1989.
1024 1025	Glotfelty, T., He, J., and Zhang, Y.: Updated organic aerosol treatments in CESM/CAM5: development and initial application, in preparation, 2015.
1026 1027 1028 1029 1030	 Granier, C., Bessagnet, B., Bond, T., D'Angiola, A., Denier van der Gon, H., Frost, G. J., Heil, A., Kaiser, J. W., Kinne, S., Klimont, Z., Kloster, S., Lamarque, JF., Liousse, C., Masui, T., Meleux, F., Mieville, A., Ohara, T., Raut, JC., Riahi, K., Schultz, M. G., Smith, S. J., Thompson, A., van Aardenne, J., van der Werf, G. R., and van Vuuren, D. P.: Evolution of anthropogenic and biomass burning emissions of air

1031 1032	pollutants at global and regional scales during the 1980-2010 period, Climatic Change, 109, 163-190, doi:10.1007/s10584-011-0154-1, 2011.
1033 1034 1035 1036	 Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471-1492, doi:10.5194/gmd-5-1471-2012, 2012.
1037	He, J. and Zhang, Y.: Improvement and further development in CESM/CAM5: gas-phase
1038	chemistry and inorganic aerosol treatments, Atmos. Chem. Phys., 14, 9171-9200,
1039	doi:10.5194/ acp-14-9171-2014, 2014.
1040	He, J., Zhang, Y., Glotfelty, T., He, R., Bennartz, R., Rausch, J., and Sartelet, K.: Decadal
1041	simulation and comprehensive evaluation of CESM/CAM5.1 and advanced
1042	chemistry, aerosol microphysics, and aerosol-cloud interactions, J. Adv. Model. Earth
1043	Syst., 7, 110-141, doi: 10.1002/2014MS000360, 2015.
1044	Hodzic, A., Jimenez, J. L., Madronich, S., Canagaratna, M. R., DeCarlo, P. F., Kleinman,
1045	L., and Fast, J.: Modeling organic aerosols in a mega-city: Potential contribution of
1046	semi-volatile and intermediate volatility primary organic compounds to secondary
1047	organic aerosol formation, Atmos. Chem. Phys., 10(12), 5491-5514,
1048	doi:10.5194/acp-10-5491-2010, 2010.
1049	IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working
1050	Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate
1051	Change [Stocker, T.F., D. Qin, GK. Plattner, M. Tignor, S.K. Allen, J. Boschung, A.
1052	Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press,
1053	Cambridge, United Kingdom and New York, NY, USA, 1535 pp,
1054	doi:10.1017/CBO9781107415324, 2013.
1055	Jacob, D. J., Crawford, J. H., Maring, H., Clarke, A. D., Dibb, J. E., Emmons, L. K.,
1056	Ferrare, R. A., Hostetler, C. A., Russell, P. B., Singh, H. B., Thompson, A. M., Shaw,
1057	G. E., McCauley, E., Pederson, J. R., and Fisher, J. A.: The Arctic Research of the
1058	Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission:
1059	design, execution, and first results, Atmos. Chem. Phys., 10, 5191-5212,
1060	doi:10.5194/acp-10-5191-2010, 2010.
1061 1062	Jacob, D. J. and Winner, D. A.: Effect of climate change on air quality, Atmos. Environ., 43, 51-63, 2009.
1063 1064	Jathar, S. H., Farina, S. C., Robinson, A. L., and Adams, P. J.: The influence of semi-volatile and reactive primary emissions on the abundance and properties of

- 1067 Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, O., Kroll, J. 1068 H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, K. 1069 1070 R., Lanz, V. A., Hueglin, C., Sunn, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., 1071 Rautiainen, J., Vaattovaara, P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. 1072 R., Cubison, M. J., Dunlea, E., J., Huffman, J. A., Onaasch, T. B., Alfarra, M. R., 1073 Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., 1074 Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel, J. 1075 1076 R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M., Williams, L. R., Wood, 1077 E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U., Worsnop, D. R.: Evolution 1078 of organic aerosols in the atmosphere, Science, 326, 1525-1529, 1079 doi:10.1126/science.1180353, 2009. 1080 Karamchandani, P., Zhang, Y., Chen, S.-Y., and Balmori-Bronson, R.: Development of an 1081 extended chemical mechanism for global-through-urban applications, Atmospheric 1082 Pollution Research, 3, 1-24, 2012. Kay, J. E., Hillman, B. R., Klein, S. A., Zhang, Y., Medeiros, B., Pincus, R., Gettelman, 1083 1084 A., Eaton, B., Boyle, J., Marchand, R., and Ackerman, T. P.: Exposing global cloud 1085 biases in the Community Atmosphere Model (CAM) using satellite observations and 1086 their corresponding instrument simulators, J. Climate, 25, 5190-5207, 1087 doi:10.1175/JCLI-D-11-00469.1, 2012. 1088 Kim Y., Sartelet, K., and Seigneur C.: Comparison of two gas-phase chemical kinetic 1089 mechanisms of ozone formation over Europe, J. Atmo. Chem., 62, 89-119, 1090 DOI10.1007/s10874-009-9142-5, 2009. 1091 Kim, Y., Sartelet, K., and Seigneur, C.: Formation of secondary aerosols: impact of the 1092 gas-phase chemical mechanism, Atmos. Chem. Phys. 11, 583-598, 1093 doi:10.5194/acp-11-583-2011, 2011a. 1094 Kim, Y., Couvidat, F., Sartelet, K., and Seigneur, C.: Comparison of Different Gas-Phase 1095 Mechanisms and Aerosol Modules for Simulating Particulate Matter Formation, J. of 1096 Air & Waste Management Association, 61, 1218-1226, 1097 doi:10.1080/10473289.2011.603999, 2011b. 1098 Kinnison, D. E., Brasseur, G. P., Walters, S., Garcia, R. R., Marsh, D. A., Sassi, F.,
- 1099 Boville, B. A., Harvey, L., Randall, C., Emmons, L., Lamarque, J.-F., Hess, P.,

¹⁰⁶⁵ global organic aerosol, Atmos. Chem. Phys., 11, 7727-7746,
1066 doi:10.5194/acp-11-7727-2011, 2011.

1100 1101 1102 1103	Orlando, J., Tyndall, G., Tie, X. X., Randel, W., Pan, L., Gettelman, A., Granier, C., Diehl, T., Niemeier, U., and Simmons, A. J.: Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model, J. Geophys. Res., 112, D20302, doi:10.1029/2006JD007879, 2007.
1104 1105 1106 1107 1108 1109	 Knote, C., Tuccella, P., Curci, G., Emmons, L., Orlando, J. J., Madronich, S., Baró, R., Jiménez-Guerrero, P., Luecken, D., Hogrefe, C., Forkel, R., Werhahn, J., Hirtl, M., Pérez, J. L., San José, R., Giordano, L., Brunner, D., Khairunnisa, Y., and Zhang, Y.: Influence of the choice of gas-phase mechanism on predictions of key gaseous pollutants during the AQMEII phase-2 intercomparison, Atmos. Environ., http://dx.doi.org/10.1016/j.atmosenv.2014.11.066, 2014a.
1110 1111 1112 1113 1114 1115	 Knote, C., Hodzic, A., Jimenez, J. L., Volkamer, R., Orlando, J. J., Baidar, S., Brioude, J., Fast, J. Gentner, D. R., Goldstein, A. H., Hayes, P. L., Knighton, W. B., Oetjen, H., Setyan, A., Stark, H., Thalman, R., Tyndall, G., Washenfelder, R., Waxman, E., and Zhang, Q.: Simulation of semi-explicit mechanisms of SOA formation from glyoxal in aerosol in a 3-D model, Atmos. Chem. Phys., 14, 6213-6239, doi:10.5194/acp-14-6213-2014, 2014b.
1116	Kumar, P., Sokolik, I. N., and Nenes, A.: Parameterization of cloud droplet formation for
1117	global and regional models: including adsorption activation from insoluble CCN,
1118	Atmos. Chem. Phys., 9, 2517-2532, doi:10.5194/acp-9-2517-2009, 2009.
1119	 Lamarque, JF., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D.,
1120	Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J.,
1121	Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., Mc-
1122	Connell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical (1850-2000)
1123	gridded anthropogenic and biomass burning emissions of reactive gases and aerosols:
1124	methodology and application, Atmos. Chem. Phys., 10, 7017-7039, doi:10.5194/acp-
1125	10-7017-2010, 2010.
1126	Lamarque, J. F., Emmons, L. K., Hess, P. G., Kinnison, D. E., Tilmes, S., Vitt, F., Heald,
1127	C. L., Holland, E. A., Lauritzen, P. H., Neu, J., Orlando, J. J., Rasch, P. J., and
1128	Tyndall, G. K.:CAM-chem: description and evaluation of interactive atmospheric
1129	chemistry in CESM, Geosci. Model Dev., 5, 369-411, doi:10.5194/gmd-5-369-2012,
1130	2012.
1131	Lamarque, JF., McConnell, J. R., Shindell, D. T., Orlando, J. J., and Tyndall, G. S.:
1132	Understanding the drivers for the 20 th century change of hydrogen peroxide in
1133	Antarctic ice-cores, Geophys. Res. Lett., 38, L04810, doi:10.1029/2010GL045992,
1134	2011a.

Lamarque, JF., Kyle, G. P., Meinshausen, M., Riahi, K., Smith, S. J., van Vuuren, D. P., Conley, A., and Vitt, F.: Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways, Climatic Change, 109, 191-212, 2011b.
Lamarque, JF., Kinnison, D. E., Hess, P. G., and Vitt, F.: Simulated lower stratospheric trends between 1970 and 2005: identifying the role of climate and composition changes, J. Geophys. Res., 113, D12301, doi:10.1029/2007JD009277, 2008.
 Lamarque, J. F., Shinedell, D. T., Josse, B., Young, P. J., Cionni, I., Eyring, V., Bergmann, D., Cameron-Smith, P., Collins, W. J., Doherty, R., Dalsoren, S., Faluvegi, G., Folberth, G., Ghan, S. J., Hiriwutz, L. W., Lee, Y. H., MacKenzie, I. A., Nagashima, T., Naik, V., Plummer, D., Righi, M., Rumbold, S. T., Schulz, M., Skeie, R. B., Stevenson, D. S., Strode, S., Sudo, K., Szopa, S., Voulgarakis, A., and Zeng, G.: The atmospheric chemistry and climate model intercomparison project: overview and description of models, simulations and climate diagnostics, Geosci. Model Dev., 6, 179-206, doi:10.5194/gmd-6-179-2013, 2013.
Lamarque, JF. and Solomon, S.: Impact of Changes in Climate and Halocarbons on Recent Lower Stratosphere Ozone and Temperature Trends, J. Climate, 23, 2599-2611, 2010.
Lee, C., Martin, R. V., Donkelaar, A. van, O'Byrne, G., Krotkov, N., Richter, A., Huey, L. G., and Holloway, J. S.: Retrieval of vertical columns of sulfur dioxide from SCIAMACHY and OMI: Air mass factor algorithm development, validation, and error analysis, J. Geophys. Res., 114, D22303, doi:10.1029/2009JD012123, 2009.
Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., and Hsu, N. C.: The Collection 6 MODIS aerosol products over land and ocean, Atmos. Meas. Tech., 6, 2989–3034, doi:10.5194/amt-6-2989-2013, 2013.
Lewandowski, M., Piletic, I. R., Kleindienst, T. E., Offenberg, J. H., Beaver, M. R., Jaoui, M., Docherty, K. S., and Edney, E. O.: Secondary organic aerosol characterization at field sites across the United States during the spring-summer period, Int. J. Environ. An. Ch., 93, 1084-1103, 2013.
 Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., Lamarque, JF., Gettleman, A., Morrison, H., Vitt, F., Conley, A., Park, S., Neale, R., Hannay, C., Ekman, A. M. L., Hess, P., Mahowald, N., Collins, W., Iacono, M.J., Bretherton, C. S., Flanner, M. G., and Mitchell, D.L.: Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5, Geosci. Model Dev., 5, 709-739, 2012.

1170	Liu, X., Zhang, Y., Cheng, SH., Xing, J., Zhang, Q., Streets, D. G., Jang, C., Wang,
1171	WX., and Hao, JM.: Understanding of regional air pollution over China using
1172	CMAQ, partI: performance evaluation and seasonal variation, Atmos. Environ., 44
1173	(2010), pp. 2415-2426, http://dx.doi.org/10.1016/j.atmosenv.2010.03.035.
1174	Luecken, D. J., Phillips, S., Sarwar, G., and Jang, C.: Effects of using the CB05 vs.
1175	SAPRC99 vs. CB4 chemical mechanism on model predictions: Ozone and gas-phase
1176	photochemical precursor concentrations, Atmos. Environ., 42, 5805-5820,
1177	doi:10.1016/j.atmosenv.2007.08.056, 2008.
1178	Ma, PL., Rasch, P. J., Wang, H., Zhang, K., Easter, R. C., Tilmes, S., Fast, J. D., Liu, X.,
1179	Yoon, JH., and Lamarque, JF.: The role of circulation features on black carbon
1180	transport into the Arctic in the Community Atmosphere Model version 5 (CAM5), J.
1181	Geophys. Res. Atmos., 118, 4657-4669, doi:10.1002/jgrd.50411, 2013.
1182	Martensson, E. M., Nilsson, E. D., deLeeuw, G., Cohen, L. H., and Hansson, H. C.:
1183	Laboratory simulations and parameterization of the primary marine aerosol
1184	production, J. Geophys. Res., 108(D9), 4297, doi:10.1029/2002JD002263, 2003.
1185	Martin, M. V., Heald, C. L., and Arnold, S. R.: Coupling dry deposition to vegetation
1186	phenology in the Community Earth System Model: Implications for the simulation of
1187	surface O ₃ , Geophys. Res. Lett., 41, 2988-2996, doi:10.1002/2014GL059651, 2014.
1188 1189 1190 1191	 May, A. A., Presto, A. A., Hennigan, C. J., Nguyen, N. T., Gordon, T. D., and Robinson, A. I.: Gas-particle partitioning of primary organic aerosol emissions: (1), gasoline vehicle exhaust, Atmos. Environ., 77, 128-139, doi:10.1016/j.atmosenv.2013.04.060, 2013a.
1192 1193 1194 1195	May, A. A., Levin, E. J. T., Hennigan, C. J., Riipinen, I., Lee, T., Collett Jr., J. L., Jimenez, J. L., Kreidenweis, S. M., and Robinson, A. L.: Gas-particle partitioning of primary organic aerosol emissions: 3. Biomass burning, J. Geophys. Res. Atmos., 118, 11,327-11,338, doi:10.1002/jgrd.50828, 2013b.
1196 1197 1198 1199	 Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, JF., Matsumoto, K., Montzka, S., Raper, S., Riahi, K., Thomson, A., Velders, G. J. M., and van Vuuren, D. P.: The RCP Greenhouse gas concentrations and their extensions from 1765 to 2300, Climatic Change, 109, 213-241, 2011.
1200 1201 1202 1203	Merikanto, J., Napari, I., Vehkamaki, H., Anttila, T., and Kulmala, M.: New parameterization of sulfuric acid-ammonia-water ternary nucleation rates at tropospheric conditions, J. Geophys. Res., 112, D15207, doi: 10.1029/2006JD007977, 2007.

1204	Naik, V., Voulgarakis, A., Fiore, A. M., Horowitz, L. W., Lamarque, JF., Lin, M.,
1205	Prather, M. J., Young, P. J., Bergmann, D., Cameron-Smith, P. J., Cionni, I., Collins,
1206	W. J., Dalsøren, S. B., Doherty, R., Eyring, V., Faluvegi, G., Folberth, G. A., Josse,
1207	B., Lee, Y. H., MacKenzie, I. A., Nagashima, T., van Noije, T. P. C., Plummer, D. A.,
1208	Righi, M., Rumbold, S. T., Skeie, R., Shindell, D. T., Stevenson, D. S., Strode, S.,
1209	Sudo, K., Szopa, S., and Zeng, G.: Preindustrial to present-day changes in
1210	tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry
1211	and Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 13,
1212	<u>5277-5298, doi:10.5194/acp-13-5277-2013, 2013.</u>
1213	Pan, L. L., Bowman, K. P., Atlas, E. L., Wofsy, S. C., Zhang, F., Bresch, J. F., Ridley, B.
1214	A., Pittman, J. V., Homeyer, C. R., Romashkin, P., and Cooper, W. A.: The
1215	stratosphere-troposphere analyses of regional transport 2008 (START08) experiment,
1216	Bull. Am. Meteorol. Soc., 91, 327-342, 2010.
1217	Price, C. and Rind, D.: A simple lightning parameterization for calculating global
1218	lightning distributions, J. Geophys. Res., 97, 9919-9933, doi:10.1029/92JD00719,
1219	1992.
1220	Price, C., Penner, J., and Prather, M.: NO _x from lightning 1, Global distribution based on
1221	lightning physics, J. Geophys. Res., 102, 5929-5941, 1997.
1222	Reutter, P., Su, H., Trentmann, J., Simmel, M., Rose, D., Gunthe, S. S., Wernli, H.,
1223	Andreae, M. O., and Pöschl, U.: Aerosol- and updraft-limited regimes of cloud
1224	droplet formation: influence of particle number, size and hygroscopicity on the
1225	activation of cloud condensation nuclei (CCN), Atmos. Chem. Phys., 9, 7067-7080,
1226	doi:10.5194/acp-9-7067-2009, 2009.
1227	Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M.,
1228	Grieshop, A. P., Lane, T. E., Pierce, J. R., and Pandis, S. N.: Rethinking organic
1229	aerosols: Semivolatile emissions and photochemical aging, Science, 315, 1259-1262,
1230	doi:10.1126/science.1133061, 2007.
1231	Ryerson, T. B., Andrews, A. E., Angevine, W. M., Bates, T. S., Brock, C. A., Cairns, B.,
1232	Cohen, R. C., Cooper, O. R., de Gouw, J. A., Fehsenfeld, F. C., Ferrare, R. A.,
1233	Fischer, M. L., Flagan, R. C., Goldstein, A. H., Hair, J. W., Hardesty, R. M.,
1234	Hostetler, C. A., Jimenez, J. L., Langford, A. O., McCauley, E., McKeen, S. A.,
1235	Molina, L. T., Nenes, A., Oltmans, S. J., Parrish, D. D., Pederson, J. R., Pierce, R. B.,
1236	Prather, K., Quinn, P. K., Seinfeld, J. H., Senff, C. J., Sorooshian, A., Stutz, J.,
1237	Surratt, J. D., Trainer, M., Volkamer, R., Williams, E. J., and Wofsy, S. C.: The 2010
1238	California Research at the Nexus of Air Quality and Climate Change (CalNex) field
1239	study, J. Geophys. Res., 118, 5830-5866, doi:10.1002/jgrd.50331, 2013.
1240	Sarwar, G., Luecken, D., Yarwood, G., Whitten, G., and Carter, W. P. L.: Impact of an
--------------------------------------	---
1241	updated carbon bond mechanism on predictions from the Community Multiscale Air
1242	Quality Model, J. Appl. Meteorol. Climatol., 47, 3-14,
1243	doi:10.1175/2007JAMC1393.1, 2008.
1244 1245 1246	Seethala, C. and Horvath, Á.: Global assessment of AMSR-E and MODIS cloud liquid water path retrievals in warm oceanic clouds, J. Geophys. Res., 115, D13202, doi:10.1029/2009JD012662, 2010.
1247	Shrivastava, M. K., Lane, T. E., Donahue, N. M., Pandis, S. N., and Robinson, A. L.:
1248	Effects of gas particle partitioning and aging of primary emissions on urban and
1249	regional organic aerosol concentrations, J. Geophys. Res., 113, D18301,
1250	doi:10.1029/2007JD009735, 2008.
1251 1252 1253 1254 1255	 Shrivastava, M., Easter, R., Liu, X., Zelenyuk, A., Singh, B., Zhang, K., Ma, P-L, Chand, D., Ghan, S., Jimenez, J.L., Zhang, Q., Fast, J., Rasch, P. and Tiitta, P.: Global transformation and fate of SOA: Implications of low volatility SOA and gas-phase fragmentation reactions, J. Geophys. Res. Atmos., 120, 4169-4195, doi:10.1002/2014JD022563, 2015.
1256	Shrivastava, M., Zelenyuk, A., Imre, D., Easter, R., Beranek, J., Zaveri, R. A., and Fast, J.:
1257	Implications of low volatility SOA and gas-phase fragmentation reactions on SOA
1258	loadings and their spatial and temporal evolution in the atmosphere, J. Geophys. Res.,
1259	118, 3328-3342, doi:10.1029/jgrd.50160, 2013.
1260	Smith S. J., van Aardenne, J., Klimont, Z., Andres, R., Volke, A., Delgado Arias, S.:
1261	Anthropogenic sulfur dioxide emissions: 1850-2005. Atmos Chem Phys., 11,
1262	1101-1116. doi:10.5194/acp-11-1101-2011, 2011.
1263	Stainer, C. O., Donahue, N., and Pandis, S. N.: Parameterization of secondary organic
1264	aerosol mass fractions from smog chamber data, Atmos. Environ., 42, 2276-2299,
1265	doi:10.1016/j.atmosenv.2007.12.042, 2008.
1266 1267	Taylor, K. E: Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106, 7183-7192, 2001.
1268	Tilmes, S., Lamarque, JF., Emmons, L. K., Kinnison, D. E., Ma, PL., Liu, X., Ghan, S.,
1269	Bardeen, C., Arnold, S., Deeter, M., Vitt, F., Ryerson, T., Elkins, J. W., Moore, F.,
1270	Spackman, R., and Martin, M. V.: Description and evaluation of tropospheric
1271	chemistry and aerosols in the Community Earth System Model (CESM1.2), Geosci.
1272	Model Dev., 8, 1395-1426, doi:10.5194/gmd-8-1395-2015, 2015.

1273	Tsimpidi, A. P., Karydis, V. A., Zavala, M., Lei, W., Molina, L., Ulbrich, I. M., Jimenez,
1274	J. L., and Pandis, S. N.: Evaluation of the volatility basis-set approach for the
1275	simulation of organic aerosol formation in the Mexico City metropolitan area, Atmos.
1276	Chem. Phys., 10, 525-546, doi:10.5194/acp-10-525-2010, 2010.
1277	Vehkamaki, H., Kulmala, M., Napari, I., Lehtinen, K. E. J., Timmreck., C., Noppel, M.,
1278	and Laaksonen, A.: an improved parameterization for sulfuric acid-water nucleation
1279	rates for tropospheric and stratospheric conditions, Journal of Geophysical
1280	Research-Atmospheres, 107(D22), 4622, doi:10.1029/2002JD002184, 2002.
1281 1282	Wang, M. and Penner, J. E.: Aerosol indirect forcing in a global model with particle nucleation, Atmos. Chem. Phys., 9, 239-260, 2009.
1283	Wang, K., Yahya, K., Zhang, Y., Wu, SY., and Grell G.: Implementation and initial
1284	application of a new chemistry-aerosol option in WRF/Chem for simulation of
1285	secondary organic aerosols and aerosol indirect effects, Atmos. Environ, <u>115</u> ,
1286	<u>doi:10.1016/j.atmosenv.2014.12.007</u> , 2014.
1287	Wang, H., Easter, R. C., Rasch, P. J., Wang, M., Liu, X., Ghan, S. J., Qian, Y., Yoon, JH.,
1288	Ma, PL., and Vinoj, V.: Sensitivity of remote aerosol distributions to representation
1289	of cloud–aerosol interactions in a global climate model, Geosci. Model Dev., 6,
1290	765-782, doi:10.5194/gmd-6-765-2013, 2013.
1291 1292 1293 1294 1295 1296	 Washenfelder, R., Young, C., Brown, S., Angevine, W., Atlas, E., Blake, D., Bon, D., Cubison, M., De Gouw, J., Dusanter, S., Flynn, J., Gilman, J. B., Graus, M., Griffith, S., Grossberg, N., Hayes, P. L., Jimenez, J., Kuster, W., Lefer, B. L., Pollack, I., Ryerson, T., Stark, H., Stevens, P. S., and Trainer, M.: The glyoxal budget and its contribution to organic aerosol for Los Angeles, California, during CalNex 2010, J. Geophys. Res., 116, D00V02, doi:10.1029/2011JD016314, 2011.
1297 1298 1299 1300 1301 1302 1303 1304 1305	 Young, P. J., Archibald, A. T., Bowman, K. W., Lamarque, JF., Naik, V., Stevenson, D. S., Tilmes, S., Voulgarakis, A., Wild, O., Bergmann, D., Cameron-Smith, P., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty, R. M., Eyring, V., Faluvegi, G., Horowitz, L. W., Josse, B., Lee, Y. H., MacKenzie, I. A., Nagashima, T., Plummer, D. A., Righi, M., Rumbold, S. T., Skeie, R. B., Shindell, D. T., Strode, S. A., Sudo, K., Szopa, S., and Zeng, G.: Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 13, 2063-2090, doi:10.5194/acp-13-2063-2013, 2013.
1306	Yarwood, G., Kemball-Cook, S., Johnson, J, Wilson, G, Dornblaser, B, and Estes, M:
1307	Evaluating NOx Emission Inventories for Air Quality Modeling Using Satellite,

1308 1309	Model and SEARCH NO ₂ Data, 11 th Annual CMAS Conference, Chapel Hill, NC, October 16, 2012.
1310 1311 1312	Yarwood, G., Rao, S., Yocke, M., and Whitten, G. Z.: Updates to the carbon bond mechanism: CB05, Report to the U.S. Environmental Protection Agency, RT-04-00675, 2005.
1313 1314 1315	Yu, F.: Ion-mediated nucleation in the atmosphere: Key controlling parameters, implications, and look-up table, J. Geophys. Res., 115, D03206, doi: 10.1029/2009JD012630, 2010.
1316 1317 1318 1319 1320	Yu, SC., Mathur, R., Sarwar, G., Kang, D., Tong, D., Pouliot, G., and Pleim, J.: Eta-CMAQ air quality forecasts for O ₃ and related species using three different photochemical mechanisms (CB4, CB05, SAPRC-99): comparisons with measurements during the 2004 ICARTT study, Atmos. Chem. Phys., 10, 3001-3025, 2010.
1321 1322 1323 1324	Yu, SC., Dennis, R., Roselle, S., Nenes, A., Walker, J., Eder, B., Schere, K., Swall, J., <u>Robarge, W.: An assessment of the ability of 3-D air quality models with current</u> <u>thermodynamic equilibrium models to predict aerosol NO₃⁻, J. Geophys. Res., 110,</u> <u>D07S13, doi:10.1029/2004JD004718, 2005.</u>
1325 1326	Yu, SC., Eder, B., Dennis, R., Chu, SH., Schwartz, S.: New unbiased symmetric metrics for evaluation of air quality models, Atmos. Sci. Let., 7, 26-34, 2006.
 1327 1328 1329	Zender, C. S., Bian, H., and Newman, D.: The mineral Dust Entrainment And Deposition (DEAD) model: Description and 1990s dust climatology, J. Geophys. Res., 108(D14), 4416, doi: 10.1029/2002JD002775, 2003.
1330 1331 1332 1333 1334 1335 1336 1337 1338	 Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R.: Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys. Res. Lett., 34, L13801, doi:10.1029/2007GL029979, 2007.
1339 1340 1341	Zhang, Q., Quan, J., Tie, X., Huang, M., and Ma, X.: Impacts of aerosol particles on cloud formation: Aircraft measurements in China, Atmospheric Environment, 45, 665-672, 2011.

1342	Zhang, Y., Liu, P., Pun, B., and Seigneur, C.: A comprehensive performance evaluation
1343	of MM5-CMAQ for summer 1999 Southern Oxidants Study episode, Part I.
1344	Evaluation protocols, databases, and meteorological predictions, Atmos. Environ., 40,
1345	<u>4825-4838, 2006.</u>
1346	Zhang, Y., Pun, B., Vijayaraghavan, K., Wu, SY., Seigneur, C., Pandis, S., Jacobson,
1347	M., Nenes A., and Seinfeld, J. H.: Development and Application of the Model of
1348	Aerosol Dynamics, Reaction, Ionization and Dissolution (MADRID), Journal of
1349	Geophysical Research, 109, D01202, doi:10.1029/2003JD003501, 2004.
1350	Zhang, Y., Karamchandani, P., Glotfelty, T., Street, D. G., Grell, G., Nenes, A., Yu, F., and
1351	Bennartz, R.: Development and initial application of the global-through-urban
1352	weather research and forecasting model with chemistry (GU-WRF/Chem), J.
1353	Geophys. Res., 117, D20206, doi:10.1029/2012JD017966, 2012a.
1354	Zhang, Y., Chen, Y., Sarwar, G., and Schere, K.: Impacts of gas-phase mechanisms on
1355	weather research forecasting model with chemistry (WRF/Chem) predictions:
1356	Mechanism implementation and comparative evaluation, J. Geophys. Res., 117,
1357	D01301, doi: 10.1029/2011JD015775, 2012b.
1358	Zhang, Y., Zhang, X., Wang, LT., Zhang, Q., Duan, FK., and He, KB.: Application of
1359	WRF/Chem over East Asia: Part I. Model Evaluation and Intercomparison with
1360	MM5/CMAQ, Atmospheric Environment, in press,
1361	<u>doi:10.1016/j.atmosenv.2015.07.022,</u> 2015a.
1362	Zhang, Y., Zhang, X., Wang, K., Zhang, Q., Duan, FK., and He, KB.: Application of
1363	WRF/Chem over East Asia: Part II. Model Improvement and Sensitivity Simulations,

1364Atmospheric Environment, in press, doi:10.1016/j.atmosenv.2015.07.023, 2015b.

Precursors	MOZART-4x ¹	$CB05_GE^2$		
Aromatics	TOLUENE, BENZENE,	TOL, XYL, CRES, PAH		
	XYLENES, CRESOL			
Alkanes	BIGALK	ALKH		
Anthropogenic alkenes	C3H6, BIGENE	OLE, IOLE		
Biogenic alkenes	APIN, BPIN, LIMON,	APIN, BPIN, LIM, OCI,		
	MYRC, BCARY, ISOP	HUM, TER, ISOP		

Table 1. Gas-phase organic aerosol precursors in the two mechanisms

¹ BIGALK: lumped alkanes C > 3; C₃H₆: propene; BIGENE: lumped alkenes C > 3; APIN: α-pinene + others; BPIN: β-pinene+others; LIMON: limonene + others; MYRC: myrcene + others; BCARY: beta-caryophyllene + other sesquiterpenes; ISOP: isoprene. ² TOL: toluene and other monoalkyl aromatics; XYL: xylene and other polyalkyl aromatics; CRES: cresol and higher molecular weight phenols; PAH: polycyclic aromatic hydrocarbons; ALKH: long-chain alkanes, C >6; OLE: terminal olefin carbon bond (R-C=C); IOLE: internal olefin carbon bond (R-C=C-R); APIN: α-pinene; BPIN: β-pinene; LIM: limonene; OCI: ocimene; HUM: humulene; TER: terpinene; ISOP: isoprene.

Table 2. Datasets	Tor model evaluation							
Species/Variables	Dataset (Number of sites)							
Cloud fraction (CF)								
Cloud optical thickness (COT)								
Cloud liquid water path (LWP)								
Precipitating water vapor (PWV)	MODIS							
Aerosol optical depth (AOD)								
Column cloud condensation nuclei (ocean) at $S = 0.5\%$ (CCN5)								
Cloud draplet number concentration (CDNC) LWD	$\mathbf{B}_{\text{appendix}}$							
Cloud dropiet number concentration (CDNC), <u>LWP</u>	Definanz (2007)							
Shortwave cloud radiative forcing (SWCF)								
Longwave cloud radiative forcing (LWCF)	CERES-EBAE							
Downwelling longwave radiation at surface (FLDS)								
Downwelling shortwave radiation at surface (FSDS)								
Outgoing longwave radiation (OLR)	NOAA/CDC							
Carbon monoxide (CO)	East Asia: NIESJ (2133), TAQMN (70), KMOE (258)							
	CONUS: CASTNET (141)							
$\Omega_{\text{ZODE}}(\Omega_3)$	Europe: Airbase (3846) BDOA (490) EMEP (317)							
	East Asia: TAOMN (70) $KMOE$ (258)							
· · · · · · · · · · · · · · · · · · ·	CONTROL (10), RIVEL (200)							
G_{1}	$E_{\text{man}} = A_{\text{man}}^{\text{man}} (2946) \text{DDOA} (400) \text{EMED} (217)$							
Sullur dioxide (SO ₂)	Europe: Airbase (3846), BDQA (490), EMEP (317)							
	East Asia: MEPC (84), NIESJ (2133), KMOE (258), TAQMN (70)							
Nitric acid (HNO ₃)	CONUS: CASTNET (141); Europe: EMEP (317)							
Ammonia (NH ₃)	Europe: Airbase (3846), EMEP (317)							
	<u>CONUS: ARS (25877)</u>							
Nitrogen dioxide (NO ₂)	Europe: Airbase (3846), BDOA (490), EMEP (317)							
	East Asia: NIESJ. TAOMN. KMOE							
	CONUS: CASTNET (141), IMPROVE (199), STN (18129);							
Sulfate (SO ₄ ²⁻), Ammonium (NH ₄ ⁺), Nitrate (NO ₃ ⁻)	Europe: Airbase (3846) EMEP (317)							
	CONUS: IMPROVE (199)							
Chloride (Cl ⁻)	Europe: Airbase (2846) EMED (217)							
O_{result} = O_{result} (OC)	CONLISE IMPROVE (100): Every EMED (217)							
Diganic carbon (OC)	CONUS: IMPROVE (199); EUROPE: EMEP (517)							
Black carbon (BC), Total carbon (TC)	CONUS: IMPROVE (199), STN(18129)							
Formaldehyde (HCHO), Isoprene (ISOP), and Toluene (TOL)	CONUS: AQS (25877)							
Hydrocarbon-like organic aerosol (HOA), Oxygenated organic	Northern Hemisphere: Zhang et al. (2007) and Jimenez et al.							
aerosol (OOA), Total organic aerosol (TOA)	(2009) (Z07 & J09) (33)							
Secondary organic aerosol (SOA)	CONUS: Ohio (2) and California (2) (Lewandowski et al., 2013)							
Particulate matter with diameter less than and equal to 2.5 um	CONUS: IMPROVE (199) STN (18129)							
$(PM_{2.5})$	Europe: $BDOA (490) EMEP (317)$							
(11412.3)	CONUS: AOS (25977)							
Particulate matter with diameter less than and equal to 10 µm	CONUS. AQS (23077) Example: Airbarg (2846) DDOA (400) EMED (217)							
(PM_{10})	Europe: Airoase (5840), $DDQA (490)$, $EMEP (517)$							
	East Asia: MEPC (84), NIESJ (2133), KMOE (258), TAQMN (70)							
Column CO	Globe: MOPITT							
Column NO ₂ , Column SO ₂ , Column HCHO, Column glyoxal	Globe: SCIAMACHY							
(C ₂ H ₂ O ₂)								
Tropospheric ozone residual (TOR)	Globe: OMI/MLS							
	ARCPAC (MarApr., 2008), ARCTAS (AprJun., 2008),							
O_3 , CO , NO_x , and NO_y profiles	START08 (AprJun., 2008), and CalNex (May-Jun., 2010)							
CCN China	Beijing: Zhang et al. (2011) (JulSen., 2008)							
NOAA/CDC: National Oceanic and Atmospheric Adminis	tration Climate Diagnostics Center: MODIS: Moderate							
Pasolution Imaging Spectroradiometer: CEDES ERAE: C	louds and Earth's Padiant Energy System Energy Relanced							
and Filled product: MODITT: the Measurements Of Pollut	ion In The Troposphere: OMI/MI System Aura Ozone							
and rined product; wOFTET: the weasurements OF romation in The Troposphere; OMI/MLS: the Aura Ozone Monitoring Instrument in combination with Aura Microwaya Limb Soundar: SCIAMCHV: the SCanning Imaging								
Absorption spectroMater for Atmospheric CHartography: CASTNET: Clean Air Status and Trands Naturaly								
IMDROWE Intergraphy Manifering of Prototod Visual Environments, This Societion Trands Network,								
INTROVE. Interagency Monitoring of Protected Visual E	tion Drogrom, DDOA, Dog de Derrées au 1, O. 1961							
Quality System; EMEP: European Monitoring and Evalua	uon Program; BDQA: Base de Donnees sur la Qualite de							
l'Air; AirBase: European air quality database; MEPC: Min	istry of Environmental Protection of China; TAQMN:							
Taiwan Air Quality Monitoring Network; NIESJ: National	Institute for Environmental Studies of Japan; KMOE:							
Korean Ministry of Environment; ARCPAC: Aerosol, Rad	ation, and Cloud Processes affecting Arctic Climate in 2008							
(Brock et al., 2011); ARCTAS: Arctic Research of the Con	nposition of the Troposphere from Aircraft and Satellites							
(Jacob et al., 2010), START08: Stratosphere-Troposphere	Analyses of Regional Transport in 2008 (Pan et al., 2010);							
CalNex: California Nexus 2010 (Ryerson et al., 2013)								

Table 2. Datasets for model evaluation

			M	CB05_GE				
Species	Domain	Obs	Sim	NMB (%) ⁶	NME (%) ⁶	Sim	NMB (%) ⁶	NME (%) ⁶
CO (ppb)	East Asia	438.7	150.9	-65.6	65.7	150.4	-65.7	65.8
	CONUS	1.7	11.6	580.2	580.2	11.2	561.6	561.6
SO_2^1	Europe	4.7	9.5	100.9	121.2	9.2	94.1	115.4
	East Asia	2.9	4.3	47.0	70.6	3.9	35.5	64.0
NH ₃ (µg m ⁻³)	Europe	1.2	2.5	112.4	146.0	2.4	104.3	139.8
	<u>CONUS</u>	<u>8.3</u>	<u>4.0</u>	<u>-51.4</u>	<u>55.9</u>	<u>4.0</u>	<u>-52.2</u>	<u>56.4</u>
NO_2^2	Europe	17.4	6.7	-61.4	65.5	6.6	-62.1	66.0
	East Asia	11.7	3.0	-74.1	75.2	3.0	-74.8	75.8
	CONUS	34.7	44.7	29.0	29.5	44.4	28.2	28.5
O ₃ ³	Europe	56.2	78.6	39.9	40.8	80.6	43.5	44.2
	East Asia	29.8	48.3	62.4	62.4	47.7	60.3	60.3
HNO ₃	CONUS	0.9	2.1	145.0	145.2	2.2	154.7	154.7
(µg m ⁻³)	Europe	0.8	0.7	-15.6	65.4	0.8	-10.9	64.9
HCHO (ppb)	CONUS	2.3	1.6	-30.1	48.4	1.5	-36.3	49.0
ISOP (ppb)	CONUS	0.3	0.2	-27.3	63.2	0.2	-29.0	64.7
Toluene (ppb)	CONUS	0.5	0.2	-65.3	69.2	0.2	-65.1	69.1
Col. CO (molec.cm ⁻²)	Globe	1.6×10 ¹⁸	1.2×10 ¹⁸	-25.8	27.5	1.2×10 ¹⁸	-24.4	26.1
Col. NO ₂ (molec.cm ⁻²)	Globe	5.5×10 ¹⁴	8.5×10 ¹⁴	56.0	71.0	9.3×10 ¹⁴	70.2	83.3
Col. HCHO (molec.cm ⁻²)	Globe	4.6×10 ¹⁵	3.1×10 ¹⁵	-31.2	39.2	3.1×10 ¹⁵	-32.7	40.4
Col. C2H2O2 (molec.cm ⁻²)	Globe	2.8×10 ¹⁴	3.9×10 ¹³	-86.0	86.0	5.9×10 ¹²	-97.9	-97.9
Col. SO ₂ (DU)	Globe	1.2	0.3	-70.1	90.1	0.3	-73.5	88.7
TOR (DU)	Globe	28.6	30.3	6.0	15.0	31.8	11.3	16.5
SO4 ²⁻	CONUS	1.8	3.0	72.9	72.9	3.3	89.7	89.7
$(\mu g m^{-3})$	Europe	1.8	2.9	62.1	70.1	3.2	79.7	85.2
NH4 ⁺	CONUS	0.9	1.3	37.8	49.9	1.3	44.3	55.6
(µg m ⁻³)	Europe	0.9	1.3	51.5	63.1	1.4	63.4	72.8
NO ₃ -	CONUS	0.9	0.9	-6.0	44.4	0.7	-21.2	40.2
(µg m ⁻³)	Europe	1.7	1.2	-28.9	54.2	1.2	-30.5	53.4
Cl-	CONUS	0.1	0.02	-78.1	84.3	0.02	-78.3	84.5
(µg m ⁻³)	Europe	1.1	4.1	273.4	274.7	4.2	273.7	274.8
BC (μg m ⁻³)	CONUS	0.3	0.2	-29.3	44.6	0.2	-29.3	44.6
	CONUS	0.9	1.0	2.1	33.2	0.7	-20.7	32.8
$OC (\mu g m^{-3})$	Europe	2.9	0.7	-74.2	77.3	0.7	-75.1	78.0
TC (μg m ⁻³)	CONUS	1.8	1.3	-29.6	39.3	1.1	-42.1	45.8
SOA ⁴	CONUS	1.8	1.8	-1.9	29.3	1.4	-23.1	35.8
HOA ⁴	N.H. ⁵	2.1	0.5	-77.2	81.5	0.5	-76.7	81.3
OOA ⁴	N.H. ⁵	4.8	2.1	-56.5	56.6	1.8	-62.3	62.3
TOA ⁴	N.H. ⁵	7.9	2.5	-67.8	68.2	2.3	-71.2	72.0
PM _{2.5}	CONUS	7.4	10.3	<u>38.9</u>	<u>58.1</u>	<u>10.3</u>	<u>37.7</u>	<u>58.6</u>
(µg m ⁻³)	Europe	14.4	11.5	-20.4	48.4	11.8	-18.3	47.0
DI	CONUS	20.6	12.6	-38.6	50.2	12.6	-38.9	50.7
PM_{10}	Europe	22.1	18.8	-14.9	39.9	19.2	-13.1	38.9
(µg m)	East Asia	88.0	59.0	-32.9	41.1	64.8	-26.4	37.2

Table 3. Performance statistics of chemical species

¹ The unit is μ g m⁻³ for CONUS and ppb for East Asia. ² The unit is μ g m⁻³ for Europe and ppb for <u>CONUS and East</u> Asia. ³ The unit is ppb for CONUS and East Asia, and μ g m⁻³ for Europe. ⁴ SOA: secondary organic aerosol; HOA: hydrocarbon-like organic aerosol; OOA: oxygenated organic aerosol; TOA: total organic aerosol; ⁵ N.H.: northern hemisphere; ⁶ MB: mean bias; NMB: normalized mean bias (%); NME: normalized mean error (%); RMSE: root mean squared error; Corr.: correlation coefficient.

I

			MOZART-4x				<u>CB05_GE</u>					
Variables ¹	<u>Networks</u>	<u>Obs</u>	Sim	<u>NMB</u> (%) ²	<u>NME</u> (%) ²	RMSE ²	<u>Corr²</u>	Sim	<u>NMB</u> (%) ²	<u>NME</u> (%) ²	RMSE ²	Corr ²
<u>OLR</u> (W m ⁻²)	NOAA/ CDC	<u>217.0</u>	<u>224.8</u>	3.6	<u>4.1</u>	<u>10.0</u>	<u>0.99</u>	<u>223.7</u>	<u>3.1</u>	<u>3.9</u>	<u>9.6</u>	<u>0.98</u>
<u>FLDS</u> (W m ⁻²)	<u>CERES</u>	<u>306.7</u>	<u>307.3</u>	<u>0.2</u>	<u>3.1</u>	<u>11.6</u>	<u>0.99</u>	<u>307.3</u>	<u>0.2</u>	<u>3.1</u>	<u>11.5</u>	<u>0.99</u>
<u>FSDS</u> (W m ⁻²)	<u>CERES</u>	<u>163.4</u>	<u>150.9</u>	<u>-7.6</u>	<u>10.2</u>	<u>22.6</u>	<u>0.9</u>	<u>150.8</u>	<u>-7.7</u>	<u>10.2</u>	22.7	<u>0.9</u>
<u>SWCF</u> (W m ⁻²)	<u>CERES</u>	<u>-40.7</u>	<u>-51.5</u>	<u>26.4</u>	<u>33.4</u>	<u>19.0</u>	<u>0.9</u>	<u>-52.0</u>	<u>27.7</u>	<u>-34.4</u>	<u>19.6</u>	<u>0.9</u>
<u>LWCF</u> (W m ⁻²)	<u>CERES</u>	<u>22.4</u>	<u>17.6</u>	<u>-21.6</u>	<u>25.1</u>	<u>6.8</u>	<u>0.9</u>	<u>18.7</u>	<u>-16.7</u>	<u>23.8</u>	<u>6.6</u>	<u>0.9</u>
<u>CCN5</u> (# cm ⁻²)	MODIS	<u>2.2×10⁸</u>	<u>1.5×10⁸</u>	<u>-32.1</u>	<u>46.4</u>	<u>1.7×10⁸</u>	<u>0.4</u>	<u>1.6×10⁸</u>	<u>-29.0</u>	<u>46.6</u>	<u>1.7×10⁸</u>	<u>0.4</u>
<u>CF (%)</u>	MODIS	<u>67.3</u>	<u>71.5</u>	<u>6.3</u>	<u>12.7</u>	<u>12.5</u>	<u>0.8</u>	<u>71.3</u>	<u>6.0</u>	<u>12.7</u>	<u>12.5</u>	<u>0.8</u>
COT	MODIS	<u>16.5</u>	<u>12.2</u>	<u>-26.0</u>	<u>61.6</u>	<u>14.0</u>	<u>-0.3</u>	<u>12.2</u>	<u>-26.0</u>	<u>61.3</u>	<u>14.0</u>	<u>-0.3</u>
AOD	MODIS	<u>0.15</u>	<u>0.11</u>	<u>-23.9</u>	<u>40.5</u>	<u>0.08</u>	<u>0.7</u>	<u>0.11</u>	<u>-24.6</u>	<u>40.5</u>	<u>0.08</u>	<u>0.7</u>
<u>PWV</u> (cm)	MODIS	<u>1.9</u>	<u>2.0</u>	<u>5.6</u>	<u>11.4</u>	<u>0.3</u>	<u>0.99</u>	<u>2.0</u>	<u>5.5</u>	<u>11.4</u>	<u>0.3</u>	<u>0.99</u>
<u>CDNC</u> (# cm ⁻³)	<u>Bennartz</u> (2007)	<u>105.8</u>	<u>126.6</u>	<u>19.7</u>	<u>38.7</u>	<u>56.5</u>	<u>0.5</u>	<u>127.8</u>	<u>20.8</u>	<u>39.1</u>	<u>58.1</u>	<u>0.6</u>
LWP	MODIS	142.0	<u>65.2</u>	<u>-54.1</u>	<u>65.4</u>	<u>143.3</u>	<u>-0.4</u>	<u>64.7</u>	-54.4	<u>65.3</u>	143.3	<u>-0.4</u>
$(\underline{g} \underline{m}^{-2})$	Bennartz (2007)	<u>84.6</u>	<u>87.0</u>	<u>2.8</u>	<u>38.3</u>	<u>42.3</u>	<u>0.4</u>	86.0	<u>1.7</u>	<u>37.7</u>	<u>41.7</u>	<u>0.4</u>

Table 4. Performance statistics of cloud/radiative variables

¹ OLR: outgoing long wave radiation; FLDS: downwelling longwave radiation at the surface; FSDS: downwelling shortwave radiation at the surface; SWCF: shortwave cloud radiative forcing; LWCF: longwave cloud radiative forcing; CCN5: column CCN (ocean) at supersaturation of 0.5%; CF: cloud fraction; COT: clout optical thickness; AOD: aerosol optical depth; PWV: precipitable water vapor; CDNC: cloud droplet number concentration; LWP: liquid water path.

² NMB: normalized mean bias (%); NME: normalized mean error (%); RMSE: root mean squared error; Corr.: correlation coefficient.

Table 5. Tropospheric Ozone Budget								
Ozone	MOZART-4x	CB05_GE Lamarque et al. (2012)		Young et al. (2013)				
Burden (Tg)	325	333	328	337 ± 23				
Dry Deposition (Tg yr ⁻¹)	679	705	705	1003 ± 200				
^a Chemical Production (Tg yr ⁻¹)	4974	5743	4897	5110 ± 606				
^b Chemical Loss (Tg yr ⁻¹)	4259	5194	4604	4668 ± 727				
Lifetime (days)	24	21	26	22.3 ± 2.0				

^a Chemical production is mainly contributed by reactions of NO with peroxy radicals.

^b Chemical loss is mainly contributed by the oxygen radical in the $O(^{1}D)$ + water (H₂O) reaction and by the reactions of ozone with the hydroperoxyl radical (HO₂), OH, and alkenes.

Figure captions

Figure 1. Scatter plots of O₃, PM, organic carbon (OC), <u>secondary organic aerosol (SOA)</u>, hydrocarbon-like organic aerosol (HOA), oxygenated organic aerosol (OOA), total organic aerosol (TOA) over various sites during 2008-2010.

Figure 2. Comparisons of simulated and observed SOA concentrations at the four field study sites during 2009-2010. The observations are based on Lewandowski et al. (2013).

Figure 3. Zonal-mean profiles of HCHO, glyoxal, CO, NO₂, and TOR from CB05_GE and MOZART-4x simulations for June, July, and August during 2008-2010.

Figure 4. Simulated vertical profiles of O_3 , CO, NO_x , and NO_y , against aircraft measurements. The black solid line represents observations from aircraft measurements (Pan et al., 2010; Brock et al., 2011; Ryerson et al., 2011; Jacob et al., 2010). The red solid and blue solid lines represent model output from MOZART-4x and CB05_GE, respectively.

Figure 5. Simulated vertical profiles of CCN against aircraft measurements. The black solid line represents observations from aircraft measurements of Zhang et al. (2011). The red solid and blue solid lines represent model output from MOZART-4x and CB05_GE, respectively.

Figure <u>6</u>. Taylor diagram of comparison of cloud and radiative predictions between MOZART-4x and CB05_GE.

Figure <u>7</u>. Comparison of satellite observations with predictions of AOD, CCN5, CDNC, COT, and SWCF by MOZART-4x and CB05_GE.

Figure <u>8a</u>. Absolute differences averaged during 2008-2010 in tropospheric column concentrations of major gaseous species between MOZART-4x and CB05_GE.

Figure <u>8b</u>. Absolute differences averaged during 2008-2010 in tropospheric column concentrations of major aerosol species between MOZART-4x and CB05_GE.

Figure <u>9</u>. Column abundances (mg m⁻²) averaged during 2008-2010 of secondary organic aerosols (SOA) from anthropogenic sources (ASOA), biogenic sources (BSOA), and glyoxal (GLSOA), and semi-volatile organic aerosol (SVSOA) over Australia, Europe, North America, South Africa, South America, and East Asia.

Figure 1. Scatter plots of O_3 , PM, organic carbon (OC), <u>secondary organic aerosol (SOA)</u>, hydrocarbon-like organic aerosol (HOA), oxygenated organic aerosol (OOA), total organic aerosol (TOA) over various sites during 2008-2010. The X (observations) and Y (simulations) axes are in log scale. Red dots represent MOZART-4x and blue dots represent CB05_GE. R is the correlation coefficient between simulated results and observational data. Z07: Zhang et al. (2007); J09: Jimenez et al. (2009); L13: Lewandowski et al. (2013).

Figure 2. Comparisons of simulated and observed SOA concentrations at the four field study sites during 2009-2010. The observations are based on Lewandowski et al. (2013).

Figure 3. Zonal-mean profiles of HCHO, glyoxal, CO, NO₂, and TOR from CB05_GE and MOZART-4x simulations for June, July, and August during 2008-2010.

Figure 4. Simulated vertical profiles of O_3 , CO, NO_x , NO_y (including aerosol nitrate), OH and H_2O_2 , against aircraft measurements. The black solid line represents observations from aircraft measurements (Pan et al., 2010; Brock et al., 2011; Ryerson et al., 2011; Jacob et al., 2010). The red solid and blue solid lines represent model output from MOZART-4x and CB05_GE, respectively.

Figure 5. Simulated vertical profiles of CCN against aircraft measurements. The black solid line represents observations from aircraft measurements of Zhang et al. (2011). The red solid and blue solid lines represent model output from MOZART-4x and CB05_GE, respectively.

Figure 6. Taylor diagram of comparison of cloud and radiative predictions between MOZART-4x and CB05_GE. The results are based on 3-year average. This diagram represents the similarity between MOZART-4x and CB05_GE. X-axis represents the ratio of variances between observations and simulations (proportional to the reference point identified as "REF"), and Y-axis represents the normalized standard deviation between the two patterns (proportional to the radial distance from the origin). Two variables, COT and LWP, are located outside the diagram because the ratios of variance between simulated results and observations (the values of 1.81 from MOZART-4x and 1.79 from CB05_GE in the top) are larger than 1.75 for LWP and the correlation coefficients (the values of -0.32 from MOZART-4x and -0.31 from CB05_GE in the bottom) for COT are negative.

Figure 7. Comparison of satellite observations with predictions of for AOD, CCN5, CDNC, COT, and SWCF by MOZART-4x and CB05_GE.

Figure 7. Continued.

Figure <u>8a</u>. Absolute differences averaged during 2008-2010 in tropospheric column concentrations of major gaseous species between MOZART-4x and CB05_GE.

Figure <u>8b</u>. Absolute differences averaged during 2008-2010 in tropospheric column concentrations of major aerosol species between MOZART-4x and CB05_GE.

Figure <u>9</u>. Column abundances (mg m⁻²) averaged during 2008-2010 of secondary organic aerosols (SOA) from anthropogenic sources (ASOA), biogenic sources (BSOA), and glyoxal (GLSOA), and semi-volatile organic aerosol (SVSOA) over Australia, Europe, North America, South Africa, South America, and East Asia.