Articles | Volume 8, issue 12
https://doi.org/10.5194/gmd-8-3891-2015
https://doi.org/10.5194/gmd-8-3891-2015
Model description paper
 | 
09 Dec 2015
Model description paper |  | 09 Dec 2015

Adaptive wavelet simulation of global ocean dynamics using a new Brinkman volume penalization

N. K.-R. Kevlahan, T. Dubos, and M. Aechtner

Related authors

wavetrisk-2.1: an adaptive dynamical core for ocean modelling
Nicholas K.-R. Kevlahan and Florian Lemarié
Geosci. Model Dev., 15, 6521–6539, https://doi.org/10.5194/gmd-15-6521-2022,https://doi.org/10.5194/gmd-15-6521-2022, 2022
Short summary
WAVETRISK-1.0: an adaptive wavelet hydrostatic dynamical core
Nicholas K.-R. Kevlahan and Thomas Dubos
Geosci. Model Dev., 12, 4901–4921, https://doi.org/10.5194/gmd-12-4901-2019,https://doi.org/10.5194/gmd-12-4901-2019, 2019
Short summary

Related subject area

Climate and Earth system modeling
A method for quantifying uncertainty in spatially interpolated meteorological data with application to daily maximum air temperature
Conor T. Doherty, Weile Wang, Hirofumi Hashimoto, and Ian G. Brosnan
Geosci. Model Dev., 18, 3003–3016, https://doi.org/10.5194/gmd-18-3003-2025,https://doi.org/10.5194/gmd-18-3003-2025, 2025
Short summary
Baseline Climate Variables for Earth System Modelling
Martin Juckes, Karl E. Taylor, Fabrizio Antonio, David Brayshaw, Carlo Buontempo, Jian Cao, Paul J. Durack, Michio Kawamiya, Hyungjun Kim, Tomas Lovato, Chloe Mackallah, Matthew Mizielinski, Alessandra Nuzzo, Martina Stockhause, Daniele Visioni, Jeremy Walton, Briony Turner, Eleanor O'Rourke, and Beth Dingley
Geosci. Model Dev., 18, 2639–2663, https://doi.org/10.5194/gmd-18-2639-2025,https://doi.org/10.5194/gmd-18-2639-2025, 2025
Short summary
PaleoSTeHM v1.0: a modern, scalable spatiotemporal hierarchical modeling framework for paleo-environmental data
Yucheng Lin, Robert E. Kopp, Alexander Reedy, Matteo Turilli, Shantenu Jha, and Erica L. Ashe
Geosci. Model Dev., 18, 2609–2637, https://doi.org/10.5194/gmd-18-2609-2025,https://doi.org/10.5194/gmd-18-2609-2025, 2025
Short summary
The Tropical Basin Interaction Model Intercomparison Project (TBIMIP)
Ingo Richter, Ping Chang, Ping-Gin Chiu, Gokhan Danabasoglu, Takeshi Doi, Dietmar Dommenget, Guillaume Gastineau, Zoe E. Gillett, Aixue Hu, Takahito Kataoka, Noel S. Keenlyside, Fred Kucharski, Yuko M. Okumura, Wonsun Park, Malte F. Stuecker, Andréa S. Taschetto, Chunzai Wang, Stephen G. Yeager, and Sang-Wook Yeh
Geosci. Model Dev., 18, 2587–2608, https://doi.org/10.5194/gmd-18-2587-2025,https://doi.org/10.5194/gmd-18-2587-2025, 2025
Short summary
ZEMBA v1.0: an energy and moisture balance climate model to investigate Quaternary climate
Daniel F. J. Gunning, Kerim H. Nisancioglu, Emilie Capron, and Roderik S. W. van de Wal
Geosci. Model Dev., 18, 2479–2508, https://doi.org/10.5194/gmd-18-2479-2025,https://doi.org/10.5194/gmd-18-2479-2025, 2025
Short summary

Cited articles

Adcroft, A. and Marshall, D.: How slippery are piecewise-constant coastlines in numerical ocean models?, Tellus, 50A, 95–108, 1998.
Adcroft, A., Hill, C., and Marshall, J.: Representation of Topography by Shaved Cells in a Height Coordinate Ocean Model, Mon. Weather Rev., 125, 2293–2315, https://doi.org/10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2, 1997.
Aechtner, M., Kevlahan, N.-R., and Dubos, T.: A conservative adaptive wavelet method for the shallow water equations on the sphere, Q. J. Roy. Meteor. Soc., 690, 1712–1726, https://doi.org/10.1002/qj.2473, 2014.
Almgren, A. S., Bell, J. B., Colella, P., and Marthaler, T.: A Cartesian Grid Projection Method for the Incompressible Euler Equations in Complex Geometries, SIAM J. Sci. Comp., 18, 1289–1309, 1997.
Amante, C. and Eakins, B.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sour. Anal., http://www.ngdc.noaa.gov/mgg/global/global.html (last access: 1 September 2013), https://doi.org/10.7289/V5C8276M, 2009.
Download
Short summary
In order to easily enforce solid-wall boundary conditions in the presence of complex coastlines, we propose a new mass and energy conserving Brinkman penalization for the rotating shallow water equations. This penalization does not lead to higher wave speeds in the solid region. The error estimates for the penalization are derived analytically and verified numerically for linearized one-dimensional equations. The penalization is implemented in a conservative dynamically adaptive wavelet method.
Share