Articles | Volume 8, issue 11
Geosci. Model Dev., 8, 3715–3731, 2015
https://doi.org/10.5194/gmd-8-3715-2015
Geosci. Model Dev., 8, 3715–3731, 2015
https://doi.org/10.5194/gmd-8-3715-2015
Model description paper
18 Nov 2015
Model description paper | 18 Nov 2015

The Explicit Wake Parametrisation V1.0: a wind farm parametrisation in the mesoscale model WRF

P. J. H. Volker et al.

Related authors

Applications of satellite winds for the offshore wind farm site Anholt
Tobias Ahsbahs, Merete Badger, Patrick Volker, Kurt S. Hansen, and Charlotte B. Hasager
Wind Energ. Sci., 3, 573–588, https://doi.org/10.5194/wes-3-573-2018,https://doi.org/10.5194/wes-3-573-2018, 2018
Short summary

Related subject area

Atmospheric sciences
Atmospherically Relevant Chemistry and Aerosol box model – ARCA box (version 1.2)
Petri Clusius, Carlton Xavier, Lukas Pichelstorfer, Putian Zhou, Tinja Olenius, Pontus Roldin, and Michael Boy
Geosci. Model Dev., 15, 7257–7286, https://doi.org/10.5194/gmd-15-7257-2022,https://doi.org/10.5194/gmd-15-7257-2022, 2022
Short summary
MultilayerPy (v1.0): a Python-based framework for building, running and optimising kinetic multi-layer models of aerosols and films
Adam Milsom, Amy Lees, Adam M. Squires, and Christian Pfrang
Geosci. Model Dev., 15, 7139–7151, https://doi.org/10.5194/gmd-15-7139-2022,https://doi.org/10.5194/gmd-15-7139-2022, 2022
Short summary
Introduction of the DISAMAR radiative transfer model: determining instrument specifications and analysing methods for atmospheric retrieval (version 4.1.5)
Johan F. de Haan, Ping Wang, Maarten Sneep, J. Pepijn Veefkind, and Piet Stammes
Geosci. Model Dev., 15, 7031–7050, https://doi.org/10.5194/gmd-15-7031-2022,https://doi.org/10.5194/gmd-15-7031-2022, 2022
Short summary
Assessment of the data assimilation framework for the Rapid Refresh Forecast System v0.1 and impacts on forecasts of a convective storm case study
Ivette H. Banos, Will D. Mayfield, Guoqing Ge, Luiz F. Sapucci, Jacob R. Carley, and Louisa Nance
Geosci. Model Dev., 15, 6891–6917, https://doi.org/10.5194/gmd-15-6891-2022,https://doi.org/10.5194/gmd-15-6891-2022, 2022
Short summary
Downscaling atmospheric chemistry simulations with physically consistent deep learning
Andrew Geiss, Sam J. Silva, and Joseph C. Hardin
Geosci. Model Dev., 15, 6677–6694, https://doi.org/10.5194/gmd-15-6677-2022,https://doi.org/10.5194/gmd-15-6677-2022, 2022
Short summary

Cited articles

Abkar, M. and Porté-Agel, F.: A new wind-farm parameterization for large-scale atmospheric models, J. Renewable Sustainable Energy, 7, 013121, https://doi.org/10.1063/1.4907600, 2015.
Adams, A. S. and Keith. D. W.: A wind farm parametrization for WRF, 8th WRF Users Workshop, 11–15 June 2007, Boulder, abstract 5.5, available at: http://www2.mmm.ucar.edu/wrf/users/workshops/WS2007/abstracts/5-5_Adams.pdf, 2007.
Badger, J., Volker, P. J. H., Prospathospoulos, J., Sieros, G., Ott, S., Rethore, P.-E., Hahmann, A. N., and Hasager, C. B.: Wake modelling combining mesoscale and microscale modelsm, in: Proceedings of ICOWES, Technical University of Denmark, 17–19 June 2013, Lyngby, p. 182–193, available at: http://indico.conferences.dtu.dk/getFile.py/access?resId=0&materialId=paper&confId=126, 2013.
Baidya Roy, S.: Simulating impacts of wind farms on local hydrometeorology, J. Wind Eng. Ind. Aerod., 99, 491–498, 2011.
Baidya Roy, S. and Traiteur, J. J.: Impact of wind farms on surface air temperature, P. Natl. Acad. Sci. USA, 107, 17899–17904, 2010.
Download
Short summary
We introduce the Explicit Wake Parametrisation (EWP) for wind farms in mesoscale models that accounts for the wake expansion within a turbine-containing cell. In the EWP approach, turbulence kinetic energy (TKE) production results from changes in vertical shear. The velocity recovery compares well to mast data downstream of the offshore wind farm Horns Rev I. The vertical structure of the TKE and the velocity profile are qualitatively similar to that simulated with large eddy simulations.