Articles | Volume 8, issue 11
Geosci. Model Dev., 8, 3695–3713, 2015
https://doi.org/10.5194/gmd-8-3695-2015
Geosci. Model Dev., 8, 3695–3713, 2015
https://doi.org/10.5194/gmd-8-3695-2015
Development and technical paper
17 Nov 2015
Development and technical paper | 17 Nov 2015

A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP)

N. Kljun et al.

Related authors

Spatial and temporal variation of 13C signature of methane emitted from a temperate mire: Methanogenesis, methanotrophy, and hysteresis
Janne Rinne, Patryk Łakomiec, Patrik Vestin, Joel D. White, Per Weslien, Julia Kelly, Natascha Kljun, Lena Ström, and Leif Klemedtsson
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-76,https://doi.org/10.5194/bg-2022-76, 2022
Preprint under review for BG
Short summary
Real-world wintertime CO, N2O and CO2 emissions of a Central European village
László Haszpra, Zoltán Barcza, Zita Ferenczi, Anikó Kern, and Natascha Kljun
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-39,https://doi.org/10.5194/amt-2022-39, 2022
Preprint under review for AMT
Short summary
Field-scale CH4 emission at a subarctic mire with heterogeneous permafrost thaw status
Patryk Łakomiec, Jutta Holst, Thomas Friborg, Patrick Crill, Niklas Rakos, Natascha Kljun, Per-Ola Olsson, Lars Eklundh, Andreas Persson, and Janne Rinne
Biogeosciences, 18, 5811–5830, https://doi.org/10.5194/bg-18-5811-2021,https://doi.org/10.5194/bg-18-5811-2021, 2021
Short summary
Methane efflux from an American bison herd
Paul C. Stoy, Adam A. Cook, John E. Dore, Natascha Kljun, William Kleindl, E. N. Jack Brookshire, and Tobias Gerken
Biogeosciences, 18, 961–975, https://doi.org/10.5194/bg-18-961-2021,https://doi.org/10.5194/bg-18-961-2021, 2021
Short summary
Technical note: Dynamic INtegrated Gap-filling and partitioning for OzFlux (DINGO)
Jason Beringer, Ian McHugh, Lindsay B. Hutley, Peter Isaac, and Natascha Kljun
Biogeosciences, 14, 1457–1460, https://doi.org/10.5194/bg-14-1457-2017,https://doi.org/10.5194/bg-14-1457-2017, 2017
Short summary

Related subject area

Biogeosciences
ECOSMO II(CHL): a marine biogeochemical model for the North Atlantic and the Arctic
Veli Çağlar Yumruktepe, Annette Samuelsen, and Ute Daewel
Geosci. Model Dev., 15, 3901–3921, https://doi.org/10.5194/gmd-15-3901-2022,https://doi.org/10.5194/gmd-15-3901-2022, 2022
Short summary
Water Ecosystems Tool (WET) 1.0 – a new generation of flexible aquatic ecosystem model
Nicolas Azaña Schnedler-Meyer, Tobias Kuhlmann Andersen, Fenjuan Rose Schmidt Hu, Karsten Bolding, Anders Nielsen, and Dennis Trolle
Geosci. Model Dev., 15, 3861–3878, https://doi.org/10.5194/gmd-15-3861-2022,https://doi.org/10.5194/gmd-15-3861-2022, 2022
Short summary
Development of an open-source regional data assimilation system in PEcAn v. 1.7.2: application to carbon cycle reanalysis across the contiguous US using SIPNET
Hamze Dokoohaki, Bailey D. Morrison, Ann Raiho, Shawn P. Serbin, Katie Zarada, Luke Dramko, and Michael Dietze
Geosci. Model Dev., 15, 3233–3252, https://doi.org/10.5194/gmd-15-3233-2022,https://doi.org/10.5194/gmd-15-3233-2022, 2022
Short summary
Predicting global terrestrial biomes with the LeNet convolutional neural network
Hisashi Sato and Takeshi Ise
Geosci. Model Dev., 15, 3121–3132, https://doi.org/10.5194/gmd-15-3121-2022,https://doi.org/10.5194/gmd-15-3121-2022, 2022
Short summary
KGML-ag: a modeling framework of knowledge-guided machine learning to simulate agroecosystems: a case study of estimating N2O emission using data from mesocosm experiments
Licheng Liu, Shaoming Xu, Jinyun Tang, Kaiyu Guan, Timothy J. Griffis, Matthew D. Erickson, Alexander L. Frie, Xiaowei Jia, Taegon Kim, Lee T. Miller, Bin Peng, Shaowei Wu, Yufeng Yang, Wang Zhou, Vipin Kumar, and Zhenong Jin
Geosci. Model Dev., 15, 2839–2858, https://doi.org/10.5194/gmd-15-2839-2022,https://doi.org/10.5194/gmd-15-2839-2022, 2022
Short summary

Cited articles

Aubinet, M., Chermanne, B., Vandenhaute, M., Longdoz, B., Yernaux, M., and Laitat, E.: Long Term Carbon Dioxide Exchange Above a Mixed Forest in the Belgian Ardennes, Agr. Forest Meteorol., 108, 293–315, 2001.
Baldocchi, D.: Flux Footprints Within and Over Forest Canopies, Bound.-Lay. Meteorol., 85, 273–292, 1997.
Barcza, Z., Kern, A., Haszpra, L., and Kljun, N.: Spatial Representativeness of Tall Tower Eddy Covariance Measurements Using Remote Sensing and Footprint Analysis, Agr. Forest Meteorol., 149, 795–807, 2009.
Batchvarova, E. and Gryning, S.-E.: Applied Model for the Growth of the Daytime Mixed Layer, Bound.-Lay. Meteorol., 56, 261–274, 1991.
Chang, J. C. and Hanna, S. R.: Air Quality Model Performance Evaluation, Meteorol. Atmos. Phys., 87, 167–196, 2004.
Download
Short summary
Flux footprint models describe the surface area of influence of a flux measurement. They are used for designing flux tower sites, and for interpretation of flux measurements. The two-dimensional footprint parameterisation (FFP) presented here is suitable for processing large data sets, and, unlike other fast footprint models, FFP is applicable to daytime or night-time measurements, fluxes from short masts over grassland to tall towers over mature forests, and even to airborne flux measurements.