Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.240 IF 5.240
  • IF 5-year value: 5.768 IF 5-year
    5.768
  • CiteScore value: 8.9 CiteScore
    8.9
  • SNIP value: 1.713 SNIP 1.713
  • IPP value: 5.53 IPP 5.53
  • SJR value: 3.18 SJR 3.18
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 71 Scimago H
    index 71
  • h5-index value: 51 h5-index 51
Volume 8, issue 11
Geosci. Model Dev., 8, 3695–3713, 2015
https://doi.org/10.5194/gmd-8-3695-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Geosci. Model Dev., 8, 3695–3713, 2015
https://doi.org/10.5194/gmd-8-3695-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Development and technical paper 17 Nov 2015

Development and technical paper | 17 Nov 2015

A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP)

N. Kljun et al.

Related authors

Technical note: Dynamic INtegrated Gap-filling and partitioning for OzFlux (DINGO)
Jason Beringer, Ian McHugh, Lindsay B. Hutley, Peter Isaac, and Natascha Kljun
Biogeosciences, 14, 1457–1460, https://doi.org/10.5194/bg-14-1457-2017,https://doi.org/10.5194/bg-14-1457-2017, 2017
Short summary
Carbon uptake and water use in woodlands and forests in southern Australia during an extreme heat wave event in the “Angry Summer” of 2012/2013
Eva van Gorsel, Sebastian Wolf, James Cleverly, Peter Isaac, Vanessa Haverd, Cäcilia Ewenz, Stefan Arndt, Jason Beringer, Víctor Resco de Dios, Bradley J. Evans, Anne Griebel, Lindsay B. Hutley, Trevor Keenan, Natascha Kljun, Craig Macfarlane, Wayne S. Meyer, Ian McHugh, Elise Pendall, Suzanne M. Prober, and Richard Silberstein
Biogeosciences, 13, 5947–5964, https://doi.org/10.5194/bg-13-5947-2016,https://doi.org/10.5194/bg-13-5947-2016, 2016
Short summary

Related subject area

Biogeosciences
HR3DHG version 1: modeling the spatiotemporal dynamics of mercury in the Augusta Bay (southern Italy)
Giovanni Denaro, Daniela Salvagio Manta, Alessandro Borri, Maria Bonsignore, Davide Valenti, Enza Quinci, Andrea Cucco, Bernardo Spagnolo, Mario Sprovieri, and Andrea De Gaetano
Geosci. Model Dev., 13, 2073–2093, https://doi.org/10.5194/gmd-13-2073-2020,https://doi.org/10.5194/gmd-13-2073-2020, 2020
Short summary
BPOP-v1 model: exploring the impact of changes in the biological pump on the shelf sea and ocean nutrient and redox state
Elisa Lovecchio and Timothy M. Lenton
Geosci. Model Dev., 13, 1865–1883, https://doi.org/10.5194/gmd-13-1865-2020,https://doi.org/10.5194/gmd-13-1865-2020, 2020
Short summary
P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production
Benjamin D. Stocker, Han Wang, Nicholas G. Smith, Sandy P. Harrison, Trevor F. Keenan, David Sandoval, Tyler Davis, and I. Colin Prentice
Geosci. Model Dev., 13, 1545–1581, https://doi.org/10.5194/gmd-13-1545-2020,https://doi.org/10.5194/gmd-13-1545-2020, 2020
Short summary
HETEROFOR 1.0: a spatially explicit model for exploring the response of structurally complex forests to uncertain future conditions – Part 2: Phenology and water cycle
Louis de Wergifosse, Frédéric André, Nicolas Beudez, François de Coligny, Hugues Goosse, François Jonard, Quentin Ponette, Hugues Titeux, Caroline Vincke, and Mathieu Jonard
Geosci. Model Dev., 13, 1459–1498, https://doi.org/10.5194/gmd-13-1459-2020,https://doi.org/10.5194/gmd-13-1459-2020, 2020
Short summary
Dynamic upscaling of decomposition kinetics for carbon cycling models
Arjun Chakrawal, Anke M. Herrmann, John Koestel, Jerker Jarsjö, Naoise Nunan, Thomas Kätterer, and Stefano Manzoni
Geosci. Model Dev., 13, 1399–1429, https://doi.org/10.5194/gmd-13-1399-2020,https://doi.org/10.5194/gmd-13-1399-2020, 2020
Short summary

Cited articles

Aubinet, M., Chermanne, B., Vandenhaute, M., Longdoz, B., Yernaux, M., and Laitat, E.: Long Term Carbon Dioxide Exchange Above a Mixed Forest in the Belgian Ardennes, Agr. Forest Meteorol., 108, 293–315, 2001.
Baldocchi, D.: Flux Footprints Within and Over Forest Canopies, Bound.-Lay. Meteorol., 85, 273–292, 1997.
Barcza, Z., Kern, A., Haszpra, L., and Kljun, N.: Spatial Representativeness of Tall Tower Eddy Covariance Measurements Using Remote Sensing and Footprint Analysis, Agr. Forest Meteorol., 149, 795–807, 2009.
Batchvarova, E. and Gryning, S.-E.: Applied Model for the Growth of the Daytime Mixed Layer, Bound.-Lay. Meteorol., 56, 261–274, 1991.
Chang, J. C. and Hanna, S. R.: Air Quality Model Performance Evaluation, Meteorol. Atmos. Phys., 87, 167–196, 2004.
Publications Copernicus
Download
Short summary
Flux footprint models describe the surface area of influence of a flux measurement. They are used for designing flux tower sites, and for interpretation of flux measurements. The two-dimensional footprint parameterisation (FFP) presented here is suitable for processing large data sets, and, unlike other fast footprint models, FFP is applicable to daytime or night-time measurements, fluxes from short masts over grassland to tall towers over mature forests, and even to airborne flux measurements.
Flux footprint models describe the surface area of influence of a flux measurement. They are...
Citation