Articles | Volume 8, issue 11
https://doi.org/10.5194/gmd-8-3639-2015
https://doi.org/10.5194/gmd-8-3639-2015
Model description paper
 | 
06 Nov 2015
Model description paper |  | 06 Nov 2015

S4CAST v2.0: sea surface temperature based statistical seasonal forecast model

R. Suárez-Moreno and B. Rodríguez-Fonseca

Related authors

Spy4Cast v1.0: a Python Tool for statistical seasonal forecast based on Maximum Covariance Analysis
Pablo Duran-Fonseca and Belén Rodríguez-Fonseca
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-164,https://doi.org/10.5194/gmd-2024-164, 2024
Preprint under review for GMD
Short summary
NN4CAST: An end-to-end deep learning application for seasonal climate forecasts
Víctor Galván Fraile, Belén Rodríguez-Fonseca, Irene Polo, Marta Martín-Rey, and María N. Moreno-García
EGUsphere, https://doi.org/10.5194/egusphere-2024-2897,https://doi.org/10.5194/egusphere-2024-2897, 2024
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary

Related subject area

Climate and Earth system modeling
The very-high-resolution configuration of the EC-Earth global model for HighResMIP
Eduardo Moreno-Chamarro, Thomas Arsouze, Mario Acosta, Pierre-Antoine Bretonnière, Miguel Castrillo, Eric Ferrer, Amanda Frigola, Daria Kuznetsova, Eneko Martin-Martinez, Pablo Ortega, and Sergi Palomas
Geosci. Model Dev., 18, 461–482, https://doi.org/10.5194/gmd-18-461-2025,https://doi.org/10.5194/gmd-18-461-2025, 2025
Short summary
GOSI9: UK Global Ocean and Sea Ice configurations
Catherine Guiavarc'h, David Storkey, Adam T. Blaker, Ed Blockley, Alex Megann, Helene Hewitt, Michael J. Bell, Daley Calvert, Dan Copsey, Bablu Sinha, Sophia Moreton, Pierre Mathiot, and Bo An
Geosci. Model Dev., 18, 377–403, https://doi.org/10.5194/gmd-18-377-2025,https://doi.org/10.5194/gmd-18-377-2025, 2025
Short summary
Decomposition of skill scores for conditional verification: impact of Atlantic Multidecadal Oscillation phases on the predictability of decadal temperature forecasts
Andy Richling, Jens Grieger, and Henning W. Rust
Geosci. Model Dev., 18, 361–375, https://doi.org/10.5194/gmd-18-361-2025,https://doi.org/10.5194/gmd-18-361-2025, 2025
Short summary
Virtual Integration of Satellite and In-situ Observation Networks (VISION) v1.0: In-Situ Observations Simulator (ISO_simulator)
Maria R. Russo, Sadie L. Bartholomew, David Hassell, Alex M. Mason, Erica Neininger, A. James Perman, David A. J. Sproson, Duncan Watson-Parris, and Nathan Luke Abraham
Geosci. Model Dev., 18, 181–191, https://doi.org/10.5194/gmd-18-181-2025,https://doi.org/10.5194/gmd-18-181-2025, 2025
Short summary
Climate model downscaling in central Asia: a dynamical and a neural network approach
Bijan Fallah, Masoud Rostami, Emmanuele Russo, Paula Harder, Christoph Menz, Peter Hoffmann, Iulii Didovets, and Fred F. Hattermann
Geosci. Model Dev., 18, 161–180, https://doi.org/10.5194/gmd-18-161-2025,https://doi.org/10.5194/gmd-18-161-2025, 2025
Short summary

Cited articles

Adams, R. M., Chen, C. C., McCarl, B. A., and Weiher, R. F.: The economic consequences of ENSO events for agriculture, Clim. Res., 13, 165–172, 1999.
Ault, T. R., Cole, J. E., and St George, S.: The amplitude of decadal to multidecadal variability in precipitation simulated by state-of-the-art climate models, Geophys. Res. Lett., 39, L21705, https://doi.org/10.1029/2012GL053424, 2012.
Baboo, S. S. and Shereef, I. K.: An efficient weather forecasting system using artificial neural network, International Journal of Environmental Science and Development, 1, 2010–0264, 2010.
Barnett, T. P.: Monte Carlo climate forecasting, J. Climate, 8, 1005–1022, 1995.
Barnett, T. P. and Preisendorfer, R.: Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis, Mon. Weather Rev., 115, 1825–1850, 1987.
Download
Short summary
The non-stationary links between sea surface temperature and global atmospheric circulation have served to create the S⁴CAST model. Here we describe the model, based on a statistical tool to be focused on the study of teleconnections and predictability of any climate-related variable that keeps a link with sea surface temperature. Due to its intuitive operation and free availability of the code, the model can be used both to supplement general circulation models and in a purely academic context.