Articles | Volume 8, issue 7
Geosci. Model Dev., 8, 2329–2353, 2015
https://doi.org/10.5194/gmd-8-2329-2015
Geosci. Model Dev., 8, 2329–2353, 2015
https://doi.org/10.5194/gmd-8-2329-2015

Methods for assessment of models 31 Jul 2015

Methods for assessment of models | 31 Jul 2015

Three-dimensional visualization of ensemble weather forecasts – Part 1: The visualization tool Met.3D (version 1.0)

M. Rautenhaus et al.

Related authors

A novel method for objective identification of 3-D potential vorticity anomalies
Christoph Fischer, Andreas H. Fink, Elmar Schömer, Roderick van der Linden, Michael Maier-Gerber, Marc Rautenhaus, and Michael Riemer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-424,https://doi.org/10.5194/gmd-2021-424, 2022
Preprint under review for GMD
Short summary
Interactive 3-D visual analysis of ERA5 data: improving diagnostic indices for marine cold air outbreaks and polar lows
Marcel Meyer, Iuliia Polkova, Kameswar Rao Modali, Laura Schaffer, Johanna Baehr, Stephan Olbrich, and Marc Rautenhaus
Weather Clim. Dynam., 2, 867–891, https://doi.org/10.5194/wcd-2-867-2021,https://doi.org/10.5194/wcd-2-867-2021, 2021
Short summary
Three-dimensional visualization of ensemble weather forecasts – Part 2: Forecasting warm conveyor belt situations for aircraft-based field campaigns
M. Rautenhaus, C. M. Grams, A. Schäfler, and R. Westermann
Geosci. Model Dev., 8, 2355–2377, https://doi.org/10.5194/gmd-8-2355-2015,https://doi.org/10.5194/gmd-8-2355-2015, 2015
Short summary

Related subject area

Atmospheric sciences
WOMBAT v1.0: a fully Bayesian global flux-inversion framework
Andrew Zammit-Mangion, Michael Bertolacci, Jenny Fisher, Ann Stavert, Matthew Rigby, Yi Cao, and Noel Cressie
Geosci. Model Dev., 15, 45–73, https://doi.org/10.5194/gmd-15-45-2022,https://doi.org/10.5194/gmd-15-45-2022, 2022
Short summary
Analysis of the MODIS above-cloud aerosol retrieval algorithm using MCARS
Galina Wind, Arlindo M. da Silva, Kerry G. Meyer, Steven Platnick, and Peter M. Norris
Geosci. Model Dev., 15, 1–14, https://doi.org/10.5194/gmd-15-1-2022,https://doi.org/10.5194/gmd-15-1-2022, 2022
Short summary
How well can inverse analyses of high-resolution satellite data resolve heterogeneous methane fluxes? Observing system simulation experiments with the GEOS-Chem adjoint model (v35)
Xueying Yu, Dylan B. Millet, and Daven K. Henze
Geosci. Model Dev., 14, 7775–7793, https://doi.org/10.5194/gmd-14-7775-2021,https://doi.org/10.5194/gmd-14-7775-2021, 2021
Short summary
Reduced-complexity air quality intervention modeling over China: the development of InMAPv1.6.1-China and a comparison with CMAQv5.2
Ruili Wu, Christopher W. Tessum, Yang Zhang, Chaopeng Hong, Yixuan Zheng, Xinyin Qin, Shigan Liu, and Qiang Zhang
Geosci. Model Dev., 14, 7621–7638, https://doi.org/10.5194/gmd-14-7621-2021,https://doi.org/10.5194/gmd-14-7621-2021, 2021
Short summary
High-resolution modeling of the distribution of surface air pollutants and their intercontinental transport by a global tropospheric atmospheric chemistry source–receptor model (GNAQPMS-SM)
Qian Ye, Jie Li, Xueshun Chen, Huansheng Chen, Wenyi Yang, Huiyun Du, Xiaole Pan, Xiao Tang, Wei Wang, Lili Zhu, Jianjun Li, Zhe Wang, and Zifa Wang
Geosci. Model Dev., 14, 7573–7604, https://doi.org/10.5194/gmd-14-7573-2021,https://doi.org/10.5194/gmd-14-7573-2021, 2021
Short summary

Cited articles

Abram, G. and Treinish, L.: An Extended Data-Flow Architecture for Data Analysis and Visualization, in: Proceedings of the 6th Conference on Visualization '95, VIS '95, IEEE Computer Society, Washington, DC, USA, 1995.
Alpert, J. C.: 3-dimensional animated displays for sifting out medium range weather events, in: 19th Conference on IIPS, 9–13 February 2003, Long Beach, California, 2003.
Bailey, M.: Using GPU shaders for visualization, IEEE Comput. Graph., 29, 96–100, 2009.
Bailey, M.: Using GPU shaders for visualization, Part 2, IEEE Comput. Graph., 31, 67–73, 2011.
Bailey, M.: Using GPU shaders for visualization, Part 3, IEEE Comput. Graph., 33, 5–11, 2013.
Short summary
This article presents "Met.3D", a new open-source tool for the interactive 3D visualization of numerical ensemble weather predictions. Met.3D builds a bridge from proven 2D visualization methods commonly used in meteorology to 3D visualization and implements approaches to using the ensemble to allow the user to assess forecast uncertainty. The article is the first part of a two-paper study discussing how 3D and ensemble visualization can be used in a meaningful way suited to weather forecasting.