Articles | Volume 8, issue 7
https://doi.org/10.5194/gmd-8-2329-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gmd-8-2329-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Three-dimensional visualization of ensemble weather forecasts – Part 1: The visualization tool Met.3D (version 1.0)
Computer Graphics & Visualization Group, Technische Universität München, Garching, Germany
M. Kern
Computer Graphics & Visualization Group, Technische Universität München, Garching, Germany
A. Schäfler
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
R. Westermann
Computer Graphics & Visualization Group, Technische Universität München, Garching, Germany
Related authors
Christoph Neuhauser, Maicon Hieronymus, Michael Kern, Marc Rautenhaus, Annika Oertel, and Rüdiger Westermann
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-27, https://doi.org/10.5194/gmd-2023-27, 2023
Preprint under review for GMD
Short summary
Short summary
Numerical weather prediction models rely on parameterizations for sub-grid scale processes, which represent a source of uncertainty. We present novel visual analytics solutions to analyze interactively the sensitivities of a selected prognostic variable to multiple model parameters along trajectories wrt. similarities in temporal development and spatio-temporal relationships. The proposed workflow is applied to cloud microphysical sensitivities along coherent strongly ascending trajectories.
Andreas A. Beckert, Lea Eisenstein, Annika Oertel, Tim Hewson, George C. Craig, and Marc Rautenhaus
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-278, https://doi.org/10.5194/gmd-2022-278, 2023
Revised manuscript under review for GMD
Short summary
Short summary
This study revises and extends a previously presented three-dimensional (3-D) objective front detection method and demonstrates its benefits to analyse weather dynamics in numerical simulation data. Based on two case studies of extratropical cyclones, we illustrate the benefits of interactive front detection in joint analysis of fronts and warm conveyor belt trajectories, and the identification of characteristic frontal structures of Shapiro-Keyser cyclones.
Andreas Alexander Beckert, Lea Eisenstein, Annika Oertel, Timothy Hewson, George C. Craig, and Marc Rautenhaus
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2022-36, https://doi.org/10.5194/wcd-2022-36, 2022
Preprint withdrawn
Short summary
Short summary
This study revises and extends a previously presented 3-D objective front detection method and demonstrates its benefits to analyse weather dynamics in numerical simulation data. Based on two case studies of extratropical cyclones, we demonstrate the evaluation of conceptual models from dynamic meteorology, illustrate the benefits of our interactive analysis approach by comparing fronts in data with different model resolutions, and study the impact of convection on fronts.
Christoph Fischer, Andreas H. Fink, Elmar Schömer, Roderick van der Linden, Michael Maier-Gerber, Marc Rautenhaus, and Michael Riemer
Geosci. Model Dev., 15, 4447–4468, https://doi.org/10.5194/gmd-15-4447-2022, https://doi.org/10.5194/gmd-15-4447-2022, 2022
Short summary
Short summary
Potential vorticity (PV) analysis plays a central role in studying atmospheric dynamics. For example, anomalies in the PV field near the tropopause are linked to extreme weather events. In this study, an objective strategy to identify these anomalies is presented and evaluated. As a novel concept, it can be applied to three-dimensional (3-D) data sets. Supported by 3-D visualizations, we illustrate advantages of this new analysis over existing studies along a case study.
Marcel Meyer, Iuliia Polkova, Kameswar Rao Modali, Laura Schaffer, Johanna Baehr, Stephan Olbrich, and Marc Rautenhaus
Weather Clim. Dynam., 2, 867–891, https://doi.org/10.5194/wcd-2-867-2021, https://doi.org/10.5194/wcd-2-867-2021, 2021
Short summary
Short summary
Novel techniques from computer science are used to study extreme weather events. Inspired by the interactive 3-D visual analysis of the recently released ERA5 reanalysis data, we improve commonly used metrics for measuring polar winter storms and outbreaks of cold air. The software (Met.3D) that we have extended and applied as part of this study is freely available and can be used generically for 3-D visualization of a broad variety of atmospheric processes in weather and climate data.
M. Rautenhaus, C. M. Grams, A. Schäfler, and R. Westermann
Geosci. Model Dev., 8, 2355–2377, https://doi.org/10.5194/gmd-8-2355-2015, https://doi.org/10.5194/gmd-8-2355-2015, 2015
Short summary
Short summary
This article presents the application of interactive 3D visualization of ensemble
weather predictions to forecasting warm conveyor belt situations during aircraft-based atmospheric research campaigns. A method to predict 3D probabilities of the spatial occurrence of WCBs is developed and integrated into the 3D visualization tool "Met.3D", introduced in the first part of this two-paper study. A case study demonstrates the use of 3D and uncertainty visualization for weather forecasting.
Christoph Neuhauser, Maicon Hieronymus, Michael Kern, Marc Rautenhaus, Annika Oertel, and Rüdiger Westermann
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-27, https://doi.org/10.5194/gmd-2023-27, 2023
Preprint under review for GMD
Short summary
Short summary
Numerical weather prediction models rely on parameterizations for sub-grid scale processes, which represent a source of uncertainty. We present novel visual analytics solutions to analyze interactively the sensitivities of a selected prognostic variable to multiple model parameters along trajectories wrt. similarities in temporal development and spatio-temporal relationships. The proposed workflow is applied to cloud microphysical sensitivities along coherent strongly ascending trajectories.
Andreas Schäfler, Michael Sprenger, Heini Wernli, Andreas Fix, and Martin Wirth
Atmos. Chem. Phys., 23, 999–1018, https://doi.org/10.5194/acp-23-999-2023, https://doi.org/10.5194/acp-23-999-2023, 2023
Short summary
Short summary
In this study, airborne lidar profile measurements of H2O and O3 across a midlatitude jet stream are combined with analyses in tracer–trace space and backward trajectories. We highlight that transport and mixing processes in the history of the observed air masses are governed by interacting tropospheric weather systems on synoptic timescales. We show that these weather systems play a key role in the high variability of the paired H2O and O3 distributions near the tropopause.
Andreas A. Beckert, Lea Eisenstein, Annika Oertel, Tim Hewson, George C. Craig, and Marc Rautenhaus
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-278, https://doi.org/10.5194/gmd-2022-278, 2023
Revised manuscript under review for GMD
Short summary
Short summary
This study revises and extends a previously presented three-dimensional (3-D) objective front detection method and demonstrates its benefits to analyse weather dynamics in numerical simulation data. Based on two case studies of extratropical cyclones, we illustrate the benefits of interactive front detection in joint analysis of fronts and warm conveyor belt trajectories, and the identification of characteristic frontal structures of Shapiro-Keyser cyclones.
Konstantin Krüger, Andreas Schäfler, Martin Wirth, Martin Weissmann, and George C. Craig
Atmos. Chem. Phys., 22, 15559–15577, https://doi.org/10.5194/acp-22-15559-2022, https://doi.org/10.5194/acp-22-15559-2022, 2022
Short summary
Short summary
A comprehensive data set of airborne lidar water vapour profiles is compared with ERA5 reanalyses for a robust characterization of the vertical structure of the mid-latitude lower-stratospheric moist bias. We confirm a moist bias of up to 55 % at 1.3 km altitude above the tropopause and uncover a decreasing bias beyond. Collocated O3 and H2O observations reveal a particularly strong bias in the mixing layer, indicating insufficiently modelled transport processes fostering the bias.
Benjamin Witschas, Christian Lemmerz, Alexander Geiß, Oliver Lux, Uwe Marksteiner, Stephan Rahm, Oliver Reitebuch, Andreas Schäfler, and Fabian Weiler
Atmos. Meas. Tech., 15, 7049–7070, https://doi.org/10.5194/amt-15-7049-2022, https://doi.org/10.5194/amt-15-7049-2022, 2022
Short summary
Short summary
In August 2018, the first wind lidar Aeolus was launched into space and has since then been providing data of the global wind field. The primary goal of Aeolus was the improvement of numerical weather prediction. To verify the quality of Aeolus wind data, DLR performed four airborne validation campaigns with two wind lidar systems. In this paper, we report on results from the two later campaigns, performed in Iceland and the tropics.
Oliver Lux, Benjamin Witschas, Alexander Geiß, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Stephan Rahm, Andreas Schäfler, and Oliver Reitebuch
Atmos. Meas. Tech., 15, 6467–6488, https://doi.org/10.5194/amt-15-6467-2022, https://doi.org/10.5194/amt-15-6467-2022, 2022
Short summary
Short summary
We discuss the influence of different quality control schemes on the results of Aeolus wind product validation and present statistical tools for ensuring consistency and comparability among diverse validation studies with regard to the specific error characteristics of the Rayleigh-clear and Mie-cloudy winds. The developed methods are applied for the validation of Aeolus winds against an ECMWF model background and airborne wind lidar data from the Joint Aeolus Tropical Atlantic Campaign.
Andreas Alexander Beckert, Lea Eisenstein, Annika Oertel, Timothy Hewson, George C. Craig, and Marc Rautenhaus
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2022-36, https://doi.org/10.5194/wcd-2022-36, 2022
Preprint withdrawn
Short summary
Short summary
This study revises and extends a previously presented 3-D objective front detection method and demonstrates its benefits to analyse weather dynamics in numerical simulation data. Based on two case studies of extratropical cyclones, we demonstrate the evaluation of conceptual models from dynamic meteorology, illustrate the benefits of our interactive analysis approach by comparing fronts in data with different model resolutions, and study the impact of convection on fronts.
Christoph Fischer, Andreas H. Fink, Elmar Schömer, Roderick van der Linden, Michael Maier-Gerber, Marc Rautenhaus, and Michael Riemer
Geosci. Model Dev., 15, 4447–4468, https://doi.org/10.5194/gmd-15-4447-2022, https://doi.org/10.5194/gmd-15-4447-2022, 2022
Short summary
Short summary
Potential vorticity (PV) analysis plays a central role in studying atmospheric dynamics. For example, anomalies in the PV field near the tropopause are linked to extreme weather events. In this study, an objective strategy to identify these anomalies is presented and evaluated. As a novel concept, it can be applied to three-dimensional (3-D) data sets. Supported by 3-D visualizations, we illustrate advantages of this new analysis over existing studies along a case study.
Oliver Lux, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Benjamin Witschas, Stephan Rahm, Alexander Geiß, Andreas Schäfler, and Oliver Reitebuch
Atmos. Meas. Tech., 15, 1303–1331, https://doi.org/10.5194/amt-15-1303-2022, https://doi.org/10.5194/amt-15-1303-2022, 2022
Short summary
Short summary
The article discusses modifications in the wind retrieval of the ALADIN Airborne Demonstrator (A2D) – one of the key instruments for the validation of Aeolus. Thanks to the retrieval refinements, which are demonstrated in the context of two airborne campaigns in 2019, the systematic and random wind errors of the A2D were significantly reduced, thereby enhancing its validation capabilities. Finally, wind comparisons between A2D and Aeolus for the validation of the satellite data are presented.
Marcel Meyer, Iuliia Polkova, Kameswar Rao Modali, Laura Schaffer, Johanna Baehr, Stephan Olbrich, and Marc Rautenhaus
Weather Clim. Dynam., 2, 867–891, https://doi.org/10.5194/wcd-2-867-2021, https://doi.org/10.5194/wcd-2-867-2021, 2021
Short summary
Short summary
Novel techniques from computer science are used to study extreme weather events. Inspired by the interactive 3-D visual analysis of the recently released ERA5 reanalysis data, we improve commonly used metrics for measuring polar winter storms and outbreaks of cold air. The software (Met.3D) that we have extended and applied as part of this study is freely available and can be used generically for 3-D visualization of a broad variety of atmospheric processes in weather and climate data.
Maxi Boettcher, Andreas Schäfler, Michael Sprenger, Harald Sodemann, Stefan Kaufmann, Christiane Voigt, Hans Schlager, Donato Summa, Paolo Di Girolamo, Daniele Nerini, Urs Germann, and Heini Wernli
Atmos. Chem. Phys., 21, 5477–5498, https://doi.org/10.5194/acp-21-5477-2021, https://doi.org/10.5194/acp-21-5477-2021, 2021
Short summary
Short summary
Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones, often leading to the formation of intense precipitation. We present a case study that involves aircraft, lidar and radar observations of water and clouds in a WCB ascending from western Europe across the Alps towards the Baltic Sea during the field campaigns HyMeX and T-NAWDEX-Falcon in October 2012. A probabilistic trajectory measure and an airborne tracer experiment were used to confirm the long pathway of the WCB.
Andreas Schäfler, Andreas Fix, and Martin Wirth
Atmos. Chem. Phys., 21, 5217–5234, https://doi.org/10.5194/acp-21-5217-2021, https://doi.org/10.5194/acp-21-5217-2021, 2021
Short summary
Short summary
First-ever, collocated ozone and water vapor lidar observations across the tropopause are applied to investigate the extratropical transition layer (ExTL). The combined view of a quasi-instantaneous cross section and its tracer–tracer depiction allows us to analyze the ExTL shape and composition and the formation of mixing lines in relation to the dynamic situation. Such lidar data are relevant for future upper-tropospheric and lower-stratospheric investigations and model validations.
Oliver Lux, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Benjamin Witschas, Stephan Rahm, Andreas Schäfler, and Oliver Reitebuch
Atmos. Meas. Tech., 11, 3297–3322, https://doi.org/10.5194/amt-11-3297-2018, https://doi.org/10.5194/amt-11-3297-2018, 2018
Short summary
Short summary
This work reports airborne wind lidar observations performed in a recent field campaign. The deployed lidar system serves as a demonstrator for the satellite instrument ALADIN on board Aeolus, which is scheduled for launch in 2018 and will become the first wind lidar in space. After presenting the measurement principle, operation procedures and wind retrieval algorithm, the obtained wind results are validated and discussed, providing valuable information in preparation for the satellite mission.
Benedikt Urbanek, Silke Groß, Andreas Schäfler, and Martin Wirth
Atmos. Meas. Tech., 10, 1653–1664, https://doi.org/10.5194/amt-10-1653-2017, https://doi.org/10.5194/amt-10-1653-2017, 2017
Short summary
Short summary
Cirrus evolution from nucleation to cloud breakup can be investigated with a novel classification scheme based on airborne lidar data. Applying it to a case study from the ML-CIRRUS campaign, we investigate the impact of large-scale dynamics and small-scale gravity lee waves on the detailed spatial distribution of evolution stages in individual clouds. Our scheme may help to gain more insights in optical and radiative properties of cirrus under various formation and life cycle conditions.
Manuel Gutleben, Silke Gross, Martin Wirth, and Andreas Schäfler
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-333, https://doi.org/10.5194/amt-2016-333, 2016
Revised manuscript not accepted
Short summary
Short summary
Shallow marine cumulus convection over the Atlantic ocean is studied with observations by airborne and spaceborne lidar instruments. Cloud top height as well as cloud length and cloud gap length distributions are calculated by use of a newly developed algorithm. The distribution of cloud top heights during wintertime measurements shows a two-layer structure. However, significant differences in cloud top height distributions compared to summertime measurements are found.
Thomas Trickl, Hannes Vogelmann, Andreas Fix, Andreas Schäfler, Martin Wirth, Bertrand Calpini, Gilbert Levrat, Gonzague Romanens, Arnoud Apituley, Keith M. Wilson, Robert Begbie, Jens Reichardt, Holger Vömel, and Michael Sprenger
Atmos. Chem. Phys., 16, 8791–8815, https://doi.org/10.5194/acp-16-8791-2016, https://doi.org/10.5194/acp-16-8791-2016, 2016
Short summary
Short summary
A rather homogeneous deep stratospheric intrusion event was mapped by vertical sounding over central Europe and by model calculations along the transport path. The very low minimum H2O mixing ratios demonstrate almost negligible mixing with tropospheric air during the downward transport. The vertical distributions of O3 and aerosol were transferred from the source region to Europe without major change. A rather shallow outflow from the stratosphere was found.
S. Groß, V. Freudenthaler, K. Schepanski, C. Toledano, A. Schäfler, A. Ansmann, and B. Weinzierl
Atmos. Chem. Phys., 15, 11067–11080, https://doi.org/10.5194/acp-15-11067-2015, https://doi.org/10.5194/acp-15-11067-2015, 2015
Short summary
Short summary
In June and July 2013 dual-wavelength lidar measurements were performed in Barbados to study long-range transported Saharan dust across the Atlantic Ocean and investigate transport-induced changes. The focus of our measurements is the intensive optical properties, the lidar ratio and the particle linear depolarization ratio. While the lidar ratio shows no differences compared to the values of fresh Saharan dust, the particle linear depolarization ratio shows slight differences.
M. Rautenhaus, C. M. Grams, A. Schäfler, and R. Westermann
Geosci. Model Dev., 8, 2355–2377, https://doi.org/10.5194/gmd-8-2355-2015, https://doi.org/10.5194/gmd-8-2355-2015, 2015
Short summary
Short summary
This article presents the application of interactive 3D visualization of ensemble
weather predictions to forecasting warm conveyor belt situations during aircraft-based atmospheric research campaigns. A method to predict 3D probabilities of the spatial occurrence of WCBs is developed and integrated into the 3D visualization tool "Met.3D", introduced in the first part of this two-paper study. A case study demonstrates the use of 3D and uncertainty visualization for weather forecasting.
S. Groß, M. Wirth, A. Schäfler, A. Fix, S. Kaufmann, and C. Voigt
Atmos. Meas. Tech., 7, 2745–2755, https://doi.org/10.5194/amt-7-2745-2014, https://doi.org/10.5194/amt-7-2745-2014, 2014
Related subject area
Atmospheric sciences
Emulating aerosol optics with randomly generated neural networks
Development of an ecophysiology module in the GEOS-Chem chemical transport model version 12.2.0 to represent biosphere–atmosphere fluxes relevant for ozone air quality
Comparison of ozone formation attribution techniques in the northeastern United States
Improving trajectory calculations by FLEXPART 10.4+ using single-image super-resolution
Data fusion uncertainty-enabled methods to map street-scale hourly NO2 in Barcelona: a case study with CALIOPE-Urban v1.0
Forecasting tropical cyclone tracks in the northwestern Pacific based on a deep-learning model
Accelerating models for multiphase chemical kinetics through machine learning with polynomial chaos expansion and neural networks
A machine learning emulator for Lagrangian particle dispersion model footprints: a case study using NAME
Improving the representation of shallow cumulus convection with the simplified-higher-order-closure–mass-flux (SHOC+MF v1.0) approach
ISAT v2.0: an integrated tool for nested-domain configurations and model-ready emission inventories for WRF-AQM
Estimation of CH4 emission based on an advanced 4D-LETKF assimilation system
Accelerated estimation of sea-spray-mediated heat flux using Gaussian quadrature: case studies with a coupled CFSv2.0-WW3 system
AMORE-Isoprene v1.0: a new reduced mechanism for gas-phase isoprene oxidation
A method for generating a quasi-linear convective system suitable for observing system simulation experiments
The second Met Office Unified Model–JULES Regional Atmosphere and Land configuration, RAL2
A dynamic ammonia emission model and the online coupling with WRF–Chem (WRF–SoilN–Chem v1.0): development and regional evaluation in China
SCIATRAN software package (V4.6): update and further development of aerosol, clouds, surface reflectance databases and models
Deep learning models for generation of precipitation maps based on numerical weather prediction
An inconsistency in aviation emissions between CMIP5 and CMIP6 and the implications for short-lived species and their radiative forcing
On the use of Infrared Atmospheric Sounding Interferometer (IASI) spectrally resolved radiances to test the EC-Earth climate model (v3.3.3) in clear-sky conditions
Incorporation of aerosol into the COSPv2 satellite lidar simulator for climate model evaluation
The impact of altering emission data precision on compression efficiency and accuracy of simulations of the community multiscale air quality model
AerSett v1.0: a simple and straightforward model for the settling speed of big spherical atmospheric aerosols
How Does Cloud-Radiative Heating over the North Atlantic Change with Grid Spacing, Convective Parameterization, and Microphysics Scheme?
Optimization of weather forecasting for cloud cover over the European domain using the meteorological component of the Ensemble for Stochastic Integration of Atmospheric Simulations version 1.0
Bayesian transdimensional inverse reconstruction of the Fukushima Daiichi caesium 137 release
Intercomparison of the weather and climate physics suites of a unified forecast/climate model system (GRIST-A22.7.28) based on single column modeling
Implementation of HONO into the chemistry–climate model CHASER (V4.0): roles in tropospheric chemistry
Isoprene and monoterpene simulations using the chemistry–climate model EMAC (v2.55) with interactive vegetation from LPJ-GUESS (v4.0)
A modern-day Mars climate in the Met Office Unified Model: dry simulations
The AirGAM 2022r1 air quality trend and prediction model
Evaluation of a cloudy cold-air pool in the Columbia River basin in different versions of the High-Resolution Rapid Refresh (HRRR) model
Comparing Sentinel-5P TROPOMI NO2 column observations with the CAMS regional air quality ensemble
Cross-evaluating WRF-Chem v4.1.2, TROPOMI, APEX, and in situ NO2 measurements over Antwerp, Belgium
Adapting a deep convolutional RNN model with imbalanced regression loss for improved spatio-temporal forecasting of extreme wind speed events in the short to medium range
Technical descriptions of the experimental dynamical downscaling simulations over North America by the CAM5.4-MPAS4.0 variable-resolution model
Convective Gusts Nowcasting Based on Radar Reflectivity and a Deep Learning Algorithm
ICLASS 1.1, a variational Inverse modelling framework for the Chemistry Land-surface Atmosphere Soil Slab model: description, validation, and application
Towards an improved representation of carbonaceous aerosols over the Indian monsoon region in a regional climate model: RegCM
The E3SM Diagnostics Package (E3SM Diags v2.7): a Python-based diagnostics package for Earth system model evaluation
A method for transporting cloud-resolving model variance in a multiscale modeling framework
The Mission Support System (MSS v7.0.4) and its use in planning for the SouthTRAC aircraft campaign
GENerator of reduced Organic Aerosol mechanism (GENOA v1.0): an automatic generation tool of semi-explicit mechanisms
Representing chemical history in ozone time-series predictions – a model experiment study building on the MLAir (v1.5) deep learning framework
Evaluation of high-resolution predictions of fine particulate matter and its composition in an urban area using PMCAMx-v2.0
A local data assimilation method (Local DA v1.0) and its application in a simulated typhoon case
Updated Isoprene and Terpene Emission Factors for the Interactive BVOC Emission Scheme (iBVOC) in the United Kingdom Earth System Model (UKESM1.0)
Improved advection, resolution, performance, and community access in the new generation (version 13) of the high-performance GEOS-Chem global atmospheric chemistry model (GCHP)
Lightning assimilation in the WRF model (Version 4.1.1): technique updates and assessment of the applications from regional to hemispheric scales
Optimization of snow-related parameters in the Noah land surface model (v3.4.1) using a micro-genetic algorithm (v1.7a)
Andrew Geiss, Po-Lun Ma, Balwinder Singh, and Joseph C. Hardin
Geosci. Model Dev., 16, 2355–2370, https://doi.org/10.5194/gmd-16-2355-2023, https://doi.org/10.5194/gmd-16-2355-2023, 2023
Short summary
Short summary
Atmospheric aerosols play a critical role in Earth's climate, but it is too computationally expensive to directly model their interaction with radiation in climate simulations. This work develops a new neural-network-based parameterization of aerosol optical properties for use in the Energy Exascale Earth System Model that is much more accurate than the current one; it also introduces a unique model optimization method that involves randomly generating neural network architectures.
Joey C. Y. Lam, Amos P. K. Tai, Jason A. Ducker, and Christopher D. Holmes
Geosci. Model Dev., 16, 2323–2342, https://doi.org/10.5194/gmd-16-2323-2023, https://doi.org/10.5194/gmd-16-2323-2023, 2023
Short summary
Short summary
We developed a new component within an atmospheric chemistry model to better simulate plant ecophysiological processes relevant for ozone air quality. We showed that it reduces simulated biases in plant uptake of ozone in prior models. The new model enables us to explore how future climatic changes affect air quality via affecting plants, examine ozone–vegetation interactions and feedbacks, and evaluate the impacts of changing atmospheric chemistry and climate on vegetation productivity.
Qian Shu, Sergey L. Napelenok, William T. Hutzell, Kirk R. Baker, Barron H. Henderson, Benjamin N. Murphy, and Christian Hogrefe
Geosci. Model Dev., 16, 2303–2322, https://doi.org/10.5194/gmd-16-2303-2023, https://doi.org/10.5194/gmd-16-2303-2023, 2023
Short summary
Short summary
Source attribution methods are generally used to determine culpability of precursor emission sources to ambient pollutant concentrations. However, source attribution of secondarily formed pollutants such as ozone and its precursors cannot be explicitly measured, making evaluation of source apportionment methods challenging. In this study, multiple apportionment approach comparisons show common features but still reveal wide variations in predicted sector contribution and species dependency.
Rüdiger Brecht, Lucie Bakels, Alex Bihlo, and Andreas Stohl
Geosci. Model Dev., 16, 2181–2192, https://doi.org/10.5194/gmd-16-2181-2023, https://doi.org/10.5194/gmd-16-2181-2023, 2023
Short summary
Short summary
We use neural-network-based single-image super-resolution to improve the upscaling of meteorological wind fields to be used for particle dispersion models. This deep-learning-based methodology improves the standard linear interpolation typically used in particle dispersion models. The improvement of wind fields leads to substantial improvement in the computed trajectories of the particles.
Alvaro Criado, Jan Mateu Armengol, Hervé Petetin, Daniel Rodriguez-Rey, Jaime Benavides, Marc Guevara, Carlos Pérez García-Pando, Albert Soret, and Oriol Jorba
Geosci. Model Dev., 16, 2193–2213, https://doi.org/10.5194/gmd-16-2193-2023, https://doi.org/10.5194/gmd-16-2193-2023, 2023
Short summary
Short summary
This work aims to derive and evaluate a general statistical post-processing tool specifically designed for the street scale that can be applied to any urban air quality system. Our data fusion methodology corrects NO2 fields based on continuous hourly observations and experimental campaigns. This study enables us to obtain exceedance probability maps of air quality standards. In 2019, 13 % of the Barcelona area had a 70 % or higher probability of exceeding the annual legal NO2 limit of 40 µg/m3.
Liang Wang, Bingcheng Wan, Shaohui Zhou, Haofei Sun, and Zhiqiu Gao
Geosci. Model Dev., 16, 2167–2179, https://doi.org/10.5194/gmd-16-2167-2023, https://doi.org/10.5194/gmd-16-2167-2023, 2023
Short summary
Short summary
The past 24 h TC trajectories and meteorological field data were used to forecast TC tracks in the northwestern Pacific from hours 6–72 based on GRU_CNN, which we proposed in this paper and which has better prediction results than traditional single deep-learning methods. The historical steering flow of cyclones has a significant effect on improving the accuracy of short-term forecasting, while, in long-term forecasting, the SST and geopotential height will have a particular impact.
Thomas Berkemeier, Matteo Krüger, Aryeh Feinberg, Marcel Müller, Ulrich Pöschl, and Ulrich K. Krieger
Geosci. Model Dev., 16, 2037–2054, https://doi.org/10.5194/gmd-16-2037-2023, https://doi.org/10.5194/gmd-16-2037-2023, 2023
Short summary
Short summary
Kinetic multi-layer models (KMs) successfully describe heterogeneous and multiphase atmospheric chemistry. In applications requiring repeated execution, however, these models can be too expensive. We trained machine learning surrogate models on output of the model KM-SUB and achieved high correlations. The surrogate models run orders of magnitude faster, which suggests potential applicability in global optimization tasks and as sub-modules in large-scale atmospheric models.
Elena Fillola, Raul Santos-Rodriguez, Alistair Manning, Simon O'Doherty, and Matt Rigby
Geosci. Model Dev., 16, 1997–2009, https://doi.org/10.5194/gmd-16-1997-2023, https://doi.org/10.5194/gmd-16-1997-2023, 2023
Short summary
Short summary
Lagrangian particle dispersion models are used extensively for the estimation of greenhouse gas (GHG) fluxes using atmospheric observations. However, these models do not scale well as data volumes increase. Here, we develop a proof-of-concept machine learning emulator that can produce outputs similar to those of the dispersion model, but 50 000 times faster, using only meteorological inputs. This works demonstrates the potential of machine learning to accelerate GHG estimations across the globe.
Maria J. Chinita, Mikael Witte, Marcin J. Kurowski, Joao Teixeira, Kay Suselj, Georgios Matheou, and Peter Bogenschutz
Geosci. Model Dev., 16, 1909–1924, https://doi.org/10.5194/gmd-16-1909-2023, https://doi.org/10.5194/gmd-16-1909-2023, 2023
Short summary
Short summary
Low clouds are one of the largest sources of uncertainty in climate prediction. In this paper, we introduce the first version of the unified turbulence and shallow convection parameterization named SHOC+MF developed to improve the representation of shallow cumulus clouds in the Simple Cloud-Resolving E3SM Atmosphere Model (SCREAM). Here, we also show promising preliminary results in a single-column model framework for two benchmark cases of shallow cumulus convection.
Kun Wang, Chao Gao, Kai Wu, Kaiyun Liu, Haofan Wang, Mo Dan, Xiaohui Ji, and Qingqing Tong
Geosci. Model Dev., 16, 1961–1973, https://doi.org/10.5194/gmd-16-1961-2023, https://doi.org/10.5194/gmd-16-1961-2023, 2023
Short summary
Short summary
This study establishes an easy-to-use and integrated framework for a model-ready emission inventory for the Weather Research and Forecasting (WRF)–Air Quality Numerical Model (AQM). A free tool called the ISAT (Inventory Spatial Allocation Tool) was developed based on this framework. ISAT helps users complete the workflow from the WRF nested-domain configuration to a model-ready emission inventory for AQM with a regional emission inventory and a shapefile for the target region.
Jagat S. H. Bisht, Prabir K. Patra, Masayuki Takigawa, Takashi Sekiya, Yugo Kanaya, Naoko Saitoh, and Kazuyuki Miyazaki
Geosci. Model Dev., 16, 1823–1838, https://doi.org/10.5194/gmd-16-1823-2023, https://doi.org/10.5194/gmd-16-1823-2023, 2023
Short summary
Short summary
In this study, we estimated CH4 fluxes using an advanced 4D-LETKF method. The system was tested and optimized using observation system simulation experiments (OSSEs), where a known surface emission distribution is retrieved from synthetic observations. The availability of satellite measurements has increased, and there are still many missions focused on greenhouse gas observations that have not yet launched. The technique being referred to has the potential to improve estimates of CH4 fluxes.
Ruizi Shi and Fanghua Xu
Geosci. Model Dev., 16, 1839–1856, https://doi.org/10.5194/gmd-16-1839-2023, https://doi.org/10.5194/gmd-16-1839-2023, 2023
Short summary
Short summary
Based on the Gaussian quadrature method, a fast algorithm of sea-spray-mediated heat flux is developed. Compared with the widely used single-radius algorithm, the new fast algorithm shows a better agreement with the full spectrum integral of spray flux. The new fast algorithm is evaluated in a coupled modeling system, and the simulations of sea surface temperature, wind speed and wave height are improved. Thereby, the new fast algorithm has great potential to be used in coupled modeling systems.
Forwood Wiser, Bryan K. Place, Siddhartha Sen, Havala O. T. Pye, Benjamin Yang, Daniel M. Westervelt, Daven K. Henze, Arlene M. Fiore, and V. Faye McNeill
Geosci. Model Dev., 16, 1801–1821, https://doi.org/10.5194/gmd-16-1801-2023, https://doi.org/10.5194/gmd-16-1801-2023, 2023
Short summary
Short summary
We developed a reduced model of atmospheric isoprene oxidation, AMORE-Isoprene 1.0. It was created using a new Automated Model Reduction (AMORE) method designed to simplify complex chemical mechanisms with minimal manual adjustments to the output. AMORE-Isoprene 1.0 has improved accuracy and similar size to other reduced isoprene mechanisms. When included in the CRACMM mechanism, it improved the accuracy of EPA’s CMAQ model predictions for the northeastern USA compared to observations.
Jonathan D. Labriola, Jeremy A. Gibbs, and Louis J. Wicker
Geosci. Model Dev., 16, 1779–1799, https://doi.org/10.5194/gmd-16-1779-2023, https://doi.org/10.5194/gmd-16-1779-2023, 2023
Short summary
Short summary
Observing system simulation experiments (OSSEs) are simulated case studies used to understand how different assimilated weather observations impact forecast skill. This study introduces the methods used to create an OSSE for a tornadic quasi-linear convective system event. These steps provide an opportunity to simulate a realistic high-impact weather event and can be used to encourage a more diverse set of OSSEs.
Mike Bush, Ian Boutle, John Edwards, Anke Finnenkoetter, Charmaine Franklin, Kirsty Hanley, Aravindakshan Jayakumar, Huw Lewis, Adrian Lock, Marion Mittermaier, Saji Mohandas, Rachel North, Aurore Porson, Belinda Roux, Stuart Webster, and Mark Weeks
Geosci. Model Dev., 16, 1713–1734, https://doi.org/10.5194/gmd-16-1713-2023, https://doi.org/10.5194/gmd-16-1713-2023, 2023
Short summary
Short summary
Building on the baseline of RAL1, the RAL2 science configuration is used for regional modelling around the UM partnership and in operations at the Met Office. RAL2 has been tested in different parts of the world including Australia, India and the UK. RAL2 increases medium and low cloud amounts in the mid-latitudes compared to RAL1, leading to improved cloud forecasts and a reduced diurnal cycle of screen temperature. There is also a reduction in the frequency of heavier precipitation rates.
Chuanhua Ren, Xin Huang, Tengyu Liu, Yu Song, Zhang Wen, Xuejun Liu, Aijun Ding, and Tong Zhu
Geosci. Model Dev., 16, 1641–1659, https://doi.org/10.5194/gmd-16-1641-2023, https://doi.org/10.5194/gmd-16-1641-2023, 2023
Short summary
Short summary
Ammonia in the atmosphere has wide impacts on the ecological environment and air quality, and its emission from soil volatilization is highly sensitive to meteorology, making it challenging to be well captured in models. We developed a dynamic emission model capable of calculating ammonia emission interactively with meteorological and soil conditions. Such a coupling of soil emission with meteorology provides a better understanding of ammonia emission and its contribution to atmospheric aerosol.
Linlu Mei, Vladimir Rozanov, Alexei Rozanov, and John P. Burrows
Geosci. Model Dev., 16, 1511–1536, https://doi.org/10.5194/gmd-16-1511-2023, https://doi.org/10.5194/gmd-16-1511-2023, 2023
Short summary
Short summary
This paper summarizes recent developments of aerosol, cloud and surface reflectance databases and models in the framework of the software package SCIATRAN. These updates and developments extend the capabilities of the radiative transfer modeling, especially by accounting for different kinds of vertical inhomogeneties. Vertically inhomogeneous clouds and different aerosol types can be easily accounted for within SCIATRAN (V4.6). The widely used surface models and databases are now available.
Adrian Rojas-Campos, Michael Langguth, Martin Wittenbrink, and Gordon Pipa
Geosci. Model Dev., 16, 1467–1480, https://doi.org/10.5194/gmd-16-1467-2023, https://doi.org/10.5194/gmd-16-1467-2023, 2023
Short summary
Short summary
Our paper presents an alternative approach for generating high-resolution precipitation maps based on the nonlinear combination of the complete set of variables of the numerical weather predictions. This process combines the super-resolution task with the bias correction in a single step, generating high-resolution corrected precipitation maps with a lead time of 3 h. We used using deep learning algorithms to combine the input information and increase the accuracy of the precipitation maps.
Robin N. Thor, Mariano Mertens, Sigrun Matthes, Mattia Righi, Johannes Hendricks, Sabine Brinkop, Phoebe Graf, Volker Grewe, Patrick Jöckel, and Steven Smith
Geosci. Model Dev., 16, 1459–1466, https://doi.org/10.5194/gmd-16-1459-2023, https://doi.org/10.5194/gmd-16-1459-2023, 2023
Short summary
Short summary
We report on an inconsistency in the latitudinal distribution of aviation emissions between two versions of a data product which is widely used by researchers. From the available documentation, we do not expect such an inconsistency. We run a chemistry–climate model to compute the effect of the inconsistency in emissions on atmospheric chemistry and radiation and find that the radiative forcing associated with aviation ozone is 7.6 % higher when using the less recent version of the data.
Stefano Della Fera, Federico Fabiano, Piera Raspollini, Marco Ridolfi, Ugo Cortesi, Flavio Barbara, and Jost von Hardenberg
Geosci. Model Dev., 16, 1379–1394, https://doi.org/10.5194/gmd-16-1379-2023, https://doi.org/10.5194/gmd-16-1379-2023, 2023
Short summary
Short summary
The long-term comparison between observed and simulated outgoing longwave radiances represents a strict test to evaluate climate model performance. In this work, 9 years of synthetic spectrally resolved radiances, simulated online on the basis of the atmospheric fields predicted by the EC-Earth global climate model (v3.3.3) in clear-sky conditions, are compared to IASI spectral radiance climatology in order to detect model biases in temperature and humidity at different atmospheric levels.
Marine Bonazzola, Hélène Chepfer, Po-Lun Ma, Johannes Quaas, David M. Winker, Artem Feofilov, and Nick Schutgens
Geosci. Model Dev., 16, 1359–1377, https://doi.org/10.5194/gmd-16-1359-2023, https://doi.org/10.5194/gmd-16-1359-2023, 2023
Short summary
Short summary
Aerosol has a large impact on climate. Using a lidar aerosol simulator ensures consistent comparisons between modeled and observed aerosol. We present a lidar aerosol simulator that applies a cloud masking and an aerosol detection threshold. We estimate the lidar signals that would be observed at 532 nm by the Cloud-Aerosol Lidar with Orthogonal Polarization overflying the atmosphere predicted by a climate model. Our comparison at the seasonal timescale shows a discrepancy in the Southern Ocean.
Michael S. Walters and David C. Wong
Geosci. Model Dev., 16, 1179–1190, https://doi.org/10.5194/gmd-16-1179-2023, https://doi.org/10.5194/gmd-16-1179-2023, 2023
Short summary
Short summary
A typical numerical simulation that associates with a large amount of input and output data, applying popular compression software, gzip or bzip2, on data is one good way to mitigate data storage burden. This article proposes a simple technique to alter input, output, or input and output by keeping a specific number of significant digits in data and demonstrates an enhancement in compression efficiency on the altered data but maintains similar statistical performance of the numerical simulation.
Sylvain Mailler, Laurent Menut, Arineh Cholakian, and Romain Pennel
Geosci. Model Dev., 16, 1119–1127, https://doi.org/10.5194/gmd-16-1119-2023, https://doi.org/10.5194/gmd-16-1119-2023, 2023
Short summary
Short summary
Large or even
giantparticles of mineral dust exist in the atmosphere but, so far, solving an non-linear equation was needed to calculate the speed at which they fall in the atmosphere. The model we present, AerSett v1.0 (AERosol SETTling version 1.0), provides a new and simple way of calculating their free-fall velocity in the atmosphere, which will be useful to anyone trying to understand and represent adequately the transport of giant dust particles by the wind.
Sylvia Sullivan, Behrooz Keshtgar, Nicole Albern, Elzina Bala, Christoph Braun, Anubhav Choudhary, Johannes Hörner, Hilke Lentink, Georgios Papavasileiou, and Aiko Voigt
EGUsphere, https://doi.org/10.5194/egusphere-2023-109, https://doi.org/10.5194/egusphere-2023-109, 2023
Short summary
Short summary
Clouds absorb and reemit infrared radiation from Earth's surface and absorb and reflect incoming solar radiation. As a result, they change atmospheric temperature gradients that drive large-scale circulation. To better simulate this circulation, we study how the radiative heating and cooling from clouds depends on model settings like grid spacing, whether we describe convection approximately or exactly, and the level of detail used to describe small-scale processes, or microphysics, in clouds.
Yen-Sen Lu, Garrett H. Good, and Hendrik Elbern
Geosci. Model Dev., 16, 1083–1104, https://doi.org/10.5194/gmd-16-1083-2023, https://doi.org/10.5194/gmd-16-1083-2023, 2023
Short summary
Short summary
The Weather Forecasting and Research (WRF) model consists of many parameters and options that can be adapted to different conditions. This expansive sensitivity study uses a large-scale simulation system to determine the most suitable options for predicting cloud cover in Europe for deterministic and probabilistic weather predictions for day-ahead forecasting simulations.
Joffrey Dumont Le Brazidec, Marc Bocquet, Olivier Saunier, and Yelva Roustan
Geosci. Model Dev., 16, 1039–1052, https://doi.org/10.5194/gmd-16-1039-2023, https://doi.org/10.5194/gmd-16-1039-2023, 2023
Short summary
Short summary
When radionuclides are released into the atmosphere, the assessment of the consequences depends on the evaluation of the magnitude and temporal evolution of the release, which can be highly variable as in the case of Fukushima Daiichi.
Here, we propose Bayesian inverse modelling methods and the reversible-jump Markov chain Monte Carlo technique, which allows one to evaluate the temporal variability of the release and to integrate different types of information in the source reconstruction.
Xiaohan Li, Yi Zhang, Xindong Peng, Baiquan Zhou, Jian Li, and Yiming Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-283, https://doi.org/10.5194/gmd-2022-283, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
The weather and climate physics suites used in GRIST-A22.7.28 are compared using single column modeling. The source of their discrepancies in terms of modeling cloud and precipitation is explored. Convective parameterization is found to be a key factor responsible for the differences. The two suites also have intrinsic differences in the interaction between microphysics and other processes, resulting in different cloud features and time step sensitivities.
Phuc Thi Minh Ha, Yugo Kanaya, Fumikazu Taketani, Maria Dolores Andrés Hernández, Benjamin Schreiner, Klaus Pfeilsticker, and Kengo Sudo
Geosci. Model Dev., 16, 927–960, https://doi.org/10.5194/gmd-16-927-2023, https://doi.org/10.5194/gmd-16-927-2023, 2023
Short summary
Short summary
HONO affects tropospheric oxidizing capacity; thus, it is implemented into the chemistry–climate model CHASER. The model substantially underpredicts daytime HONO, while nitrate photolysis on surfaces can supplement the daytime HONO budget. Current HONO chemistry predicts reductions of 20.4 % for global tropospheric NOx, 40–67 % for OH, and 30–45 % for O3 in the summer North Pacific. In contrast, OH and O3 winter levels in China are greatly enhanced.
Ryan Vella, Matthew Forrest, Jos Lelieveld, and Holger Tost
Geosci. Model Dev., 16, 885–906, https://doi.org/10.5194/gmd-16-885-2023, https://doi.org/10.5194/gmd-16-885-2023, 2023
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) are released by vegetation and have a major impact on atmospheric chemistry and aerosol formation. Non-interacting vegetation constrains the majority of numerical models used to estimate global BVOC emissions, and thus, the effects of changing vegetation on emissions are not addressed. In this work, we replace the offline vegetation with dynamic vegetation states by linking a chemistry–climate model with a global dynamic vegetation model.
Danny McCulloch, Denis E. Sergeev, Nathan Mayne, Matthew Bate, James Manners, Ian Boutle, Benjamin Drummond, and Kristzian Kohary
Geosci. Model Dev., 16, 621–657, https://doi.org/10.5194/gmd-16-621-2023, https://doi.org/10.5194/gmd-16-621-2023, 2023
Short summary
Short summary
We present results from the Met Office Unified Model (UM) to study the dry Martian climate. We describe our model set-up conditions and run two scenarios, with radiatively active/inactive dust. We compare both scenarios to results from an existing Mars climate model, the planetary climate model. We find good agreement in winds and air temperatures, but dust amounts differ between models. This study highlights the importance of using the UM for future Mars research.
Sam-Erik Walker, Sverre Solberg, Philipp Schneider, and Cristina Guerreiro
Geosci. Model Dev., 16, 573–595, https://doi.org/10.5194/gmd-16-573-2023, https://doi.org/10.5194/gmd-16-573-2023, 2023
Short summary
Short summary
We have developed a statistical model for estimating trends in the daily air quality observations of NO2, O3, PM10 and PM2.5, adjusting for trends and short-term variations in meteorology. The model is general and may also be used for prediction purposes, including forecasting. It has been applied in a recent comprehensive study in Europe. Significant declines are shown for the pollutants from 2005 to 2019, mainly due to reductions in emissions not attributable to changes in meteorology.
Bianca Adler, James M. Wilczak, Jaymes Kenyon, Laura Bianco, Irina V. Djalalova, Joseph B. Olson, and David D. Turner
Geosci. Model Dev., 16, 597–619, https://doi.org/10.5194/gmd-16-597-2023, https://doi.org/10.5194/gmd-16-597-2023, 2023
Short summary
Short summary
Rapid changes in wind speed make the integration of wind energy produced during persistent orographic cold-air pools difficult to integrate into the electrical grid. By evaluating three versions of NOAA’s High-Resolution Rapid Refresh model, we demonstrate how model developments targeted during the second Wind Forecast Improvement Project improve the forecast of a persistent cold-air pool event.
John Douros, Henk Eskes, Jos van Geffen, K. Folkert Boersma, Steven Compernolle, Gaia Pinardi, Anne-Marlene Blechschmidt, Vincent-Henri Peuch, Augustin Colette, and Pepijn Veefkind
Geosci. Model Dev., 16, 509–534, https://doi.org/10.5194/gmd-16-509-2023, https://doi.org/10.5194/gmd-16-509-2023, 2023
Short summary
Short summary
We focus on the challenges associated with comparing atmospheric composition models with satellite products such as tropospheric NO2 columns. The aim is to highlight the methodological difficulties and propose sound ways of doing such comparisons. Building on the comparisons, a new satellite product is proposed and made available, which takes advantage of higher-resolution, regional atmospheric modelling to improve estimates of troposheric NO2 columns over Europe.
Catalina Poraicu, Jean-François Müller, Trissevgeni Stavrakou, Dominique Fonteyn, Frederik Tack, Felix Deutsch, Quentin Laffineur, Roeland Van Malderen, and Nele Veldeman
Geosci. Model Dev., 16, 479–508, https://doi.org/10.5194/gmd-16-479-2023, https://doi.org/10.5194/gmd-16-479-2023, 2023
Short summary
Short summary
High-resolution WRF-Chem simulations are conducted over Antwerp, Belgium, in June 2019 and evaluated using meteorological data and in situ, airborne, and spaceborne NO2 measurements. An intercomparison of model, aircraft, and TROPOMI NO2 columns is conducted to characterize biases in versions 1.3.1 and 2.3.1 of the satellite product. A mass balance method is implemented to provide improved emissions for simulating NO2 distribution over the study area.
Daan R. Scheepens, Irene Schicker, Kateřina Hlaváčková-Schindler, and Claudia Plant
Geosci. Model Dev., 16, 251–270, https://doi.org/10.5194/gmd-16-251-2023, https://doi.org/10.5194/gmd-16-251-2023, 2023
Short summary
Short summary
The production of wind energy is increasing rapidly and relies heavily on atmospheric conditions. To ensure power grid stability, accurate predictions of wind speed are needed, especially in the short range and for extreme wind speed ranges. In this work, we demonstrate the forecasting skills of a data-driven deep learning model with model adaptations to suit higher wind speed ranges. The resulting model can be applied to other data and parameters, too, to improve nowcasting predictions.
Koichi Sakaguchi, L. Ruby Leung, Colin M. Zarzycki, Jihyeon Jang, Seth McGinnis, Bryce E. Harrop, William C. Skamarock, Andrew Gettelman, Chun Zhao, William J. Gutowski, Stephen Leak, and Linda Mearns
EGUsphere, https://doi.org/10.5194/egusphere-2022-1199, https://doi.org/10.5194/egusphere-2022-1199, 2023
Short summary
Short summary
We document details of the regional climate downscaling dataset produced by a global variable-resolution model. The experiment is unique for its following a standard protocol designed for coordinated experiments of regional models. Negligible influence of post-processing on statistical analysis, importance of simulation quality outside of the target region, and computational challenges that our model code faced under rapidly changing super computer systems are illustrated.
Haixia Xiao, Yaqiang Wang, Yu Zheng, Yuanyuan Zheng, Xiaoran Zhuang, Hongyan Wang, and Mei Gao
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-272, https://doi.org/10.5194/gmd-2022-272, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
Due to the small-scale and nonstationary nature of convective wind gusts (CGs), reliable CGs nowcasting has remained unattainable. Here, we developed a deep learning model – namely CGsNet – for 0–2 hours of quantitative CGs nowcasting, first achieving minute-kilometer-level forecasts. Based on CGsNet model, the average surface wind speed (ASWS) and peak wind gust speed (PWGS) predictions are obtained. Experiments indicate that CGsNet exhibits higher accuracy than the traditional method.
Peter J. M. Bosman and Maarten C. Krol
Geosci. Model Dev., 16, 47–74, https://doi.org/10.5194/gmd-16-47-2023, https://doi.org/10.5194/gmd-16-47-2023, 2023
Short summary
Short summary
We describe an inverse modelling framework constructed around a simple model for the atmospheric boundary layer. This framework can be fed with various observation types to study the boundary layer and land–atmosphere exchange. With this framework, it is possible to estimate model parameters and the associated uncertainties. Some of these parameters are difficult to obtain directly by observations. An example application for a grassland in the Netherlands is included.
Sudipta Ghosh, Sagnik Dey, Sushant Das, Nicole Riemer, Graziano Giuliani, Dilip Ganguly, Chandra Venkataraman, Filippo Giorgi, Sachchida Nand Tripathi, Srikanthan Ramachandran, Thazhathakal Ayyappen Rajesh, Harish Gadhavi, and Atul Kumar Srivastava
Geosci. Model Dev., 16, 1–15, https://doi.org/10.5194/gmd-16-1-2023, https://doi.org/10.5194/gmd-16-1-2023, 2023
Short summary
Short summary
Accurate representation of aerosols in climate models is critical for minimizing the uncertainty in climate projections. Here, we implement region-specific emission fluxes and a more accurate scheme for carbonaceous aerosol ageing processes in a regional climate model (RegCM4) and show that it improves model performance significantly against in situ, reanalysis, and satellite data over the Indian subcontinent. We recommend improving the model performance before using them for climate studies.
Chengzhu Zhang, Jean-Christophe Golaz, Ryan Forsyth, Tom Vo, Shaocheng Xie, Zeshawn Shaheen, Gerald L. Potter, Xylar S. Asay-Davis, Charles S. Zender, Wuyin Lin, Chih-Chieh Chen, Chris R. Terai, Salil Mahajan, Tian Zhou, Karthik Balaguru, Qi Tang, Cheng Tao, Yuying Zhang, Todd Emmenegger, Susannah Burrows, and Paul A. Ullrich
Geosci. Model Dev., 15, 9031–9056, https://doi.org/10.5194/gmd-15-9031-2022, https://doi.org/10.5194/gmd-15-9031-2022, 2022
Short summary
Short summary
Earth system model (ESM) developers run automated analysis tools on data from candidate models to inform model development. This paper introduces a new Python package, E3SM Diags, that has been developed to support ESM development and use routinely in the development of DOE's Energy Exascale Earth System Model. This tool covers a set of essential diagnostics to evaluate the mean physical climate from simulations, as well as several process-oriented and phenomenon-based evaluation diagnostics.
Walter Hannah and Kyle Pressel
Geosci. Model Dev., 15, 8999–9013, https://doi.org/10.5194/gmd-15-8999-2022, https://doi.org/10.5194/gmd-15-8999-2022, 2022
Short summary
Short summary
A multiscale modeling framework couples two models of the atmosphere that each cover different scale ranges. Traditionally, fluctuations in the small-scale model are not transported by the flow on the large-scale model grid, but this is hypothesized to be responsible for a persistent, unphysical checkerboard pattern. A method is presented to facilitate the transport of these small-scale fluctuations, analogous to how small-scale clouds and turbulence are transported in the real atmosphere.
Reimar Bauer, Jens-Uwe Grooß, Jörn Ungermann, May Bär, Markus Geldenhuys, and Lars Hoffmann
Geosci. Model Dev., 15, 8983–8997, https://doi.org/10.5194/gmd-15-8983-2022, https://doi.org/10.5194/gmd-15-8983-2022, 2022
Short summary
Short summary
The Mission Support System (MSS) is an open source software package that has been used for planning flight tracks of scientific aircraft in multiple measurement campaigns during the last decade. Here, we describe the MSS software and its use during the SouthTRAC measurement campaign in 2019. As an example for how the MSS software is used in conjunction with many datasets, we describe the planning of a single flight probing orographic gravity waves propagating up into the lower mesosphere.
Zhizhao Wang, Florian Couvidat, and Karine Sartelet
Geosci. Model Dev., 15, 8957–8982, https://doi.org/10.5194/gmd-15-8957-2022, https://doi.org/10.5194/gmd-15-8957-2022, 2022
Short summary
Short summary
Air quality models need to reliably predict secondary organic aerosols (SOAs) at a reasonable computational cost. Thus, we developed GENOA v1.0, a mechanism reduction algorithm that preserves the accuracy of detailed gas-phase chemical mechanisms for SOA formation, thereby improving the practical use of actual chemistry in SOA models. With GENOA, a near-explicit chemical scheme was reduced to 2 % of its original size and computational time, with an average error of less than 3 %.
Felix Kleinert, Lukas H. Leufen, Aurelia Lupascu, Tim Butler, and Martin G. Schultz
Geosci. Model Dev., 15, 8913–8930, https://doi.org/10.5194/gmd-15-8913-2022, https://doi.org/10.5194/gmd-15-8913-2022, 2022
Short summary
Short summary
We examine the effects of spatially aggregated upstream information as input for a deep learning model forecasting near-surface ozone levels. Using aggregated data from one upstream sector (45°) improves the forecast by ~ 10 % for 4 prediction days. Three upstream sectors improve the forecasts by ~ 14 % on the first 2 d only. Our results serve as an orientation for other researchers or environmental agencies focusing on pointwise time-series predictions, for example, due to regulatory purposes.
Brian T. Dinkelacker, Pablo Garcia Rivera, Ioannis Kioutsioukis, Peter J. Adams, and Spyros N. Pandis
Geosci. Model Dev., 15, 8899–8912, https://doi.org/10.5194/gmd-15-8899-2022, https://doi.org/10.5194/gmd-15-8899-2022, 2022
Short summary
Short summary
The performance of a chemical transport model in reproducing PM2.5 concentrations and composition was evaluated at the finest scale using measurements from regulatory sites as well as a network of low-cost monitors. Total PM2.5 mass is reproduced well by the model during the winter when compared to regulatory measurements, but in the summer PM2.5 is underpredicted, mainly due to difficulties in reproducing regional secondary organic aerosol levels.
Shizhang Wang and Xiaoshi Qiao
Geosci. Model Dev., 15, 8869–8897, https://doi.org/10.5194/gmd-15-8869-2022, https://doi.org/10.5194/gmd-15-8869-2022, 2022
Short summary
Short summary
A local data assimilation scheme (Local DA v1.0) was proposed to leverage the advantage of hybrid covariance, multiscale localization, and parallel computation. The Local DA can perform covariance localization in model space, observation space, or both spaces. The Local DA that used the hybrid covariance and double-space localization produced the lowest analysis and forecast errors among all observing system simulation experiments.
James Weber, James A. King, Katerina Sindelarova, and Maria Val Martin
EGUsphere, https://doi.org/10.5194/egusphere-2022-748, https://doi.org/10.5194/egusphere-2022-748, 2022
Short summary
Short summary
The emissions of volatile organic compounds from vegetation (BVOCs) influence atmospheric composition and the contribute to certain gases and aerosols (tiny airborne particles) which play a role in climate change. BVOC emissions are likely to change in the future due to changes in climate and land use. Therefore, accurate simulation of BVOC emission is important and this study describes an update to the simulation of BVOC emissions in the United Kingdom Earth System Model (UKESM).
Randall V. Martin, Sebastian D. Eastham, Liam Bindle, Elizabeth W. Lundgren, Thomas L. Clune, Christoph A. Keller, William Downs, Dandan Zhang, Robert A. Lucchesi, Melissa P. Sulprizio, Robert M. Yantosca, Yanshun Li, Lucas Estrada, William M. Putman, Benjamin M. Auer, Atanas L. Trayanov, Steven Pawson, and Daniel J. Jacob
Geosci. Model Dev., 15, 8731–8748, https://doi.org/10.5194/gmd-15-8731-2022, https://doi.org/10.5194/gmd-15-8731-2022, 2022
Short summary
Short summary
Atmospheric chemistry models must be able to operate both online as components of Earth system models and offline as standalone models. The widely used GEOS-Chem model operates both online and offline, but the classic offline version is not suitable for massively parallel simulations. We describe a new generation of the offline high-performance GEOS-Chem (GCHP) that enables high-resolution simulations on thousands of cores, including on the cloud, with improved access, performance, and accuracy.
Daiwen Kang, Nicholas K. Heath, Robert C. Gilliam, Tanya L. Spero, and Jonathan E. Pleim
Geosci. Model Dev., 15, 8561–8579, https://doi.org/10.5194/gmd-15-8561-2022, https://doi.org/10.5194/gmd-15-8561-2022, 2022
Short summary
Short summary
A lightning assimilation (LTA) technique implemented in the WRF model's Kain–Fritsch (KF) convective scheme is updated and applied to simulations from regional to hemispheric scales using observed lightning flashes from ground-based lightning detection networks. Different user-toggled options associated with the KF scheme on simulations with and without LTA are assessed. The model's performance is improved significantly by LTA, but it is sensitive to various factors.
Sujeong Lim, Hyeon-Ju Gim, Ebony Lee, Seungyeon Lee, Won Young Lee, Yong Hee Lee, Claudio Cassardo, and Seon Ki Park
Geosci. Model Dev., 15, 8541–8559, https://doi.org/10.5194/gmd-15-8541-2022, https://doi.org/10.5194/gmd-15-8541-2022, 2022
Short summary
Short summary
The land surface model (LSM) contains various uncertain parameters, which are obtained by the empirical relations reflecting the specific local region and can be a source of uncertainty. To seek the optimal parameter values in the snow-related processes of the Noah LSM over South Korea, we have implemented an optimization algorithm, a micro-genetic algorithm using the observations. As a result, the optimized snow parameters improve snowfall prediction.
Cited articles
Abram, G. and Treinish, L.: An Extended Data-Flow Architecture for Data Analysis and Visualization, in: Proceedings of the 6th Conference on Visualization '95, VIS '95, IEEE Computer Society, Washington, DC, USA, 1995.
Alpert, J. C.: 3-dimensional animated displays for sifting out medium range weather events, in: 19th Conference on IIPS, 9–13 February 2003, Long Beach, California, 2003.
Bailey, M.: Using GPU shaders for visualization, IEEE Comput. Graph., 29, 96–100, 2009.
Bailey, M.: Using GPU shaders for visualization, Part 2, IEEE Comput. Graph., 31, 67–73, 2011.
Bailey, M.: Using GPU shaders for visualization, Part 3, IEEE Comput. Graph., 33, 5–11, 2013.
Barjenbruch, D. B., Thaler, E., and Szoke, E. J.: Operational Applications of Three Dimensional Air Parcel Trajectories Using AWIPS D3D, in: Proceedings of the 18th IIPS Conference, 13–18 January 2002, Orlando, Florida, 2002.
Böttinger, M., Gülzow, V., and Biercamp, J.: Visualisierung als Werkzeug zur Analyse von Klimasimulationsdaten, in: Umweltinformatik '98: Vernetzte Strukturen in Informatik, Umwelt und Wirtschaft, edited by: Haasis, H. D. and Ranze, K. C., 1998.
Böttinger, M., Meier-Fleischer, K., and Ulmen, C.: Tutorial: Interactive 3D Visualization in Earth System Research with Avizo Green 8.0, DKRZ/KlimaCampus Hamburg, 2013.
Brown, R.: Animated visual vibrations as an uncertainty visualisation technique, in: Proceedings of the 2nd International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia, GRAPHITE '04, ACM, New York, NY, USA, 84–89, 2004.
Browning, K. A. and Roberts, N. M.: Structure of a frontal cyclone, Q. J. Roy. Meteor. Soc., 120, 1535–1557, 1994.
Buizza, R., Bidlot, J.-R., Wedi, N., Fuentes, M., Hamrud, M., Holt, G., Palmer, T., and Vitart, F.: The ECMWF Variable Resolution Ensemble Prediction System VAREPS, ECMWF Newsletter, 108, 14–20, 2006.
Clyne, J., Mininni, P., Norton, A., and Rast, M.: Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation, New J. Phys., 9, 301, https://doi.org/10.1088/1367-2630/9/8/301, 2007.
Cox, J., House, D., and Lindell, M.: Visualizing uncertainty in predicted hurricane tracks, Int. J. Uncertainty Quant., 3, 143–156, 2013.
Djurcilov, S., Kim, K., Lermusiaux, P., and Pang, A.: Visualizing scalar volumetric data with uncertainty, Comput. Graph., 26, 239–248, 2002.
Ducrocq, V., Braud, I., Davolio, S., Ferretti, R., Flamant, C., Jansa, A., Kalthoff, N., Richard, E., Taupier-Letage, I., Ayral, P.-A., Belamari, S., Berne, A., Borga, M., Boudevillain, B., Bock, O., Boichard, J.-L., Bouin, M.-N., Bousquet, O., Bouvier, C., Chiggiato, J., Cimini, D., Corsmeier, U., Coppola, L., Cocquerez, P., Defer, E., Delanoë, J., Di Girolamo, P., Doerenbecher, A., Drobinski, P., Dufournet, Y., Fourrié, N., Gourley, J. J., Labatut, L., Lambert, D., Le Coz, J., Marzano, F. S., Molinié, G., Montani, A., Nord, G., Nuret, M., Ramage, K., Rison, W., Roussot, O., Said, F., Schwarzenboeck, A., Testor, P., Van Baelen, J., Vincendon, B., Aran, M., and Tamayo, J.: HyMeX-SOP1: The Field Campaign Dedicated to Heavy Precipitation and Flash Flooding in the Northwestern Mediterranean, Bull. Amer. Meteor. Soc., 95, 1083–1100, 2014.
Dyer, J. and Amburn, P.: Desktop visualization of meteorological data using paraview, Kitware Source, 14, 7–10, 2010.
Elsberry, R. L. and Harr, P. A.: Tropical cyclone structure (TCS08) field experiment science basis, observational platforms, and strategy, Asia-Pacific J. Atmos. Sci., 44, 209–231, 2008.
Engel, K., Hadwiger, M., Kniss, J., Rezk-Salama, C., and Weiskopf, D.: Real-Time Volume Graphics, 1st Edn., AK Peters, Wellesley, Mass, 2006.
Favre, J. M. and Valle, M.: AVS and AVS/Express, in: The Visualization Handbook, edited by Hansen, C. D. and Johnson, C., Chap. 33, 655–672, Academic Press, 2005.
Gallus, W. A., Yarger, D. N., Cruz-Neira, C., and Heer, R.: An Example of a Virtual Reality Learning Environment, Bull. Amer. Meteor. Soc., 84, 18–20, 2003.
Gallus, W. A., Cervato, C., Cruz-Neira, C., Faidley, G., and Heer, R.: Learning Storm Dynamics with a Virtual Thunderstorm, Bull. Amer. Meteor. Soc., 86, 162–163, 2005.
Gneiting, T. and Raftery, A. E.: Weather forecasting with ensemble methods, Science, 310, 248–249, 2005.
Grigoryan, G. and Rheingans, P.: Point-based probabilistic surfaces to show surface uncertainty, IEEE T. Vis. Comput. Gr., 10, 564–573, 2004.
Grotjahn, R. and Chervin, R. M.: Animated Graphics in Meteorological Research and Presentations, Bull. Amer. Meteor. Soc., 65, 1201–1208, 1984.
Hansen, C. D. and Johnson, C.: The Visualization Handbook, 1st Edn., Academic Press, Burlington, MA, 2005.
Heizenrieder, D. and Haucke, S.: Das meteorologische Visualisierungs- und Produktionssystem NinJo, promet, 35, 57–69, 2009.
Henderson, A., Ahrens, J., and Law, C.: The ParaView Guide, Kitware, Clifton Park, NY, 2004.
Hewson, T. D. and Titley, H. A.: Objective identification, typing and tracking of the complete life-cycles of cyclonic features at high spatial resolution, Met. Apps, 17, 355–381, 2010.
Hibbard, W. L.: Computer-Generated Imagery for 4-D Meteorological Data, Bull. Amer. Meteor. Soc., 67, 1362–1369, 1986.
Hibbard, W. L.: VisAD: Connecting People to Computations and People to People, SIGGRAPH Comput. Graph., 32, 10–12, 1998.
Hibbard, W. L.: The top five problems that motivated my work, IEEE Comput. Graph., 24, 9–13, 2004.
Hibbard, W. L.: Vis5D, Cave5D, and VisAD, in: The Visualization Handbook, edited by Hansen, C. D. and Johnson, C., chap. 34, pp. 673–688, Academic Press, 2005.
Hibbard, W. L. and Santek, D.: The VIS-5D system for easy interactive visualization, in: Proceedings of the 1st Conference on Visualization '90, VIS '90, San Francisco, CA, USA, 23–26 October 1990, IEEE Computer Society Press, Los Alamitos, CA, USA, 28–35, 1990.
Hibbard, W. L., Santek, D., Uccellini, L., and Brill, K.: Application of the 4-D McIDAS to a Model Diagnostic Study of the Presidents' Day Cyclone, Bull. Amer. Meteor. Soc., 70, 1394–1403, 1989.
Hoffman, R. R. and Coffey, J. W.: Weather forecasting and the principles of complex cognitive systems, in: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Vol. 48, New Orleans, Louisiana, 20–24 September 2004, SAGE Publications, 315–319, https://doi.org/10.1177/154193120404800309, 2004.
Hoffman, R. R., Detweiler, M., Conway, J. A., and Lipton, K.: Some considerations in using color in meteorological displays, Weather Forecast., 8, 505–518, 1993.
Höllt, T., Magdy, A., Zhan, P., Chen, G., Gopalakrishnan, G., Hoteit, I., Hansen, C. D., and Hadwiger, M.: Ovis: a framework for visual analysis of ocean forecast ensembles, IEEE T. Vis. Comput. Gr., 20, 1114–1126, https://doi.org/10.1109/TVCG.2014.2307892, 2014.
Johnson, C. R. and Sanderson, A. R.: A next step: visualizing errors and uncertainty, IEEE Comput. Graph., 23, 6–10, 2003.
Jönsson, D., Sundén, E., Ynnerman, A., and Ropinski, T.: A survey of volumetric illumination techniques for interactive volume rendering, Comput. Graphics Forum, 33, 27–51, 2014.
Kaufmann, S., Voigt, C., Jeßberger, P., Jurkat, T., Schlager, H., Schwarzenboeck, A., Klingebiel, M., and Thornberry, T.: In situ measurements of ice saturation in young contrails, Geophys. Res. Lett., 41, 702–709, https://doi.org/10.1002/2013gl058276, 2014.
Koppert, H. J., Schröder, F., Hergenröther, E., Lux, M., and Trembilski, A.: 3-D visualisation in daily operation at the DWD, in: Proceedings of the 6th ECMWF Workshop on Meteorological Operational Systems, Reading, England, 17–21 November 1997, 119–142, 1998.
Krüger, J. and Westermann, R.: Acceleration techniques for GPU-based volume rendering, in: Proceedings of the 14th IEEE Visualization 2003 (VIS'03), Seattle, Washington, 22–24 October 2003, 287–292, IEEE Computer Society, Washington, DC, USA, https://doi.org/10.1109/VIS.2003.10001, 2003.
Lalaurette, F.: Early detection of abnormal weather conditions using a probabilistic extreme forecast index, Q. J. Roy. Meteor. Soc., 129, 3037–3057, 2003.
Lamy-Thépaut, S., Sahin, C., and Raoult, B.: ecCharts service, ECMWF Newsletter, 134, 7–9, 2013.
Leutbecher, M. and Palmer, T.: Ensemble forecasting, J. Comput. Phys., 227, 3515–3539, 2008.
Lindemann, F. and Ropinski, T.: About the influence of illumination models on image comprehension in direct volume rendering, IEEE T. Vis. Comput. Gr., 17, 1922–1931, 2011.
Lundstrom, C., Ljung, P., Persson, A., and Ynnerman, A.: Uncertainty visualization in medical volume rendering using probabilistic animation, IEEE T. Vis. Comput. Gr., 13, 1648–1655, 2007.
Lux, M., and Frühauf, T.: A visualization system for operational meteorological use, in: Proceedings of the Sixth International Conference in Central Europe on Computer Graphics and Visualization (WSCG'98), Plzen, Czech Republic, 9–13 February 1998, 525–534, 1998.
McCaslin, P. T., McDonald, P. A., and Szoke, E. J.: 3-D visualization development at NOAA forecast systems laboratory, Comp. Graph., 34, 41–44, 2000.
Middleton, D., Scheitlin, T., and Wilhelmson, B.: Visualization in weather and climatic research, in: The Visualization Handbook, Chap. 44, edited by: Hansen, C. D. and Johnson, C., Academic Press, 845–871, 2005.
Miller, M., Buizza, R., Haseler, J., Hortal, M., Janssen, P., and Untch, A.: Increased resolution in the ECMWF deterministic and ensemble prediction systems, ECMWF Newsletter, 124, 10–16, 2010.
Murray, D. and McWhirter, J.: Evolving IDV – creating better tools for the community, in: 23th Conference on International Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, 15–18 January 2007, San Antonio, TX, American Meteorological Society, 3B.5, 2007.
Murray, D., McWhirter, J., Ho, Y., and Whittaker, T. M.: IDV at 5: new features and future, in: 25th Conference on International Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, 10–15 January 2009, Phoenix, AZ, American Meteorological Society, 7B.5, 2009.
Nietfeld, D. D.: The Synoptic Environment of the 11 April 2001 Central Plains Tornado Outbreak Viewed in Three Dimensions, in: Proceedings of the 19th IIPS Conference, 9–13 February 2003, Long Beach, California, 2003.
Nietfeld, D. D.: The utility of three-dimensional radar displays in severe weather warning operations, in: 23rd Conference on Severe Local Storms, 5–11 November 2006, St. Louis, MO, 2006.
Norton, A. and Clyne, J.: The VAPOR visualization application, in: High Performance Visualization, Chap. 20, edited by: Bethel, E. W., Childs, H., and Hansen, C., CRC Press, Boca Raton, FL, 415–428, 2012.
Obermaier, H. and Joy, K. I.: Future challenges for ensemble visualization, IEEE Comput. Graph., 34, 8–11, 2014.
Pang, A. T., Wittenbrink, C. M., and Lodha, S. K.: Approaches to uncertainty visualization, Visual Comput., 13, 370–390, 1997.
Papathomas, T. V., Schiavone, J. A., and Julesz, B.: Applications of Computer Graphics to the Visualization of Meteorological Data, SIGGRAPH Comput. Graph., 22, 327–334, 1988.
Pfaffelmoser, T. and Westermann, R.: Visualization of global correlation structures in uncertain 2-D scalar fields, Comput. Graph. Forum, 31, 1025–1034, 2012.
Pfaffelmoser, T., Reitinger, M., and Westermann, R.: Visualizing the positional and geometrical variability of isosurfaces in uncertain scalar fields, Comput. Graph. Forum, 30, 951–960, 2011.
Pöthkow, K. and Hege, H. C.: Positional uncertainty of isocontours: condition analysis and probabilistic measures, IEEE T. Vis. Comput. Gr., 17, 1393–1406, https://doi.org/10.1109/tvcg.2010.247, 2011.
Pöthkow, K., Weber, B., and Hege, H.-C.: Probabilistic marching cubes, Comput. Graph. Forum, 30, 931–940, 2011.
Potter, K., Wilson, A., Bremer, P. T., Williams, D., Doutriaux, C., Pascucci, V., and Johnson, C. R.: Ensemble-Vis: a framework for the statistical visualization of ensemble data, in: Int. Conference on Data Mining Workshops, Miami, FL, 6 December 2009, IEEE Computer Society, Los Alamitos, CA, USA, 233–240, https://doi.org/10.1109/ICDMW.2009.55, 2009.
Rautenhaus, M., Bauer, G., and Dörnbrack, A.: A web service based tool to plan atmospheric research flights, Geosci. Model Dev., 5, 55–71, https://doi.org/10.5194/gmd-5-55-2012, 2012.
Rautenhaus, M., Grams, C. M., Schäfler, A., and Westermann, R.: GPU based interactive 3-D visualization of ECMWF ensemble forecasts, ECMWF Newsletter, 138, 34–38, 2014.
Rautenhaus, M., Grams, C. M., Schäfler, A., and Westermann, R.: Three-dimensional visualization of ensemble weather forecasts – Part 2: Forecasting warm conveyor belt situations for aircraft-based field campaigns, Geosci. Model Dev., 8, 2355–2377, https://doi.org/10.5194/gmd-8-2355-2015, 2015.
Rhodes, P. J., Laramee, R. S., Bergeron, R. D., and Sparr, T. M.: Uncertainty visualization methods in isosurface rendering, in: Proceedings Eurographics 2003, Granada, Spain, 1–5 September 2003, 83–88, 2003.
Russell, I., Siemen, S., Ii, F., Kertész, S., Lamy-Thépaut, S., and Karhila, V.: Metview 4 – ECMWF's latest generation meteorological workstation, ECMWF Newsletter, 126, 23–27, 2010.
Sanyal, J., Zhang, S., Dyer, J., Mercer, A., Amburn, P., and Moorhead, R.: Noodles: a tool for visualization of numerical weather model ensemble uncertainty, IEEE T. Vis. Comput. Gr., 16, 1421–1430, 2010.
Schäfler, A., Boettcher, M., Grams, C. M., Rautenhaus, M., Sodemann, H., and Wernli, H.: Planning aircraft measurements within a warm conveyor belt, Weather, 69, 161–166, 2014.
Schiavone, J. A. and Papathomas, T. V.: Visualizing Meteorological Data, Bull. Amer. Meteor. Soc., 71, 1012–1020, 1990.
Schröder, F.: Visualisierung meteorologischer Daten, Springer, Berlin, Heidelberg, 1997.
Schumann, U.: On conditions for contrail formation from aircraft exhausts, Meteorol. Z., 5, 4–23, 1996.
Stalling, D., Westerhoff, M., and Hege, H.-C.: amira: A Highly Interactive System for Visual Data Analysis, in: The Visualization Handbook, edited by Hansen, C. D. and Johnson, C., chap. 38, 749–767, Academic Press, 2005.
Stauffer, R., Mayr, G. J., Dabernig, M., and Zeileis, A.: Somewhere over the rainbow: How to make effective use of colors in meteorological visualizations, Bull. Amer. Meteor. Soc., 96, 203–216, https://doi.org/10.1175/bams-d-13-00155.1, 2015.
Szoke, E. J., Grote, U. H., McCaslin, P. T., and McDonald, P. A.: D3D update: is it being used?, in: Proceedings of the 19th IIPS Conference, Long Beach, CA, 9–13 February 2003, P1.10, 2003.
Trafton, J. G. and Hoffman, R. R.: Computer-aided visualization in meteorology, in: Expertise Out of Context: Proceedings of the Sixth International Conference on Naturalistic Decision Making, edited by: Hoffman, R. R., Chap. 15, Psychology Press, 337–357, 2007.
Treinish, L. A.: Weather forecasting for the 1996 Olympics, IEEE Comput. Graphics Appl., 16, 10–13, 1996.
Treinish, L. A.: Task-specific visualization design: a case study in operational weather forecasting, in: Proceedings Visualization '98, Research Triangle Park, NC, 24 October 1998, 405–409, https://doi.org/10.1109/VISUAL.1998.745330, 1998.
Treinish, L. A. and Rothfusz, L. P.: Three-dimensional visualization for support of operational forecasting at the 1996 Centennial Olympic Games, in: Proceedings of the 13th IIPS Conference, 2–7 February 1997, Long Beach, CA, 2–8, 1997.
Untch, A. and Hortal, M.: A finite-element scheme for the vertical discretization of the semi-Lagrangian version of the ECMWF forecast model, Q. J. Roy. Meteor. Soc., 130, 1505–1530, 2004.
Upson, C., Faulhaber, T., Kamins, D., Laidlaw, D., Schlegel, D., Vroom, J., Gurwitz, R., and Van Dam, A.: The application visualization system: a computational environment for scientific visualization, IEEE Comput. Graphics Appl., 9, 30–42, 1989.
Vaughan, G., Methven, J., Anderson, D., Antonescu, B., Baker, L., Baker, T. P., Ballard, S. P., Bower, K. N., Brown, P. R. A., Chagnon, J., Choularton, T. W., Chylik, J., Connolly, P. J., Cook, P. A., Cotton, R. J., Crosier, J., Dearden, C., Dorsey, J. R., Frame, T. H. A., Gallagher, M. W., Goodliff, M., Gray, S. L., Harvey, B. J., Knippertz, P., Lean, H. W., Li, D., Lloyd, G., Martínez-Alvarado, O., Nicol, J., Norris, J., Öström, E., Owen, J., Parker, D. J., Plant, R. S., Renfrew, I. A., Roberts, N. M., Rosenberg, P., Rudd, A. C., Schultz, D. M., Taylor, J. P., Trzeciak, T., Tubbs, R., Vance, A. K., van Leeuwen, P. J., Wellpott, A., and Woolley, A.: Cloud Banding and Winds in Intense European Cyclones: Results from the DIAMET Project, Bull. Amer. Meteor. Soc., 96, 249–265, 2015.
Voigt, C., Schumann, U., Jurkat, T., Schäuble, D., Schlager, H., Petzold, A., Gayet, J.-F., Krämer, M., Schneider, J., Borrmann, S., Schmale, J., Jessberger, P., Hamburger, T., Lichtenstern, M., Scheibe, M., Gourbeyre, C., Meyer, J., Kübbeler, M., Frey, W., Kalesse, H., Butler, T., Lawrence, M. G., Holzäpfel, F., Arnold, F., Wendisch, M., Döpelheuer, A., Gottschaldt, K., Baumann, R., Zöger, M., Sölch, I., Rautenhaus, M., and Dörnbrack, A.: In-situ observations of young contrails – overview and selected results from the CONCERT campaign, Atmos. Chem. Phys., 10, 9039–9056, https://doi.org/10.5194/acp-10-9039-2010, 2010.
Walton, J.: NAG}'s IRIS {Explorer, in: The Visualization Handbook, edited by Hansen, C. D. and Johnson, C., chap. 32, 633–654, Academic Press, 2005.
Wanger, L. R., Ferwerda, J. A., and Greenberg, D. P.: Perceiving spatial relationships in computer-generated images, IEEE Comput. Graph., 12, 44–58, 1992.
Watson, A. I., Fournier, J. D., Lericos, T. P., and Szoke, E. J.: The use of D3D when examining Tropical Cyclones, in: Proceedings of the 18th IIPS Conference, 13–18 January 2002, Orlando, Florida, 2002.
Watson, D.: Meteorological data visualisation using IBM Visualisation Data Explorer, in: Proceedings of the 5th ECMWF Workshop on Meteorological Operational Systems, 13–17 November 1995, Reading, England, 238–251, 1995.
Weigle, C. and Banks, D. C.: A comparison of the perceptual benefits of linear perspective and physically-based illumination for display of dense 3-D streamtubes, IEEE T. Vis. Comput. Gr., 14, 1723–1730, 2008.
Whitaker, R. T., Mirzargar, M., and Kirby, R. M.: Contour boxplots: a method for characterizing uncertainty in feature sets from simulation ensembles, IEEE T. Vis. Comput. Gr., 19, 2713–2722, 2013.
Wilhelmson, R. B., Jewett, B. F., Shaw, C., Wicker, L. J., Arrott, M., Bushell, C. B., Bajuk, M., Thingvold, J., and Yost, J. B.: A Study of the Evolution of a Numerically Modeled Severe Storm, Int. J. High Perform. C., 4, 20–36, 1990.
Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, 3rd Edn., Academic Press, Amsterdam, 2011.
Wittenbrink, C. M., Pang, A. T., and Lodha, S. K.: Glyphs for visualizing uncertainty in vector fields, IEEE T. Vis. Comput. Gr., 2, 266–279, 1996.
Wulfmeyer, V., Behrendt, A., Bauer, H.-S., Kottmeier, C., Corsmeier, U., Blyth, A., Craig, G., Schumann, U., Hagen, M., Crewell, S., Di Girolamo, P., Flamant, C., Miller, M., Montani, A., Mobbs, S., Richard, E., Rotach, M. W., Arpagaus, M., Russchenberg, H., Schlüssel, P., König, M., Gärtner, V., Steinacker, R., Dorninger, M., Turner, D. D., Weckwerth, T., Hense, A., and Simmer, C.: RESEARCH CAMPAIGN: The Convective and Orographically Induced Precipitation Study, Bull. Amer. Meteor. Soc., 89, 1477–1486, 2008.
Yalda, S., Zoppetti, G., Clark, R., and Mackin, K.: Interactive immersion learning: flying through weather data onboard the GEOpod, B. Am. Meteorol. Soc., 93, 1811–1813, 2012.
Yessad, K.: FULL-POS in the Cycle 40T1 of ARPEGE/IFS, Tech. rep., Meteo-France, 2014.
Zehner, B., Watanabe, N., and Kolditz, O.: Visualization of gridded scalar data with uncertainty in geosciences, Comput. Geosci., 36, 1268–1275, 2010.
Zeileis, A., Hornik, K., and Murrell, P.: Escaping RGBland: selecting colors for statistical graphics, Comput. Stat. Data An., 53, 3259–3270, 2009.
Short summary
This article presents "Met.3D", a new open-source tool for the interactive 3D visualization of numerical ensemble weather predictions. Met.3D builds a bridge from proven 2D visualization methods commonly used in meteorology to 3D visualization and implements approaches to using the ensemble to allow the user to assess forecast uncertainty. The article is the first part of a two-paper study discussing how 3D and ensemble visualization can be used in a meaningful way suited to weather forecasting.
This article presents "Met.3D", a new open-source tool for the interactive 3D visualization of...