Methods for assessment of models
31 Jul 2015
Methods for assessment of models
| 31 Jul 2015
Three-dimensional visualization of ensemble weather forecasts – Part 1: The visualization tool Met.3D (version 1.0)
M. Rautenhaus et al.
Related authors
Andreas Alexander Beckert, Lea Eisenstein, Annika Oertel, Timothy Hewson, George C. Craig, and Marc Rautenhaus
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2022-36, https://doi.org/10.5194/wcd-2022-36, 2022
Preprint under review for WCD
Short summary
Short summary
This study revises and extends a previously presented 3-D objective front detection method and demonstrates its benefits to analyse weather dynamics in numerical simulation data. Based on two case studies of extratropical cyclones, we demonstrate the evaluation of conceptual models from dynamic meteorology, illustrate the benefits of our interactive analysis approach by comparing fronts in data with different model resolutions, and study the impact of convection on fronts.
Christoph Fischer, Andreas H. Fink, Elmar Schömer, Roderick van der Linden, Michael Maier-Gerber, Marc Rautenhaus, and Michael Riemer
Geosci. Model Dev., 15, 4447–4468, https://doi.org/10.5194/gmd-15-4447-2022, https://doi.org/10.5194/gmd-15-4447-2022, 2022
Short summary
Short summary
Potential vorticity (PV) analysis plays a central role in studying atmospheric dynamics. For example, anomalies in the PV field near the tropopause are linked to extreme weather events. In this study, an objective strategy to identify these anomalies is presented and evaluated. As a novel concept, it can be applied to three-dimensional (3-D) data sets. Supported by 3-D visualizations, we illustrate advantages of this new analysis over existing studies along a case study.
Marcel Meyer, Iuliia Polkova, Kameswar Rao Modali, Laura Schaffer, Johanna Baehr, Stephan Olbrich, and Marc Rautenhaus
Weather Clim. Dynam., 2, 867–891, https://doi.org/10.5194/wcd-2-867-2021, https://doi.org/10.5194/wcd-2-867-2021, 2021
Short summary
Short summary
Novel techniques from computer science are used to study extreme weather events. Inspired by the interactive 3-D visual analysis of the recently released ERA5 reanalysis data, we improve commonly used metrics for measuring polar winter storms and outbreaks of cold air. The software (Met.3D) that we have extended and applied as part of this study is freely available and can be used generically for 3-D visualization of a broad variety of atmospheric processes in weather and climate data.
M. Rautenhaus, C. M. Grams, A. Schäfler, and R. Westermann
Geosci. Model Dev., 8, 2355–2377, https://doi.org/10.5194/gmd-8-2355-2015, https://doi.org/10.5194/gmd-8-2355-2015, 2015
Short summary
Short summary
This article presents the application of interactive 3D visualization of ensemble
weather predictions to forecasting warm conveyor belt situations during aircraft-based atmospheric research campaigns. A method to predict 3D probabilities of the spatial occurrence of WCBs is developed and integrated into the 3D visualization tool "Met.3D", introduced in the first part of this two-paper study. A case study demonstrates the use of 3D and uncertainty visualization for weather forecasting.
Konstantin Krüger, Andreas Schäfler, Martin Wirth, Martin Weissmann, and George Craig
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-505, https://doi.org/10.5194/acp-2022-505, 2022
Preprint under review for ACP
Short summary
Short summary
A comprehensive data set of airborne lidar water vapor profiles is compared with ERA5 reanalyses for a robust characterization of the vertical structure of the mid-latitude lower-stratospheric moist bias. We confirm a moist bias of up to 55 % at 1.3 km altitude above the tropopause and uncover a decreasing bias beyond. Co-located O3 and H2O observations reveal a particularly strong bias in the mixing layer providing indication for insufficiently modelled transport processes fostering the bias.
Andreas Alexander Beckert, Lea Eisenstein, Annika Oertel, Timothy Hewson, George C. Craig, and Marc Rautenhaus
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2022-36, https://doi.org/10.5194/wcd-2022-36, 2022
Preprint under review for WCD
Short summary
Short summary
This study revises and extends a previously presented 3-D objective front detection method and demonstrates its benefits to analyse weather dynamics in numerical simulation data. Based on two case studies of extratropical cyclones, we demonstrate the evaluation of conceptual models from dynamic meteorology, illustrate the benefits of our interactive analysis approach by comparing fronts in data with different model resolutions, and study the impact of convection on fronts.
Christoph Fischer, Andreas H. Fink, Elmar Schömer, Roderick van der Linden, Michael Maier-Gerber, Marc Rautenhaus, and Michael Riemer
Geosci. Model Dev., 15, 4447–4468, https://doi.org/10.5194/gmd-15-4447-2022, https://doi.org/10.5194/gmd-15-4447-2022, 2022
Short summary
Short summary
Potential vorticity (PV) analysis plays a central role in studying atmospheric dynamics. For example, anomalies in the PV field near the tropopause are linked to extreme weather events. In this study, an objective strategy to identify these anomalies is presented and evaluated. As a novel concept, it can be applied to three-dimensional (3-D) data sets. Supported by 3-D visualizations, we illustrate advantages of this new analysis over existing studies along a case study.
Oliver Lux, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Benjamin Witschas, Stephan Rahm, Alexander Geiß, Andreas Schäfler, and Oliver Reitebuch
Atmos. Meas. Tech., 15, 1303–1331, https://doi.org/10.5194/amt-15-1303-2022, https://doi.org/10.5194/amt-15-1303-2022, 2022
Short summary
Short summary
The article discusses modifications in the wind retrieval of the ALADIN Airborne Demonstrator (A2D) – one of the key instruments for the validation of Aeolus. Thanks to the retrieval refinements, which are demonstrated in the context of two airborne campaigns in 2019, the systematic and random wind errors of the A2D were significantly reduced, thereby enhancing its validation capabilities. Finally, wind comparisons between A2D and Aeolus for the validation of the satellite data are presented.
Marcel Meyer, Iuliia Polkova, Kameswar Rao Modali, Laura Schaffer, Johanna Baehr, Stephan Olbrich, and Marc Rautenhaus
Weather Clim. Dynam., 2, 867–891, https://doi.org/10.5194/wcd-2-867-2021, https://doi.org/10.5194/wcd-2-867-2021, 2021
Short summary
Short summary
Novel techniques from computer science are used to study extreme weather events. Inspired by the interactive 3-D visual analysis of the recently released ERA5 reanalysis data, we improve commonly used metrics for measuring polar winter storms and outbreaks of cold air. The software (Met.3D) that we have extended and applied as part of this study is freely available and can be used generically for 3-D visualization of a broad variety of atmospheric processes in weather and climate data.
Maxi Boettcher, Andreas Schäfler, Michael Sprenger, Harald Sodemann, Stefan Kaufmann, Christiane Voigt, Hans Schlager, Donato Summa, Paolo Di Girolamo, Daniele Nerini, Urs Germann, and Heini Wernli
Atmos. Chem. Phys., 21, 5477–5498, https://doi.org/10.5194/acp-21-5477-2021, https://doi.org/10.5194/acp-21-5477-2021, 2021
Short summary
Short summary
Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones, often leading to the formation of intense precipitation. We present a case study that involves aircraft, lidar and radar observations of water and clouds in a WCB ascending from western Europe across the Alps towards the Baltic Sea during the field campaigns HyMeX and T-NAWDEX-Falcon in October 2012. A probabilistic trajectory measure and an airborne tracer experiment were used to confirm the long pathway of the WCB.
Andreas Schäfler, Andreas Fix, and Martin Wirth
Atmos. Chem. Phys., 21, 5217–5234, https://doi.org/10.5194/acp-21-5217-2021, https://doi.org/10.5194/acp-21-5217-2021, 2021
Short summary
Short summary
First-ever, collocated ozone and water vapor lidar observations across the tropopause are applied to investigate the extratropical transition layer (ExTL). The combined view of a quasi-instantaneous cross section and its tracer–tracer depiction allows us to analyze the ExTL shape and composition and the formation of mixing lines in relation to the dynamic situation. Such lidar data are relevant for future upper-tropospheric and lower-stratospheric investigations and model validations.
Oliver Lux, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Benjamin Witschas, Stephan Rahm, Andreas Schäfler, and Oliver Reitebuch
Atmos. Meas. Tech., 11, 3297–3322, https://doi.org/10.5194/amt-11-3297-2018, https://doi.org/10.5194/amt-11-3297-2018, 2018
Short summary
Short summary
This work reports airborne wind lidar observations performed in a recent field campaign. The deployed lidar system serves as a demonstrator for the satellite instrument ALADIN on board Aeolus, which is scheduled for launch in 2018 and will become the first wind lidar in space. After presenting the measurement principle, operation procedures and wind retrieval algorithm, the obtained wind results are validated and discussed, providing valuable information in preparation for the satellite mission.
Benedikt Urbanek, Silke Groß, Andreas Schäfler, and Martin Wirth
Atmos. Meas. Tech., 10, 1653–1664, https://doi.org/10.5194/amt-10-1653-2017, https://doi.org/10.5194/amt-10-1653-2017, 2017
Short summary
Short summary
Cirrus evolution from nucleation to cloud breakup can be investigated with a novel classification scheme based on airborne lidar data. Applying it to a case study from the ML-CIRRUS campaign, we investigate the impact of large-scale dynamics and small-scale gravity lee waves on the detailed spatial distribution of evolution stages in individual clouds. Our scheme may help to gain more insights in optical and radiative properties of cirrus under various formation and life cycle conditions.
Manuel Gutleben, Silke Gross, Martin Wirth, and Andreas Schäfler
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-333, https://doi.org/10.5194/amt-2016-333, 2016
Revised manuscript not accepted
Short summary
Short summary
Shallow marine cumulus convection over the Atlantic ocean is studied with observations by airborne and spaceborne lidar instruments. Cloud top height as well as cloud length and cloud gap length distributions are calculated by use of a newly developed algorithm. The distribution of cloud top heights during wintertime measurements shows a two-layer structure. However, significant differences in cloud top height distributions compared to summertime measurements are found.
Thomas Trickl, Hannes Vogelmann, Andreas Fix, Andreas Schäfler, Martin Wirth, Bertrand Calpini, Gilbert Levrat, Gonzague Romanens, Arnoud Apituley, Keith M. Wilson, Robert Begbie, Jens Reichardt, Holger Vömel, and Michael Sprenger
Atmos. Chem. Phys., 16, 8791–8815, https://doi.org/10.5194/acp-16-8791-2016, https://doi.org/10.5194/acp-16-8791-2016, 2016
Short summary
Short summary
A rather homogeneous deep stratospheric intrusion event was mapped by vertical sounding over central Europe and by model calculations along the transport path. The very low minimum H2O mixing ratios demonstrate almost negligible mixing with tropospheric air during the downward transport. The vertical distributions of O3 and aerosol were transferred from the source region to Europe without major change. A rather shallow outflow from the stratosphere was found.
S. Groß, V. Freudenthaler, K. Schepanski, C. Toledano, A. Schäfler, A. Ansmann, and B. Weinzierl
Atmos. Chem. Phys., 15, 11067–11080, https://doi.org/10.5194/acp-15-11067-2015, https://doi.org/10.5194/acp-15-11067-2015, 2015
Short summary
Short summary
In June and July 2013 dual-wavelength lidar measurements were performed in Barbados to study long-range transported Saharan dust across the Atlantic Ocean and investigate transport-induced changes. The focus of our measurements is the intensive optical properties, the lidar ratio and the particle linear depolarization ratio. While the lidar ratio shows no differences compared to the values of fresh Saharan dust, the particle linear depolarization ratio shows slight differences.
M. Rautenhaus, C. M. Grams, A. Schäfler, and R. Westermann
Geosci. Model Dev., 8, 2355–2377, https://doi.org/10.5194/gmd-8-2355-2015, https://doi.org/10.5194/gmd-8-2355-2015, 2015
Short summary
Short summary
This article presents the application of interactive 3D visualization of ensemble
weather predictions to forecasting warm conveyor belt situations during aircraft-based atmospheric research campaigns. A method to predict 3D probabilities of the spatial occurrence of WCBs is developed and integrated into the 3D visualization tool "Met.3D", introduced in the first part of this two-paper study. A case study demonstrates the use of 3D and uncertainty visualization for weather forecasting.
S. Groß, M. Wirth, A. Schäfler, A. Fix, S. Kaufmann, and C. Voigt
Atmos. Meas. Tech., 7, 2745–2755, https://doi.org/10.5194/amt-7-2745-2014, https://doi.org/10.5194/amt-7-2745-2014, 2014
Related subject area
Atmospheric sciences
Computationally efficient methods for large-scale atmospheric inverse modeling
Improving the joint estimation of CO2 and surface carbon fluxes using a constrained ensemble Kalman filter in COLA (v1.0)
RAP-Net: Region Attention Predictive Network for precipitation nowcasting
Effects of point source emission heights in WRF–STILT: a step towards exploiting nocturnal observations in models
uDALES 1.0: a large-eddy simulation model for urban environments
Development and evaluation of the Aerosol Forecast Member in the National Center for Environment Prediction (NCEP)'s Global Ensemble Forecast System (GEFS-Aerosols v1)
Assimilation of GPM-retrieved ocean surface meteorology data for two snowstorm events during ICE-POP 2018
A multi-pollutant and multi-sectorial approach to screening the consistency of emission inventories
Evaluation of a forest parameterization to improve boundary layer flow simulations over complex terrain. A case study using WRF-LES V4.0.1
Stratospheric Nudging And Predictable Surface Impacts (SNAPSI): a protocol for investigating the role of stratospheric polar vortex disturbances in subseasonal to seasonal forecasts
Variational inverse modeling within the Community Inversion Framework v1.1 to assimilate δ13C(CH4) and CH4: a case study with model LMDz-SACS
The Comprehensive Automobile Research System (CARS) – a Python-based automobile emissions inventory model
Validation of turbulent heat transfer models against eddy covariance flux measurements over a seasonally ice-covered lake
Regional evaluation of the performance of the global CAMS chemical modeling system over the United States (IFS cycle 47r1)
Order of magnitude wall time improvement of variational methane inversions by physical parallelization: a demonstration using TM5-4DVAR
Simulated microphysical properties of winter storms from bulk-type microphysics schemes and their evaluation in the Weather Research and Forecasting (v4.1.3) model during the ICE-POP 2018 field campaign
A novel method for objective identification of 3-D potential vorticity anomalies
Multiple same-level and telescoping nesting in GFDL's dynamical core
Global, high-resolution mapping of tropospheric ozone – explainable machine learning and impact of uncertainties
Assessing the roles emission sources and atmospheric processes play in simulating δ15N of atmospheric NOx and NO3− using CMAQ (version 5.2.1) and SMOKE (version 4.6)
The Regional Coupled Suite (RCS-IND1): application of a flexible regional coupled modelling framework to the Indian region at kilometre scale
A comparative analysis for a deep learning model (hyDL-CO v1.0) and Kalman filter to predict CO concentrations in China
Earth System Model Aerosol–Cloud Diagnostics (ESMAC Diags) package, version 1: assessing E3SM aerosol predictions using aircraft, ship, and surface measurements
Effects of vertical ship exhaust plume distributions on urban pollutant concentration – a sensitivity study with MITRAS v2.0 and EPISODE-CityChem v1.4
An emergency response model for the formation and dispersion of plumes originating from major fires (BUOYANT v4.20)
Description and evaluation of the community aerosol dynamics model MAFOR v2.0
Modeling the high-mercury wet deposition in the southeastern US with WRF-GC-Hg v1.0
Development of a deep neural network for predicting 6 h average PM2.5 concentrations up to 2 subsequent days using various training data
Chemistry Across Multiple Phases (CAMP) version 1.0: an integrated multiphase chemistry model
An aerosol vertical data assimilation system (NAQPMS-PDAF v1.0): development and application
Earth system modeling of mercury using CESM2 – Part 1: Atmospheric model CAM6-Chem/Hg v1.0
Conservation laws in a neural network architecture: enforcing the atom balance of a Julia-based photochemical model (v0.2.0)
On the application and grid-size sensitivity of the urban dispersion model CAIRDIO v2.0 under real city weather conditions
Development and evaluation of an advanced National Air Quality Forecasting Capability using the NOAA Global Forecast System version 16
Estimating aerosol emission from SPEXone on the NASA PACE mission using an ensemble Kalman smoother: observing system simulation experiments (OSSEs)
An ensemble-based statistical methodology to detect differences in weather and climate model executables
Multiphase processes in the EC-Earth model and their relevance to the atmospheric oxalate, sulfate, and iron cycles
Sensitivity of precipitation in the highlands and lowlands of Peru to physics parameterization options in WRFV3.8.1
Coupling a weather model directly to GNSS orbit determination – case studies with OpenIFS
Implementation of an ensemble Kalman filter in the Community Multiscale Air Quality model (CMAQ model v5.1) for data assimilation of ground-level PM2.5
Massive-Parallel Trajectory Calculations version 2.2 (MPTRAC-2.2): Lagrangian transport simulations on graphics processing units (GPUs)
Bedymo: a combined quasi-geostrophic and primitive equation model in σ coordinates
Simulation of organics in the atmosphere: evaluation of EMACv2.54 with the Mainz Organic Mechanism (MOM) coupled to the ORACLE (v1.0) submodel
Downscaling Atmospheric Chemistry Simulations with Physically Consistent Deep Learning
On the simulations of aerosol pH in China using WRF-Chem (v4.0): sensitivities of aerosol pH and its temporal variations in haze episodes
Hybrid ensemble-variational data assimilation in ABC-DA within a tropical framework
An update on the 4D-LETKF data assimilation system for the whole neutral atmosphere
Determining the sensitive parameters of the Weather Research and Forecasting (WRF) model for the simulation of tropical cyclones in the Bay of Bengal using global sensitivity analysis and machine learning
A unified framework to estimate the origins of atmospheric moisture and heat using Lagrangian models
Implementation of aerosol data assimilation in WRFDA (v4.0.3) for WRF-Chem (v3.9.1) using the RACM/MADE-VBS scheme
Taewon Cho, Julianne Chung, Scot M. Miller, and Arvind K. Saibaba
Geosci. Model Dev., 15, 5547–5565, https://doi.org/10.5194/gmd-15-5547-2022, https://doi.org/10.5194/gmd-15-5547-2022, 2022
Short summary
Short summary
Atmospheric inverse modeling describes the process of estimating greenhouse gas fluxes or air pollution emissions at the Earth's surface using observations of these gases collected in the atmosphere. The launch of new satellites, the expansion of surface observation networks, and a desire for more detailed maps of surface fluxes have yielded numerous computational and statistical challenges. This article describes computationally efficient methods for large-scale atmospheric inverse modeling.
Zhiqiang Liu, Ning Zeng, Yun Liu, Eugenia Kalnay, Ghassem Asrar, Bo Wu, Qixiang Cai, Di Liu, and Pengfei Han
Geosci. Model Dev., 15, 5511–5528, https://doi.org/10.5194/gmd-15-5511-2022, https://doi.org/10.5194/gmd-15-5511-2022, 2022
Short summary
Short summary
We described the application of a constrained ensemble Kalman filter (CEnKF) in a joint CO2 and surface carbon fluxes estimation study. By assimilating the pseudo-surface and OCO-2 observations, the annual global flux estimation is significantly biased without mass conservation. With the additional CEnKF process, the CO2 mass is strictly constrained, and the estimation of annual fluxes is significantly improved.
Zheng Zhang, Chuyao Luo, Shanshan Feng, Rui Ye, Yunming Ye, and Xutao Li
Geosci. Model Dev., 15, 5407–5419, https://doi.org/10.5194/gmd-15-5407-2022, https://doi.org/10.5194/gmd-15-5407-2022, 2022
Short summary
Short summary
In this paper, we develop a model to predict radar echo sequences and apply it in the precipitation nowcasting field. Different from existing models, we propose two new attention modules. By introducing them, the performance of RAP-Net outperforms other models, especially in those regions with moderate and heavy rainfall. Considering that these regions cause more threats to human activities, the research in our work is significant for preventing natural disasters caused by heavy rainfall.
Fabian Maier, Christoph Gerbig, Ingeborg Levin, Ingrid Super, Julia Marshall, and Samuel Hammer
Geosci. Model Dev., 15, 5391–5406, https://doi.org/10.5194/gmd-15-5391-2022, https://doi.org/10.5194/gmd-15-5391-2022, 2022
Short summary
Short summary
We show that the default representation of point source emissions in WRF–STILT leads to large overestimations when modelling fossil fuel CO2 concentrations for a 30 m high observation site during stable atmospheric conditions. We therefore introduce a novel point source modelling approach in WRF-STILT that takes into account their effective emission heights and results in a much better agreement with observations.
Ivo Suter, Tom Grylls, Birgit S. Sützl, Sam O. Owens, Chris E. Wilson, and Maarten van Reeuwijk
Geosci. Model Dev., 15, 5309–5335, https://doi.org/10.5194/gmd-15-5309-2022, https://doi.org/10.5194/gmd-15-5309-2022, 2022
Short summary
Short summary
Cities are increasingly moving to the fore of climate and air quality research due to their central role in the population’s health and well-being, while suitable models remain scarce. This article describes the development of a new urban LES model, which allows examining the effects of various processes, infrastructure and vegetation on the local climate and air quality. Possible applications are demonstrated and a comparison to an experiment is shown.
Li Zhang, Raffaele Montuoro, Stuart A. McKeen, Barry Baker, Partha S. Bhattacharjee, Georg A. Grell, Judy Henderson, Li Pan, Gregory J. Frost, Jeff McQueen, Rick Saylor, Haiqin Li, Ravan Ahmadov, Jun Wang, Ivanka Stajner, Shobha Kondragunta, Xiaoyang Zhang, and Fangjun Li
Geosci. Model Dev., 15, 5337–5369, https://doi.org/10.5194/gmd-15-5337-2022, https://doi.org/10.5194/gmd-15-5337-2022, 2022
Short summary
Short summary
The NOAA’s air quality predictions contribute to protecting lives and health in the US, which requires sustainable development and improvement of forecast systems. GEFS-Aerosols v1 has been developed in a collaboration between the NOAA research laboratories for operational forecast since September 2020 in the NCEP. The predictions demonstrate substantial improvements for both composition and variability of aerosol distributions over those from the former operational system.
Xuanli Li, Jason B. Roberts, Jayanthi Srikishen, Jonathan L. Case, Walter A. Petersen, Gyuwon Lee, and Christopher R. Hain
Geosci. Model Dev., 15, 5287–5308, https://doi.org/10.5194/gmd-15-5287-2022, https://doi.org/10.5194/gmd-15-5287-2022, 2022
Short summary
Short summary
This research assimilated the Global Precipitation Measurement (GPM) satellite-retrieved ocean surface meteorology data into the Weather Research and Forecasting (WRF) model with the Gridpoint Statistical Interpolation (GSI) system. This was for two snowstorms during the International Collaborative Experiments for PyeongChang 2018 Olympic and Paralympic Winter Games' (ICE-POP 2018) field experiments. The results indicated a positive impact of the data for short-term forecasts for heavy snowfall.
Philippe Thunis, Alain Clappier, Enrico Pisoni, Bertrand Bessagnet, Jeroen Kuenen, Marc Guevara, and Susana Lopez-Aparicio
Geosci. Model Dev., 15, 5271–5286, https://doi.org/10.5194/gmd-15-5271-2022, https://doi.org/10.5194/gmd-15-5271-2022, 2022
Short summary
Short summary
In this work, we propose a screening method to improve the quality of emission inventories, which are responsible for large uncertainties in air-quality modeling. The first step of screening consists of keeping only emission contributions that are relevant enough. In a second step, the method identifies large differences that provide evidence of methodological divergence or errors. We used the approach to compare two versions of the CAMS-REG European-scale inventory over 150 European cities.
Julian Quimbayo-Duarte, Johannes Wagner, Norman Wildmann, Thomas Gerz, and Juerg Schmidli
Geosci. Model Dev., 15, 5195–5209, https://doi.org/10.5194/gmd-15-5195-2022, https://doi.org/10.5194/gmd-15-5195-2022, 2022
Short summary
Short summary
The ultimate objective of this model evaluation is to improve boundary layer flow representation over complex terrain. The numerical model is tested against observations retrieved during the Perdigão 2017 field campaign (moderate complex terrain). We observed that the inclusion of a forest parameterization in the numerical model significantly improves the representation of the wind field in the atmospheric boundary layer.
Peter Hitchcock, Amy Butler, Andrew Charlton-Perez, Chaim I. Garfinkel, Tim Stockdale, James Anstey, Dann Mitchell, Daniela I. V. Domeisen, Tongwen Wu, Yixiong Lu, Daniele Mastrangelo, Piero Malguzzi, Hai Lin, Ryan Muncaster, Bill Merryfield, Michael Sigmond, Baoqiang Xiang, Liwei Jia, Yu-Kyung Hyun, Jiyoung Oh, Damien Specq, Isla R. Simpson, Jadwiga H. Richter, Cory Barton, Jeff Knight, Eun-Pa Lim, and Harry Hendon
Geosci. Model Dev., 15, 5073–5092, https://doi.org/10.5194/gmd-15-5073-2022, https://doi.org/10.5194/gmd-15-5073-2022, 2022
Short summary
Short summary
This paper describes an experimental protocol focused on sudden stratospheric warmings to be carried out by subseasonal forecast modeling centers. These will allow for inter-model comparisons of these major disruptions to the stratospheric polar vortex and their impacts on the near-surface flow. The protocol will lead to new insights into the contribution of the stratosphere to subseasonal forecast skill and new approaches to the dynamical attribution of extreme events.
Joël Thanwerdas, Marielle Saunois, Antoine Berchet, Isabelle Pison, Bruce H. Vaughn, Sylvia Englund Michel, and Philippe Bousquet
Geosci. Model Dev., 15, 4831–4851, https://doi.org/10.5194/gmd-15-4831-2022, https://doi.org/10.5194/gmd-15-4831-2022, 2022
Short summary
Short summary
Estimating CH4 sources by exploiting observations within an inverse modeling framework is a powerful approach. Here, a new system designed to assimilate δ13C(CH4) observations together with CH4 observations is presented. By optimizing both the emissions and associated source signatures of multiple emission categories, this new system can efficiently differentiate the co-located emission categories and provide estimates of CH4 sources that are consistent with isotopic data.
Bok H. Baek, Rizzieri Pedruzzi, Minwoo Park, Chi-Tsan Wang, Younha Kim, Chul-Han Song, and Jung-Hun Woo
Geosci. Model Dev., 15, 4757–4781, https://doi.org/10.5194/gmd-15-4757-2022, https://doi.org/10.5194/gmd-15-4757-2022, 2022
Short summary
Short summary
The Comprehensive Automobile Research System (CARS) is an open-source Python-based automobile emissions inventory model designed to efficiently estimate high-quality emissions. The CARS is designed to utilize the local vehicle activity database, such as vehicle travel distance, road-link-level network information, and vehicle-specific average speed by road type, to generate a temporally and spatially enhanced inventory for policymakers, stakeholders, and the air quality modeling community.
Joonatan Ala-Könni, Kukka-Maaria Kohonen, Matti Leppäranta, and Ivan Mammarella
Geosci. Model Dev., 15, 4739–4755, https://doi.org/10.5194/gmd-15-4739-2022, https://doi.org/10.5194/gmd-15-4739-2022, 2022
Short summary
Short summary
Properties of seasonally ice-covered lakes are not currently sufficiently included in global climate models. To fill this gap, this study evaluates three models that could be used to quantify the amount of heat that moves from and into the lake by the air above it and through evaporation of the ice cover. The results show that the complex nature of the surrounding environment as well as difficulties in accurately measuring the surface temperature of ice introduce errors to these models.
Jason E. Williams, Vincent Huijnen, Idir Bouarar, Mehdi Meziane, Timo Schreurs, Sophie Pelletier, Virginie Marécal, Beatrice Josse, and Johannes Flemming
Geosci. Model Dev., 15, 4657–4687, https://doi.org/10.5194/gmd-15-4657-2022, https://doi.org/10.5194/gmd-15-4657-2022, 2022
Short summary
Short summary
The global CAMS air quality model is used for providing tropospheric ozone information to end users. This paper updates the chemical mechanism employed (CBA) and compares it against two other mechanisms (MOCAGE, MOZART) and a multi-decadal dataset based on a previous version of CBA. We perform extensive validation for the US using multiple surface and aircraft datasets, providing an assessment of biases and the extent of correlation across different seasons during 2014.
Sudhanshu Pandey, Sander Houweling, and Arjo Segers
Geosci. Model Dev., 15, 4555–4567, https://doi.org/10.5194/gmd-15-4555-2022, https://doi.org/10.5194/gmd-15-4555-2022, 2022
Short summary
Short summary
Inversions are used to calculate methane emissions using atmospheric mole-fraction measurements. Multidecadal inversions are needed to extract information from the long measurement records of methane. However, multidecadal inversion computations can take months to finish. Here, we demonstrate an order of magnitude improvement in wall clock time for an iterative multidecadal inversion by physical parallelization of chemical transport model.
Jeong-Su Ko, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, Gregory Thompson, and Alexis Berne
Geosci. Model Dev., 15, 4529–4553, https://doi.org/10.5194/gmd-15-4529-2022, https://doi.org/10.5194/gmd-15-4529-2022, 2022
Short summary
Short summary
This study evaluates the performance of the four microphysics parameterizations, the WDM6, WDM7, Thompson, and Morrison schemes, in simulating snowfall events during the ICE-POP 2018 field campaign. Eight snowfall events are selected and classified into three categories (cold-low, warm-low, and air–sea interaction cases). The evaluation focuses on the simulated hydrometeors, microphysics budgets, wind fields, and precipitation using the measurement data.
Christoph Fischer, Andreas H. Fink, Elmar Schömer, Roderick van der Linden, Michael Maier-Gerber, Marc Rautenhaus, and Michael Riemer
Geosci. Model Dev., 15, 4447–4468, https://doi.org/10.5194/gmd-15-4447-2022, https://doi.org/10.5194/gmd-15-4447-2022, 2022
Short summary
Short summary
Potential vorticity (PV) analysis plays a central role in studying atmospheric dynamics. For example, anomalies in the PV field near the tropopause are linked to extreme weather events. In this study, an objective strategy to identify these anomalies is presented and evaluated. As a novel concept, it can be applied to three-dimensional (3-D) data sets. Supported by 3-D visualizations, we illustrate advantages of this new analysis over existing studies along a case study.
Joseph Mouallem, Lucas Harris, and Rusty Benson
Geosci. Model Dev., 15, 4355–4371, https://doi.org/10.5194/gmd-15-4355-2022, https://doi.org/10.5194/gmd-15-4355-2022, 2022
Short summary
Short summary
The single-nest capability in GFDL's dynamical core, FV3, is upgraded to support multiple same-level and telescoping nests. Grid nesting adds a refined grid over an area of interest to better resolve small-scale flow features necessary to accurately predict special weather events such as severe storms and hurricanes. This work allows concurrent execution of multiple same-level and telescoping multi-level nested grids in both global and regional setups.
Clara Betancourt, Timo T. Stomberg, Ann-Kathrin Edrich, Ankit Patnala, Martin G. Schultz, Ribana Roscher, Julia Kowalski, and Scarlet Stadtler
Geosci. Model Dev., 15, 4331–4354, https://doi.org/10.5194/gmd-15-4331-2022, https://doi.org/10.5194/gmd-15-4331-2022, 2022
Short summary
Short summary
Ozone is a toxic greenhouse gas with high spatial variability. We present a machine-learning-based ozone-mapping workflow generating a transparent and reliable product. Going beyond standard mapping methods, this work combines explainable machine learning with uncertainty assessment to increase the integrity of the produced map.
Huan Fang and Greg Michalski
Geosci. Model Dev., 15, 4239–4258, https://doi.org/10.5194/gmd-15-4239-2022, https://doi.org/10.5194/gmd-15-4239-2022, 2022
Short summary
Short summary
A new emission input dataset that incorporates nitrogen isotopes has been used in the CMAQ (Community Multiscale Air Quality) modeling system simulation to qualitatively analyze the changes in δ15N values, due to the dispersion, mixing, and transport of the atmospheric NOx emitted from different sources. The dispersion, mixing, and transport of the atmospheric NOx were based on the meteorology files generated from the WRF (Weather Research and Forecasting) model.
Juan Manuel Castillo, Huw W. Lewis, Akhilesh Mishra, Ashis Mitra, Jeff Polton, Ashley Brereton, Andrew Saulter, Alex Arnold, Segolene Berthou, Douglas Clark, Julia Crook, Ananda Das, John Edwards, Xiangbo Feng, Ankur Gupta, Sudheer Joseph, Nicholas Klingaman, Imranali Momin, Christine Pequignet, Claudio Sanchez, Jennifer Saxby, and Maria Valdivieso da Costa
Geosci. Model Dev., 15, 4193–4223, https://doi.org/10.5194/gmd-15-4193-2022, https://doi.org/10.5194/gmd-15-4193-2022, 2022
Short summary
Short summary
A new environmental modelling system has been developed to represent the effect of feedbacks between atmosphere, land, and ocean in the Indian region. Different approaches to simulating tropical cyclones Titli and Fani are demonstrated. It is shown that results are sensitive to the way in which the ocean response to cyclone evolution is captured in the system. Notably, we show how a more rigorous formulation for the near-surface energy budget can be included when air–sea coupling is included.
Weichao Han, Tai-Long He, Zhaojun Tang, Min Wang, Dylan Jones, and Zhe Jiang
Geosci. Model Dev., 15, 4225–4237, https://doi.org/10.5194/gmd-15-4225-2022, https://doi.org/10.5194/gmd-15-4225-2022, 2022
Short summary
Short summary
We present an application of a hybrid deep learning (DL) model on prediction of surface CO in China from 2015 to 2020, which utilizes both convolutional neural networks and long short-term memory neural networks. The DL model performance is better than a Kalman filter (KF) system in the training period (2005–2018). Furthermore, the DL model demonstrates good temporal extensibility: the mean bias and correlation coefficients are 95.7 ppb and 0.93 in the test period (2019–2020) over eastern China.
Shuaiqi Tang, Jerome D. Fast, Kai Zhang, Joseph C. Hardin, Adam C. Varble, John E. Shilling, Fan Mei, Maria A. Zawadowicz, and Po-Lun Ma
Geosci. Model Dev., 15, 4055–4076, https://doi.org/10.5194/gmd-15-4055-2022, https://doi.org/10.5194/gmd-15-4055-2022, 2022
Short summary
Short summary
We developed an Earth system model (ESM) diagnostics package to compare various types of aerosol properties simulated in ESMs with aircraft, ship, and surface measurements from six field campaigns across spatial scales. The diagnostics package is coded and organized to be flexible and modular for future extension to other field campaign datasets and adapted to higher-resolution model simulations. Future releases will include comprehensive cloud and aerosol–cloud interaction diagnostics.
Ronny Badeke, Volker Matthias, Matthias Karl, and David Grawe
Geosci. Model Dev., 15, 4077–4103, https://doi.org/10.5194/gmd-15-4077-2022, https://doi.org/10.5194/gmd-15-4077-2022, 2022
Short summary
Short summary
For air quality modeling studies, it is very important to distribute pollutants correctly into the model system. This has not yet been done for shipping pollution in great detail. We studied the effects of different vertical distributions of shipping pollutants on the urban air quality and derived advanced formulas for it. These formulas take weather conditions and ship-specific parameters like the exhaust gas temperature into account.
Jaakko Kukkonen, Juha Nikmo, Kari Riikonen, Ilmo Westerholm, Pekko Ilvessalo, Tuomo Bergman, and Klaus Haikarainen
Geosci. Model Dev., 15, 4027–4054, https://doi.org/10.5194/gmd-15-4027-2022, https://doi.org/10.5194/gmd-15-4027-2022, 2022
Short summary
Short summary
A mathematical model has been developed for the dispersion of plumes originating from major fires. We have refined the model for the early evolution of the fire plumes; such a module has not been previously presented. We have evaluated the model against experimental field-scale data. The predicted concentrations agreed well with the aircraft measurements. We have also compiled an operational version of the model, which can be used for emergency contingency planning in the case of major fires.
Matthias Karl, Liisa Pirjola, Tiia Grönholm, Mona Kurppa, Srinivasan Anand, Xiaole Zhang, Andreas Held, Rolf Sander, Miikka Dal Maso, David Topping, Shuai Jiang, Leena Kangas, and Jaakko Kukkonen
Geosci. Model Dev., 15, 3969–4026, https://doi.org/10.5194/gmd-15-3969-2022, https://doi.org/10.5194/gmd-15-3969-2022, 2022
Short summary
Short summary
The community aerosol dynamics model MAFOR includes several advanced features: coupling with an up-to-date chemistry mechanism for volatile organic compounds, a revised Brownian coagulation kernel that takes into account the fractal geometry of soot particles, a multitude of nucleation parameterizations, size-resolved partitioning of semi-volatile inorganics, and a hybrid method for the formation of secondary organic aerosols within the framework of condensation and evaporation.
Xiaotian Xu, Xu Feng, Haipeng Lin, Peng Zhang, Shaojian Huang, Zhengcheng Song, Yiming Peng, Tzung-May Fu, and Yanxu Zhang
Geosci. Model Dev., 15, 3845–3859, https://doi.org/10.5194/gmd-15-3845-2022, https://doi.org/10.5194/gmd-15-3845-2022, 2022
Short summary
Short summary
Mercury is one of the most toxic pollutants in the environment, and wet deposition is a major process for atmospheric mercury to enter, causing ecological and human health risks. High-mercury wet deposition in the southeastern US has been a problem for many years. Here we employed a newly developed high-resolution WRF-GC model with the capability to simulate mercury to study this problem. We conclude that deep convection caused enhanced mercury wet deposition in the southeastern US.
Jeong-Beom Lee, Jae-Bum Lee, Youn-Seo Koo, Hee-Yong Kwon, Min-Hyeok Choi, Hyun-Ju Park, and Dae-Gyun Lee
Geosci. Model Dev., 15, 3797–3813, https://doi.org/10.5194/gmd-15-3797-2022, https://doi.org/10.5194/gmd-15-3797-2022, 2022
Short summary
Short summary
The predication of PM2.5 has been carried out using a numerical air quality model in South Korea. Despite recent progress of numerical air quality models, accurate prediction of PM2.5 is still challenging. In this study, we developed a data-based model using a deep neural network (DNN) to overcome the limitations of numerical air quality models. The results showed that the DNN model outperformed the CMAQ when it was trained by using observation and forecasting data from the numerical models.
Matthew L. Dawson, Christian Guzman, Jeffrey H. Curtis, Mario Acosta, Shupeng Zhu, Donald Dabdub, Andrew Conley, Matthew West, Nicole Riemer, and Oriol Jorba
Geosci. Model Dev., 15, 3663–3689, https://doi.org/10.5194/gmd-15-3663-2022, https://doi.org/10.5194/gmd-15-3663-2022, 2022
Short summary
Short summary
Progress in identifying complex, mixed-phase physicochemical processes has resulted in an advanced understanding of the evolution of atmospheric systems but has also introduced a level of complexity that few atmospheric models were designed to handle. We present a flexible treatment for multiphase chemical processes for models of diverse scale, from box up to global models. This enables users to build a customized multiphase mechanism that is accessible to a much wider community.
Haibo Wang, Ting Yang, Zifa Wang, Jianjun Li, Wenxuan Chai, Guigang Tang, Lei Kong, and Xueshun Chen
Geosci. Model Dev., 15, 3555–3585, https://doi.org/10.5194/gmd-15-3555-2022, https://doi.org/10.5194/gmd-15-3555-2022, 2022
Short summary
Short summary
In this paper, we develop an online data coupled assimilation system (NAQPMS-PDAF) with the Eulerian atmospheric chemistry-transport model. NAQPMS-PDAF allows efficient use of large computational resources. The application and performance of the system are investigated by assimilating 1 month of vertical aerosol observations. The results show that NAQPMS-PDAF can significantly improve the performance of aerosol vertical structure simulation and reduce the uncertainty to a large extent.
Peng Zhang and Yanxu Zhang
Geosci. Model Dev., 15, 3587–3601, https://doi.org/10.5194/gmd-15-3587-2022, https://doi.org/10.5194/gmd-15-3587-2022, 2022
Short summary
Short summary
Mercury is a global pollutant that can be transported over long distance through the atmosphere. We develop a new online global model for atmospheric mercury. The model reproduces the observed global atmospheric mercury concentrations and deposition distributions by simulating the emissions, transport, and physicochemical processes of atmospheric mercury. And we find that the seasonal variations of atmospheric Hg are the result of multiple processes and have obvious regional characteristics.
Patrick Obin Sturm and Anthony S. Wexler
Geosci. Model Dev., 15, 3417–3431, https://doi.org/10.5194/gmd-15-3417-2022, https://doi.org/10.5194/gmd-15-3417-2022, 2022
Short summary
Short summary
Large air quality and climate models require vast amounts of computational power. Machine learning tools like neural networks can be used to make these models more efficient, with the downside that their results might not make physical sense or be easy to interpret. This work develops a physically interpretable neural network that obeys scientific laws like conservation of mass and models atmospheric composition more accurately than a traditional neural network.
Michael Weger, Holger Baars, Henriette Gebauer, Maik Merkel, Alfred Wiedensohler, and Bernd Heinold
Geosci. Model Dev., 15, 3315–3345, https://doi.org/10.5194/gmd-15-3315-2022, https://doi.org/10.5194/gmd-15-3315-2022, 2022
Short summary
Short summary
Numerical models are an important tool to assess the air quality in cities,
as they can provide near-continouos data in time and space. In this paper,
air pollution for an entire city is simulated at a high spatial resolution of 40 m.
At this spatial scale, the effects of buildings on the atmosphere,
like channeling or blocking of the air flow, are directly represented by diffuse obstacles in the used model CAIRDIO. For model validation, measurements from air-monitoring sites are used.
Patrick C. Campbell, Youhua Tang, Pius Lee, Barry Baker, Daniel Tong, Rick Saylor, Ariel Stein, Jianping Huang, Ho-Chun Huang, Edward Strobach, Jeff McQueen, Li Pan, Ivanka Stajner, Jamese Sims, Jose Tirado-Delgado, Youngsun Jung, Fanglin Yang, Tanya L. Spero, and Robert C. Gilliam
Geosci. Model Dev., 15, 3281–3313, https://doi.org/10.5194/gmd-15-3281-2022, https://doi.org/10.5194/gmd-15-3281-2022, 2022
Short summary
Short summary
NOAA's National Air Quality Forecast Capability (NAQFC) continues to protect Americans from the harmful effects of air pollution, while saving billions of dollars per year. Here we describe and evaluate the development of the most advanced version of the NAQFC to date, which became operational at NOAA on 20 July 2021. The new NAQFC is based on a coupling of NOAA's operational Global Forecast System (GFS) version 16 with the Community Multiscale Air Quality (CMAQ) model version 5.3.1.
Athanasios Tsikerdekis, Nick A. J. Schutgens, Guangliang Fu, and Otto P. Hasekamp
Geosci. Model Dev., 15, 3253–3279, https://doi.org/10.5194/gmd-15-3253-2022, https://doi.org/10.5194/gmd-15-3253-2022, 2022
Short summary
Short summary
In our study we quantify the ability of the future satellite sensor SPEXone, part of the NASA PACE mission, to estimate aerosol emissions. The sensor will be able to retrieve accurate information of aerosol light extinction and most importantly light absorption. We simulate SPEXone spatial coverage and combine it with an aerosol model. We found that SPEXone will be able to estimate species-specific (e.g. dust, sea salt, organic or black carbon, sulfates) aerosol emissions very accurately.
Christian Zeman and Christoph Schär
Geosci. Model Dev., 15, 3183–3203, https://doi.org/10.5194/gmd-15-3183-2022, https://doi.org/10.5194/gmd-15-3183-2022, 2022
Short summary
Short summary
Our atmosphere is a chaotic system, where even a tiny change can have a big impact. This makes it difficult to assess if small changes, such as the move to a new hardware architecture, will significantly affect a weather and climate model. We present a methodology that allows to objectively verify this. The methodology is applied to several test cases, showing a high sensitivity. Results also show that a major system update of the underlying supercomputer did not significantly affect our model.
Stelios Myriokefalitakis, Elisa Bergas-Massó, María Gonçalves-Ageitos, Carlos Pérez García-Pando, Twan van Noije, Philippe Le Sager, Akinori Ito, Eleni Athanasopoulou, Athanasios Nenes, Maria Kanakidou, Maarten C. Krol, and Evangelos Gerasopoulos
Geosci. Model Dev., 15, 3079–3120, https://doi.org/10.5194/gmd-15-3079-2022, https://doi.org/10.5194/gmd-15-3079-2022, 2022
Short summary
Short summary
We here describe the implementation of atmospheric multiphase processes in the EC-Earth Earth system model. We provide global budgets of oxalate, sulfate, and iron-containing aerosols, along with an analysis of the links among atmospheric composition, aqueous-phase processes, and aerosol dissolution, supported by comparison to observations. This work is a first step towards an interactive calculation of the deposition of bioavailable atmospheric iron coupled to the model’s ocean component.
Santos J. González-Rojí, Martina Messmer, Christoph C. Raible, and Thomas F. Stocker
Geosci. Model Dev., 15, 2859–2879, https://doi.org/10.5194/gmd-15-2859-2022, https://doi.org/10.5194/gmd-15-2859-2022, 2022
Short summary
Short summary
Different configurations of physics parameterizations of a regional climate model are tested over southern Peru at fine resolution. The most challenging regions compared to observational data are the slopes of the Andes. Model configurations for Europe and East Africa are not perfectly suitable for southern Peru. The experiment with the Stony Brook University microphysics scheme and the Grell–Freitas cumulus parameterization provides the most accurate results over Madre de Dios.
Angel Navarro Trastoy, Sebastian Strasser, Lauri Tuppi, Maksym Vasiuta, Markku Poutanen, Torsten Mayer-Gürr, and Heikki Järvinen
Geosci. Model Dev., 15, 2763–2771, https://doi.org/10.5194/gmd-15-2763-2022, https://doi.org/10.5194/gmd-15-2763-2022, 2022
Short summary
Short summary
Production of satellite products relies on information from different centers. By coupling a weather model and an orbit determination solver we eliminate the dependence on one of the centers. The coupling has proven to be possible in the first stage, where no formatting has been applied to any of the models involved. This opens a window for further development and improvement to a coupling that has proven to be as good as the predecessor model.
Soon-Young Park, Uzzal Kumar Dash, Jinhyeok Yu, Keiya Yumimoto, Itsushi Uno, and Chul Han Song
Geosci. Model Dev., 15, 2773–2790, https://doi.org/10.5194/gmd-15-2773-2022, https://doi.org/10.5194/gmd-15-2773-2022, 2022
Short summary
Short summary
An EnKF was applied to CMAQ for assimilating ground PM2.5 observations from China and South Korea. The EnKF performed better than that without assimilation and even superior to 3D-Var. The reduced MBs in 24 h predictions were 48 % and 27 % by improving ICs and BCs, respectively.
Lars Hoffmann, Paul F. Baumeister, Zhongyin Cai, Jan Clemens, Sabine Griessbach, Gebhard Günther, Yi Heng, Mingzhao Liu, Kaveh Haghighi Mood, Olaf Stein, Nicole Thomas, Bärbel Vogel, Xue Wu, and Ling Zou
Geosci. Model Dev., 15, 2731–2762, https://doi.org/10.5194/gmd-15-2731-2022, https://doi.org/10.5194/gmd-15-2731-2022, 2022
Short summary
Short summary
We describe the new version (2.2) of the Lagrangian transport model MPTRAC, which has been ported for application on GPUs. The model was verified by comparing kinematic trajectories and synthetic tracer simulations for the free troposphere and stratosphere from GPUs and CPUs. Benchmarking showed a speed-up of a factor of 16 of GPU-enabled simulations compared to CPU-only runs, indicating the great potential of applying GPUs for Lagrangian transport simulations on upcoming HPC systems.
Clemens Spensberger, Trond Thorsteinsson, and Thomas Spengler
Geosci. Model Dev., 15, 2711–2729, https://doi.org/10.5194/gmd-15-2711-2022, https://doi.org/10.5194/gmd-15-2711-2022, 2022
Short summary
Short summary
In order to understand the atmosphere, we rely on a hierarchy of models ranging from very simple to very complex. Comparing different steps in this hierarchy usually entails comparing different models. Here we combine two such steps that are commonly used in one modelling framework. This makes comparisons both much easier and much more direct.
Andrea Pozzer, Simon F. Reifenberg, Vinod Kumar, Bruno Franco, Matthias Kohl, Domenico Taraborrelli, Sergey Gromov, Sebastian Ehrhart, Patrick Jöckel, Rolf Sander, Veronica Fall, Simon Rosanka, Vlassis Karydis, Dimitris Akritidis, Tamara Emmerichs, Monica Crippa, Diego Guizzardi, Johannes W. Kaiser, Lieven Clarisse, Astrid Kiendler-Scharr, Holger Tost, and Alexandra Tsimpidi
Geosci. Model Dev., 15, 2673–2710, https://doi.org/10.5194/gmd-15-2673-2022, https://doi.org/10.5194/gmd-15-2673-2022, 2022
Short summary
Short summary
A newly developed setup of the chemistry general circulation model EMAC (ECHAM5/MESSy for Atmospheric Chemistry) is evaluated here. A comprehensive organic degradation mechanism is used and coupled with a volatility base model.
The results show that the model reproduces most of the tracers and aerosols satisfactorily but shows discrepancies for oxygenated organic gases. It is also shown that this model configuration can be used for further research in atmospheric chemistry.
Andrew Geiss, Sam Silva, and Joseph Hardin
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-76, https://doi.org/10.5194/gmd-2022-76, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
This work demonstrates using modern machine learning techniques to enhance the resolution of atmospheric chemistry simulations. We evaluate the schemes for an 8 x 10 increase in resolution and find that they perform substantially better than conventional methods. Methods are introduced to target the machine learning methods towards this type of problem, most notably, by ensuring they do not break known physical constraints.
Xueyin Ruan, Chun Zhao, Rahul A. Zaveri, Pengzhen He, Xinming Wang, Jingyuan Shao, and Lei Geng
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-62, https://doi.org/10.5194/gmd-2022-62, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
Accurate prediction of aerosol pH in chemical transport models is essential to aerosol modeling. This study examines the performance of Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) on aerosol pH predictions and the sensitivities to emissions of nonvolatile cations and NH3, aerosol phase state assumption and heterogeneous sulfate production. Temporal evolution of aerosol pH during haze cycles in Beijing and the driving factors are also presented and discussed.
Joshua Chun Kwang Lee, Javier Amezcua, and Ross Noel Bannister
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-3, https://doi.org/10.5194/gmd-2022-3, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
In this article, we implement a novel data assimilation method for the ABC-DA system, which combines traditional data assimilation approaches in a hybrid approach. We document the technical development and test the hybrid approach in idealised experiments within a tropical framework of the ABC-DA system. Our findings indicate that the hybrid approach outperforms individual traditional approaches. Its potential benefits have been highlighted and should be explored further within this framework.
Dai Koshin, Kaoru Sato, Masashi Kohma, and Shingo Watanabe
Geosci. Model Dev., 15, 2293–2307, https://doi.org/10.5194/gmd-15-2293-2022, https://doi.org/10.5194/gmd-15-2293-2022, 2022
Short summary
Short summary
The 4D ensemble Kalman filter data assimilation system for the whole neutral atmosphere has been updated. The update includes the introduction of a filter to reduce the generation of spurious waves, change in the order of horizontal diffusion of the forecast model to reproduce more realistic tidal amplitudes, and use of additional satellite observations. As a result, the analysis performance has been greatly improved, even for disturbances with periods of less than 1 d.
Harish Baki, Sandeep Chinta, C Balaji, and Balaji Srinivasan
Geosci. Model Dev., 15, 2133–2155, https://doi.org/10.5194/gmd-15-2133-2022, https://doi.org/10.5194/gmd-15-2133-2022, 2022
Short summary
Short summary
WRF model accuracy relies on numerous aspects, and the model parameters are one of them. By calibrating the model parameters, we can improve the model forecast. However, there exist hundreds of parameters, and calibrating all of them is unimaginably expensive. Thus, there is a need to identify the sensitive parameters that influence the model output variables to reduce the parameter dimensionality. This study addresses the different methods and outcomes of parameter sensitivity analysis.
Jessica Keune, Dominik L. Schumacher, and Diego G. Miralles
Geosci. Model Dev., 15, 1875–1898, https://doi.org/10.5194/gmd-15-1875-2022, https://doi.org/10.5194/gmd-15-1875-2022, 2022
Short summary
Short summary
Air transports moisture and heat, shaping the weather we experience. When and where was this air moistened and warmed by the surface? To address this question, atmospheric models trace the history of air parcels in space and time. However, their uncertainties remain unexplored, which hinders their utility and application. Here, we present a framework that sheds light on these uncertainties. Our approach sets a new standard in the assessment of atmospheric moisture and heat trajectories.
Soyoung Ha
Geosci. Model Dev., 15, 1769–1788, https://doi.org/10.5194/gmd-15-1769-2022, https://doi.org/10.5194/gmd-15-1769-2022, 2022
Short summary
Short summary
In an effort to improve air quality forecasting, the WRFDA 3D-Var system is newly extended for the assimilation of surface PM2.5 and PM10 using the RACM/MADE-VBS chemistry in the WRF-Chem model. Through a case study during the Korea–United States Air Quality (KORUS-AQ) period, it is demonstrated that the analysis can lead to improving the prediction of surface PM concentrations up to 26 % for 24 h, diminishing most bias errors.
Cited articles
Abram, G. and Treinish, L.: An Extended Data-Flow Architecture for Data Analysis and Visualization, in: Proceedings of the 6th Conference on Visualization '95, VIS '95, IEEE Computer Society, Washington, DC, USA, 1995.
Alpert, J. C.: 3-dimensional animated displays for sifting out medium range weather events, in: 19th Conference on IIPS, 9–13 February 2003, Long Beach, California, 2003.
Bailey, M.: Using GPU shaders for visualization, IEEE Comput. Graph., 29, 96–100, 2009.
Bailey, M.: Using GPU shaders for visualization, Part 2, IEEE Comput. Graph., 31, 67–73, 2011.
Bailey, M.: Using GPU shaders for visualization, Part 3, IEEE Comput. Graph., 33, 5–11, 2013.
Barjenbruch, D. B., Thaler, E., and Szoke, E. J.: Operational Applications of Three Dimensional Air Parcel Trajectories Using AWIPS D3D, in: Proceedings of the 18th IIPS Conference, 13–18 January 2002, Orlando, Florida, 2002.
Böttinger, M., Gülzow, V., and Biercamp, J.: Visualisierung als Werkzeug zur Analyse von Klimasimulationsdaten, in: Umweltinformatik '98: Vernetzte Strukturen in Informatik, Umwelt und Wirtschaft, edited by: Haasis, H. D. and Ranze, K. C., 1998.
Böttinger, M., Meier-Fleischer, K., and Ulmen, C.: Tutorial: Interactive 3D Visualization in Earth System Research with Avizo Green 8.0, DKRZ/KlimaCampus Hamburg, 2013.
Brown, R.: Animated visual vibrations as an uncertainty visualisation technique, in: Proceedings of the 2nd International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia, GRAPHITE '04, ACM, New York, NY, USA, 84–89, 2004.
Browning, K. A. and Roberts, N. M.: Structure of a frontal cyclone, Q. J. Roy. Meteor. Soc., 120, 1535–1557, 1994.
Buizza, R., Bidlot, J.-R., Wedi, N., Fuentes, M., Hamrud, M., Holt, G., Palmer, T., and Vitart, F.: The ECMWF Variable Resolution Ensemble Prediction System VAREPS, ECMWF Newsletter, 108, 14–20, 2006.
Clyne, J., Mininni, P., Norton, A., and Rast, M.: Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation, New J. Phys., 9, 301, https://doi.org/10.1088/1367-2630/9/8/301, 2007.
Cox, J., House, D., and Lindell, M.: Visualizing uncertainty in predicted hurricane tracks, Int. J. Uncertainty Quant., 3, 143–156, 2013.
Djurcilov, S., Kim, K., Lermusiaux, P., and Pang, A.: Visualizing scalar volumetric data with uncertainty, Comput. Graph., 26, 239–248, 2002.
Ducrocq, V., Braud, I., Davolio, S., Ferretti, R., Flamant, C., Jansa, A., Kalthoff, N., Richard, E., Taupier-Letage, I., Ayral, P.-A., Belamari, S., Berne, A., Borga, M., Boudevillain, B., Bock, O., Boichard, J.-L., Bouin, M.-N., Bousquet, O., Bouvier, C., Chiggiato, J., Cimini, D., Corsmeier, U., Coppola, L., Cocquerez, P., Defer, E., Delanoë, J., Di Girolamo, P., Doerenbecher, A., Drobinski, P., Dufournet, Y., Fourrié, N., Gourley, J. J., Labatut, L., Lambert, D., Le Coz, J., Marzano, F. S., Molinié, G., Montani, A., Nord, G., Nuret, M., Ramage, K., Rison, W., Roussot, O., Said, F., Schwarzenboeck, A., Testor, P., Van Baelen, J., Vincendon, B., Aran, M., and Tamayo, J.: HyMeX-SOP1: The Field Campaign Dedicated to Heavy Precipitation and Flash Flooding in the Northwestern Mediterranean, Bull. Amer. Meteor. Soc., 95, 1083–1100, 2014.
Dyer, J. and Amburn, P.: Desktop visualization of meteorological data using paraview, Kitware Source, 14, 7–10, 2010.
Elsberry, R. L. and Harr, P. A.: Tropical cyclone structure (TCS08) field experiment science basis, observational platforms, and strategy, Asia-Pacific J. Atmos. Sci., 44, 209–231, 2008.
Engel, K., Hadwiger, M., Kniss, J., Rezk-Salama, C., and Weiskopf, D.: Real-Time Volume Graphics, 1st Edn., AK Peters, Wellesley, Mass, 2006.
Favre, J. M. and Valle, M.: AVS and AVS/Express, in: The Visualization Handbook, edited by Hansen, C. D. and Johnson, C., Chap. 33, 655–672, Academic Press, 2005.
Gallus, W. A., Yarger, D. N., Cruz-Neira, C., and Heer, R.: An Example of a Virtual Reality Learning Environment, Bull. Amer. Meteor. Soc., 84, 18–20, 2003.
Gallus, W. A., Cervato, C., Cruz-Neira, C., Faidley, G., and Heer, R.: Learning Storm Dynamics with a Virtual Thunderstorm, Bull. Amer. Meteor. Soc., 86, 162–163, 2005.
Gneiting, T. and Raftery, A. E.: Weather forecasting with ensemble methods, Science, 310, 248–249, 2005.
Grigoryan, G. and Rheingans, P.: Point-based probabilistic surfaces to show surface uncertainty, IEEE T. Vis. Comput. Gr., 10, 564–573, 2004.
Grotjahn, R. and Chervin, R. M.: Animated Graphics in Meteorological Research and Presentations, Bull. Amer. Meteor. Soc., 65, 1201–1208, 1984.
Hansen, C. D. and Johnson, C.: The Visualization Handbook, 1st Edn., Academic Press, Burlington, MA, 2005.
Heizenrieder, D. and Haucke, S.: Das meteorologische Visualisierungs- und Produktionssystem NinJo, promet, 35, 57–69, 2009.
Henderson, A., Ahrens, J., and Law, C.: The ParaView Guide, Kitware, Clifton Park, NY, 2004.
Hewson, T. D. and Titley, H. A.: Objective identification, typing and tracking of the complete life-cycles of cyclonic features at high spatial resolution, Met. Apps, 17, 355–381, 2010.
Hibbard, W. L.: Computer-Generated Imagery for 4-D Meteorological Data, Bull. Amer. Meteor. Soc., 67, 1362–1369, 1986.
Hibbard, W. L.: VisAD: Connecting People to Computations and People to People, SIGGRAPH Comput. Graph., 32, 10–12, 1998.
Hibbard, W. L.: The top five problems that motivated my work, IEEE Comput. Graph., 24, 9–13, 2004.
Hibbard, W. L.: Vis5D, Cave5D, and VisAD, in: The Visualization Handbook, edited by Hansen, C. D. and Johnson, C., chap. 34, pp. 673–688, Academic Press, 2005.
Hibbard, W. L. and Santek, D.: The VIS-5D system for easy interactive visualization, in: Proceedings of the 1st Conference on Visualization '90, VIS '90, San Francisco, CA, USA, 23–26 October 1990, IEEE Computer Society Press, Los Alamitos, CA, USA, 28–35, 1990.
Hibbard, W. L., Santek, D., Uccellini, L., and Brill, K.: Application of the 4-D McIDAS to a Model Diagnostic Study of the Presidents' Day Cyclone, Bull. Amer. Meteor. Soc., 70, 1394–1403, 1989.
Hoffman, R. R. and Coffey, J. W.: Weather forecasting and the principles of complex cognitive systems, in: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Vol. 48, New Orleans, Louisiana, 20–24 September 2004, SAGE Publications, 315–319, https://doi.org/10.1177/154193120404800309, 2004.
Hoffman, R. R., Detweiler, M., Conway, J. A., and Lipton, K.: Some considerations in using color in meteorological displays, Weather Forecast., 8, 505–518, 1993.
Höllt, T., Magdy, A., Zhan, P., Chen, G., Gopalakrishnan, G., Hoteit, I., Hansen, C. D., and Hadwiger, M.: Ovis: a framework for visual analysis of ocean forecast ensembles, IEEE T. Vis. Comput. Gr., 20, 1114–1126, https://doi.org/10.1109/TVCG.2014.2307892, 2014.
Johnson, C. R. and Sanderson, A. R.: A next step: visualizing errors and uncertainty, IEEE Comput. Graph., 23, 6–10, 2003.
Jönsson, D., Sundén, E., Ynnerman, A., and Ropinski, T.: A survey of volumetric illumination techniques for interactive volume rendering, Comput. Graphics Forum, 33, 27–51, 2014.
Kaufmann, S., Voigt, C., Jeßberger, P., Jurkat, T., Schlager, H., Schwarzenboeck, A., Klingebiel, M., and Thornberry, T.: In situ measurements of ice saturation in young contrails, Geophys. Res. Lett., 41, 702–709, https://doi.org/10.1002/2013gl058276, 2014.
Koppert, H. J., Schröder, F., Hergenröther, E., Lux, M., and Trembilski, A.: 3-D visualisation in daily operation at the DWD, in: Proceedings of the 6th ECMWF Workshop on Meteorological Operational Systems, Reading, England, 17–21 November 1997, 119–142, 1998.
Krüger, J. and Westermann, R.: Acceleration techniques for GPU-based volume rendering, in: Proceedings of the 14th IEEE Visualization 2003 (VIS'03), Seattle, Washington, 22–24 October 2003, 287–292, IEEE Computer Society, Washington, DC, USA, https://doi.org/10.1109/VIS.2003.10001, 2003.
Lalaurette, F.: Early detection of abnormal weather conditions using a probabilistic extreme forecast index, Q. J. Roy. Meteor. Soc., 129, 3037–3057, 2003.
Lamy-Thépaut, S., Sahin, C., and Raoult, B.: ecCharts service, ECMWF Newsletter, 134, 7–9, 2013.
Leutbecher, M. and Palmer, T.: Ensemble forecasting, J. Comput. Phys., 227, 3515–3539, 2008.
Lindemann, F. and Ropinski, T.: About the influence of illumination models on image comprehension in direct volume rendering, IEEE T. Vis. Comput. Gr., 17, 1922–1931, 2011.
Lundstrom, C., Ljung, P., Persson, A., and Ynnerman, A.: Uncertainty visualization in medical volume rendering using probabilistic animation, IEEE T. Vis. Comput. Gr., 13, 1648–1655, 2007.
Lux, M., and Frühauf, T.: A visualization system for operational meteorological use, in: Proceedings of the Sixth International Conference in Central Europe on Computer Graphics and Visualization (WSCG'98), Plzen, Czech Republic, 9–13 February 1998, 525–534, 1998.
McCaslin, P. T., McDonald, P. A., and Szoke, E. J.: 3-D visualization development at NOAA forecast systems laboratory, Comp. Graph., 34, 41–44, 2000.
Middleton, D., Scheitlin, T., and Wilhelmson, B.: Visualization in weather and climatic research, in: The Visualization Handbook, Chap. 44, edited by: Hansen, C. D. and Johnson, C., Academic Press, 845–871, 2005.
Miller, M., Buizza, R., Haseler, J., Hortal, M., Janssen, P., and Untch, A.: Increased resolution in the ECMWF deterministic and ensemble prediction systems, ECMWF Newsletter, 124, 10–16, 2010.
Murray, D. and McWhirter, J.: Evolving IDV – creating better tools for the community, in: 23th Conference on International Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, 15–18 January 2007, San Antonio, TX, American Meteorological Society, 3B.5, 2007.
Murray, D., McWhirter, J., Ho, Y., and Whittaker, T. M.: IDV at 5: new features and future, in: 25th Conference on International Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, 10–15 January 2009, Phoenix, AZ, American Meteorological Society, 7B.5, 2009.
Nietfeld, D. D.: The Synoptic Environment of the 11 April 2001 Central Plains Tornado Outbreak Viewed in Three Dimensions, in: Proceedings of the 19th IIPS Conference, 9–13 February 2003, Long Beach, California, 2003.
Nietfeld, D. D.: The utility of three-dimensional radar displays in severe weather warning operations, in: 23rd Conference on Severe Local Storms, 5–11 November 2006, St. Louis, MO, 2006.
Norton, A. and Clyne, J.: The VAPOR visualization application, in: High Performance Visualization, Chap. 20, edited by: Bethel, E. W., Childs, H., and Hansen, C., CRC Press, Boca Raton, FL, 415–428, 2012.
Obermaier, H. and Joy, K. I.: Future challenges for ensemble visualization, IEEE Comput. Graph., 34, 8–11, 2014.
Pang, A. T., Wittenbrink, C. M., and Lodha, S. K.: Approaches to uncertainty visualization, Visual Comput., 13, 370–390, 1997.
Papathomas, T. V., Schiavone, J. A., and Julesz, B.: Applications of Computer Graphics to the Visualization of Meteorological Data, SIGGRAPH Comput. Graph., 22, 327–334, 1988.
Pfaffelmoser, T. and Westermann, R.: Visualization of global correlation structures in uncertain 2-D scalar fields, Comput. Graph. Forum, 31, 1025–1034, 2012.
Pfaffelmoser, T., Reitinger, M., and Westermann, R.: Visualizing the positional and geometrical variability of isosurfaces in uncertain scalar fields, Comput. Graph. Forum, 30, 951–960, 2011.
Pöthkow, K. and Hege, H. C.: Positional uncertainty of isocontours: condition analysis and probabilistic measures, IEEE T. Vis. Comput. Gr., 17, 1393–1406, https://doi.org/10.1109/tvcg.2010.247, 2011.
Pöthkow, K., Weber, B., and Hege, H.-C.: Probabilistic marching cubes, Comput. Graph. Forum, 30, 931–940, 2011.
Potter, K., Wilson, A., Bremer, P. T., Williams, D., Doutriaux, C., Pascucci, V., and Johnson, C. R.: Ensemble-Vis: a framework for the statistical visualization of ensemble data, in: Int. Conference on Data Mining Workshops, Miami, FL, 6 December 2009, IEEE Computer Society, Los Alamitos, CA, USA, 233–240, https://doi.org/10.1109/ICDMW.2009.55, 2009.
Rautenhaus, M., Bauer, G., and Dörnbrack, A.: A web service based tool to plan atmospheric research flights, Geosci. Model Dev., 5, 55–71, https://doi.org/10.5194/gmd-5-55-2012, 2012.
Rautenhaus, M., Grams, C. M., Schäfler, A., and Westermann, R.: GPU based interactive 3-D visualization of ECMWF ensemble forecasts, ECMWF Newsletter, 138, 34–38, 2014.
Rautenhaus, M., Grams, C. M., Schäfler, A., and Westermann, R.: Three-dimensional visualization of ensemble weather forecasts – Part 2: Forecasting warm conveyor belt situations for aircraft-based field campaigns, Geosci. Model Dev., 8, 2355–2377, https://doi.org/10.5194/gmd-8-2355-2015, 2015.
Rhodes, P. J., Laramee, R. S., Bergeron, R. D., and Sparr, T. M.: Uncertainty visualization methods in isosurface rendering, in: Proceedings Eurographics 2003, Granada, Spain, 1–5 September 2003, 83–88, 2003.
Russell, I., Siemen, S., Ii, F., Kertész, S., Lamy-Thépaut, S., and Karhila, V.: Metview 4 – ECMWF's latest generation meteorological workstation, ECMWF Newsletter, 126, 23–27, 2010.
Sanyal, J., Zhang, S., Dyer, J., Mercer, A., Amburn, P., and Moorhead, R.: Noodles: a tool for visualization of numerical weather model ensemble uncertainty, IEEE T. Vis. Comput. Gr., 16, 1421–1430, 2010.
Schäfler, A., Boettcher, M., Grams, C. M., Rautenhaus, M., Sodemann, H., and Wernli, H.: Planning aircraft measurements within a warm conveyor belt, Weather, 69, 161–166, 2014.
Schiavone, J. A. and Papathomas, T. V.: Visualizing Meteorological Data, Bull. Amer. Meteor. Soc., 71, 1012–1020, 1990.
Schröder, F.: Visualisierung meteorologischer Daten, Springer, Berlin, Heidelberg, 1997.
Schumann, U.: On conditions for contrail formation from aircraft exhausts, Meteorol. Z., 5, 4–23, 1996.
Stalling, D., Westerhoff, M., and Hege, H.-C.: amira: A Highly Interactive System for Visual Data Analysis, in: The Visualization Handbook, edited by Hansen, C. D. and Johnson, C., chap. 38, 749–767, Academic Press, 2005.
Stauffer, R., Mayr, G. J., Dabernig, M., and Zeileis, A.: Somewhere over the rainbow: How to make effective use of colors in meteorological visualizations, Bull. Amer. Meteor. Soc., 96, 203–216, https://doi.org/10.1175/bams-d-13-00155.1, 2015.
Szoke, E. J., Grote, U. H., McCaslin, P. T., and McDonald, P. A.: D3D update: is it being used?, in: Proceedings of the 19th IIPS Conference, Long Beach, CA, 9–13 February 2003, P1.10, 2003.
Trafton, J. G. and Hoffman, R. R.: Computer-aided visualization in meteorology, in: Expertise Out of Context: Proceedings of the Sixth International Conference on Naturalistic Decision Making, edited by: Hoffman, R. R., Chap. 15, Psychology Press, 337–357, 2007.
Treinish, L. A.: Weather forecasting for the 1996 Olympics, IEEE Comput. Graphics Appl., 16, 10–13, 1996.
Treinish, L. A.: Task-specific visualization design: a case study in operational weather forecasting, in: Proceedings Visualization '98, Research Triangle Park, NC, 24 October 1998, 405–409, https://doi.org/10.1109/VISUAL.1998.745330, 1998.
Treinish, L. A. and Rothfusz, L. P.: Three-dimensional visualization for support of operational forecasting at the 1996 Centennial Olympic Games, in: Proceedings of the 13th IIPS Conference, 2–7 February 1997, Long Beach, CA, 2–8, 1997.
Untch, A. and Hortal, M.: A finite-element scheme for the vertical discretization of the semi-Lagrangian version of the ECMWF forecast model, Q. J. Roy. Meteor. Soc., 130, 1505–1530, 2004.
Upson, C., Faulhaber, T., Kamins, D., Laidlaw, D., Schlegel, D., Vroom, J., Gurwitz, R., and Van Dam, A.: The application visualization system: a computational environment for scientific visualization, IEEE Comput. Graphics Appl., 9, 30–42, 1989.
Vaughan, G., Methven, J., Anderson, D., Antonescu, B., Baker, L., Baker, T. P., Ballard, S. P., Bower, K. N., Brown, P. R. A., Chagnon, J., Choularton, T. W., Chylik, J., Connolly, P. J., Cook, P. A., Cotton, R. J., Crosier, J., Dearden, C., Dorsey, J. R., Frame, T. H. A., Gallagher, M. W., Goodliff, M., Gray, S. L., Harvey, B. J., Knippertz, P., Lean, H. W., Li, D., Lloyd, G., Martínez-Alvarado, O., Nicol, J., Norris, J., Öström, E., Owen, J., Parker, D. J., Plant, R. S., Renfrew, I. A., Roberts, N. M., Rosenberg, P., Rudd, A. C., Schultz, D. M., Taylor, J. P., Trzeciak, T., Tubbs, R., Vance, A. K., van Leeuwen, P. J., Wellpott, A., and Woolley, A.: Cloud Banding and Winds in Intense European Cyclones: Results from the DIAMET Project, Bull. Amer. Meteor. Soc., 96, 249–265, 2015.
Voigt, C., Schumann, U., Jurkat, T., Schäuble, D., Schlager, H., Petzold, A., Gayet, J.-F., Krämer, M., Schneider, J., Borrmann, S., Schmale, J., Jessberger, P., Hamburger, T., Lichtenstern, M., Scheibe, M., Gourbeyre, C., Meyer, J., Kübbeler, M., Frey, W., Kalesse, H., Butler, T., Lawrence, M. G., Holzäpfel, F., Arnold, F., Wendisch, M., Döpelheuer, A., Gottschaldt, K., Baumann, R., Zöger, M., Sölch, I., Rautenhaus, M., and Dörnbrack, A.: In-situ observations of young contrails – overview and selected results from the CONCERT campaign, Atmos. Chem. Phys., 10, 9039–9056, https://doi.org/10.5194/acp-10-9039-2010, 2010.
Walton, J.: NAG}'s IRIS {Explorer, in: The Visualization Handbook, edited by Hansen, C. D. and Johnson, C., chap. 32, 633–654, Academic Press, 2005.
Wanger, L. R., Ferwerda, J. A., and Greenberg, D. P.: Perceiving spatial relationships in computer-generated images, IEEE Comput. Graph., 12, 44–58, 1992.
Watson, A. I., Fournier, J. D., Lericos, T. P., and Szoke, E. J.: The use of D3D when examining Tropical Cyclones, in: Proceedings of the 18th IIPS Conference, 13–18 January 2002, Orlando, Florida, 2002.
Watson, D.: Meteorological data visualisation using IBM Visualisation Data Explorer, in: Proceedings of the 5th ECMWF Workshop on Meteorological Operational Systems, 13–17 November 1995, Reading, England, 238–251, 1995.
Weigle, C. and Banks, D. C.: A comparison of the perceptual benefits of linear perspective and physically-based illumination for display of dense 3-D streamtubes, IEEE T. Vis. Comput. Gr., 14, 1723–1730, 2008.
Whitaker, R. T., Mirzargar, M., and Kirby, R. M.: Contour boxplots: a method for characterizing uncertainty in feature sets from simulation ensembles, IEEE T. Vis. Comput. Gr., 19, 2713–2722, 2013.
Wilhelmson, R. B., Jewett, B. F., Shaw, C., Wicker, L. J., Arrott, M., Bushell, C. B., Bajuk, M., Thingvold, J., and Yost, J. B.: A Study of the Evolution of a Numerically Modeled Severe Storm, Int. J. High Perform. C., 4, 20–36, 1990.
Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, 3rd Edn., Academic Press, Amsterdam, 2011.
Wittenbrink, C. M., Pang, A. T., and Lodha, S. K.: Glyphs for visualizing uncertainty in vector fields, IEEE T. Vis. Comput. Gr., 2, 266–279, 1996.
Wulfmeyer, V., Behrendt, A., Bauer, H.-S., Kottmeier, C., Corsmeier, U., Blyth, A., Craig, G., Schumann, U., Hagen, M., Crewell, S., Di Girolamo, P., Flamant, C., Miller, M., Montani, A., Mobbs, S., Richard, E., Rotach, M. W., Arpagaus, M., Russchenberg, H., Schlüssel, P., König, M., Gärtner, V., Steinacker, R., Dorninger, M., Turner, D. D., Weckwerth, T., Hense, A., and Simmer, C.: RESEARCH CAMPAIGN: The Convective and Orographically Induced Precipitation Study, Bull. Amer. Meteor. Soc., 89, 1477–1486, 2008.
Yalda, S., Zoppetti, G., Clark, R., and Mackin, K.: Interactive immersion learning: flying through weather data onboard the GEOpod, B. Am. Meteorol. Soc., 93, 1811–1813, 2012.
Yessad, K.: FULL-POS in the Cycle 40T1 of ARPEGE/IFS, Tech. rep., Meteo-France, 2014.
Zehner, B., Watanabe, N., and Kolditz, O.: Visualization of gridded scalar data with uncertainty in geosciences, Comput. Geosci., 36, 1268–1275, 2010.
Zeileis, A., Hornik, K., and Murrell, P.: Escaping RGBland: selecting colors for statistical graphics, Comput. Stat. Data An., 53, 3259–3270, 2009.
Short summary
This article presents "Met.3D", a new open-source tool for the interactive 3D visualization of numerical ensemble weather predictions. Met.3D builds a bridge from proven 2D visualization methods commonly used in meteorology to 3D visualization and implements approaches to using the ensemble to allow the user to assess forecast uncertainty. The article is the first part of a two-paper study discussing how 3D and ensemble visualization can be used in a meaningful way suited to weather forecasting.
This article presents "Met.3D", a new open-source tool for the interactive 3D visualization of...