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Abstract. We present “Met.3D”, a new open-source tool for

the interactive three-dimensional (3-D) visualization of nu-

merical ensemble weather predictions. The tool has been de-

veloped to support weather forecasting during aircraft-based

atmospheric field campaigns; however, it is applicable to fur-

ther forecasting, research and teaching activities. Our work

approaches challenging topics related to the visual analysis

of numerical atmospheric model output – 3-D visualization,

ensemble visualization and how both can be used in a mean-

ingful way suited to weather forecasting. Met.3D builds a

bridge from proven 2-D visualization methods commonly

used in meteorology to 3-D visualization by combining both

visualization types in a 3-D context. We address the issue of

spatial perception in the 3-D view and present approaches to

using the ensemble to allow the user to assess forecast un-

certainty. Interactivity is key to our approach. Met.3D uses

modern graphics technology to achieve interactive visual-

ization on standard consumer hardware. The tool supports

forecast data from the European Centre for Medium Range

Weather Forecasts (ECMWF) and can operate directly on

ECMWF hybrid sigma-pressure level grids. We describe the

employed visualization algorithms, and analyse the impact

of the ECMWF grid topology on computing 3-D ensemble

statistical quantities. Our techniques are demonstrated with

examples from the T-NAWDEX-Falcon 2012 (THORPEX –

North Atlantic Waveguide and Downstream Impact Experi-

ment) campaign.

1 Introduction

Weather forecasting requires meteorologists to explore large

amounts of numerical weather prediction (NWP) data, and to

assess the uncertainty of the predictions. Visualization meth-

ods that facilitate fast and intuitive exploration of the data

hence are of particular importance. In practice, the forecast-

ing process for the most part relies on two-dimensional (2-D)

visualization methods. Meteorologists use weather maps,

vertical cross sections and a multitude of meteorological di-

agrams to depict the data. From these image sources, they

build “mental models” of the three-dimensional (3-D), time-

varying forecast atmosphere inside their heads (Hoffman and

Coffey, 2004; Trafton and Hoffman, 2007).

Despite the 3-D nature of the atmosphere, 3-D visualiza-

tion methods have not found widespread usage, even though

there have been promising attempts in the 1990s and early

2000s that suggested added value (Treinish and Rothfusz,

1997; Koppert et al., 1998; McCaslin et al., 2000). Various

hindering factors are discussed in the literature, including

resistance of forecasters to adapt to new 3-D visualization

methods that are decoupled from their “familiar” 2-D prod-

ucts (Koppert et al., 1998; Szoke et al., 2003), problems with

spatial perception in 3-D renderings (Szoke et al., 2003), as

well as issues due to limited performance (Treinish and Roth-

fusz, 1997) and the need for dedicated graphics workstation

hardware (Koppert et al., 1998).

In addition to 3-D space and time, forecast visualization

has in recent years become more challenging through the in-

creased use of ensemble weather predictions – sets of fore-

cast runs whose distribution provides information on fore-

cast uncertainty (e.g. Gneiting and Raftery, 2005; Leutbecher

and Palmer, 2008). The development of visualization meth-
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ods that depict the uncertainty derived from ensemble data

is an active topic of research not only for weather forecast

ensembles (Obermaier and Joy, 2014). Yet again, ensemble

visualization techniques related to weather forecasting pub-

lished so far mainly focus on two dimensions as well (e.g.

Potter et al., 2009; Sanyal et al., 2010).

In this paper we introduce a new open-source visualiza-

tion tool, “Met.3D”, that provides interactive 3-D visual-

ization techniques for ensemble prediction data. There has

been an immense progress in mainstream graphics hardware

capabilities in recent years. Making use of these develop-

ments, Met.3D facilitates interactive visualization of present-

day NWP data sets on consumer hardware. The tool has been

developed as a new effort to demonstrate the feasibility of

using 3-D visualization for forecasting, this time also con-

sidering uncertainty information from ensemble data sets. It

is intended to be used for actual forecasting tasks, as well as

a platform to implement and evaluate new 3-D and ensemble

visualization techniques.

The work presented in this paper has been inspired by

a particular application, forecasting the weather situation to

plan research flights during aircraft-based field campaigns.

We focus on this application throughout the paper at hand.

However, Met.3D is applicable to a broader range of fore-

casting and visual data analysis tasks. Both fast exploration

and uncertainty assessment play a major role in campaign

forecasting:

1. When investigating suitable meteorological conditions

to specify the route of a research flight (that is, way-

points in 3-D space and time), the forecaster is re-

quired to quickly identify atmospheric features relevant

to the flight and to communicate findings to colleagues.

Upper-level features typically important to flights with

high-flying aircraft are of an inherently 3-D nature

(for example, clouds, jet streams or the tropopause).

From our experience in campaigns with DLR (German

Aerospace Centre) involvement, visualization used dur-

ing campaigns has been solely based on 2-D methods,

typically with limited interactivity. We are hence inter-

ested in investigating how 3-D visualization methods

and interactivity (to quickly navigate the data space) can

be used to aid the exploration.

2. Assessing the forecast’s uncertainty has become indis-

pensable as flights frequently have to be planned multi-

ple days before take off (typically 3–7 days; the medium

forecast range) to obtain the required approval from

air traffic authorities. While the use of ensemble pre-

dictions has been reported for recent field campaigns

(e.g. Wulfmeyer et al., 2008; Elsberry and Harr, 2008;

Ducrocq et al., 2014; Vaughan et al., 2015), they have,

to the best of our knowledge, not been used to create

specific interactive forecast products for flight planning.

However, ensembles provide valuable information; for

example, 3-D probability fields for the occurrence of

a targeted atmospheric process or feature can be de-

rived. Potential flight routes can be planned in regions in

which the probability is high. An open question, how-

ever, is how can the ensemble data be visualized to im-

prove flight planning in the medium forecast range.

Our objective is to use interactive 3-D visualization of en-

semble predictions from the European Centre for Medium

Range Weather Forecasts (ECMWF) to improve the forecast

process for field campaigns. The work has been stimulated

by the forecast requirements of a specific field campaign, the

international T-NAWDEX-Falcon campaign (THORPEX –

North Atlantic Waveguide and Downstream Impact Exper-

iment – Falcon, hereafter TNF). TNF took place in Octo-

ber 2012 with the objective to take in situ measurements in

warm conveyor belts (WCBs), airstreams in extratropical cy-

clones that lift warm and moist air from near the surface to

the upper troposphere (e.g. Browning and Roberts, 1994).

Schäfler et al. (2014) provided details on the campaign and

its flight planning. The major forecasting challenge was to

predict the likelihood of WCB occurrence within aircraft

range. This was expressed by a number of forecast questions

that guided the development of Met.3D:

A. How will the large-scale weather situation develop over

the next week, and will conditions occur that favour

WCB formation?

B. How uncertain are the weather predictions?

C. Where and when, in the medium forecast range and

within the spatial range of the aircraft, is a WCB most

likely to occur?

D. How meaningful is the forecast of WCB occurrence?

E. Where will the WCB be located relative to cyclonic and

dynamic features?

In a recent ECMWF newsletter article (Rautenhaus et al.,

2014), we provided a brief overview of our work. It is the pur-

pose of this publication to describe the techniques we have

developed in detail and to present our solutions to particular

challenges.

We split our work into two parts, structured as follows. In

this paper, we introduce Met.3D. We discuss challenges re-

lated to interactive 3-D visualization and present techniques

that address questions A and B.

To put our work in the context of the literature, we review

recent work in meteorological and ensemble visualization in

Sect. 2. Section 3 presents Met.3D’s visualization capabili-

ties. When introducing 3-D visualization to forecasting, we

need to consider that the 2-D visualization methods com-

monly used in meteorology provide many advantages (for

example, spatial perception) and that meteorologists are used

to working with them. In a 3-D forecast tool to be used in

practice, we hence have to be careful not to replace proven
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2-D methods, but to put them into a 3-D context and to use

3-D visualization to add value. We address the challenges of

creating such a “bridge” from 2-D to 3-D visualizations, of

improving spatial perception of 3-D renderings and of de-

signing interactive methods that provide fast and easy vi-

sual access to ensemble information. A supplementary video

containing real-time screen recordings of examples shown

in Sect. 3 demonstrates the performance of Met.3D on mid-

range consumer hardware.

To avoid time-consuming pre-processing of the forecast

data prior to visualization, Met.3D operates directly on the

ECMWF hybrid sigma-pressure model grid. The characteris-

tics of the data and resulting challenges for visualization are

discussed along with Met.3D’s visualization algorithms and

system architecture in Sect. 4. Section 5 discusses the effi-

cient yet accurate computation of statistical quantities from

the ensemble predictions. When computing statistical quanti-

ties on a per grid-point basis an error is introduced, since the

vertical positions of the ECMWF model grid points vary be-

tween members. Regridding to a common grid is a solution,

albeit time-consuming and hence undesirable for real-time

visualization. We analyse the error introduced when ignor-

ing such a regridding and provide advice on how to handle

the issue. Section 6 provides information on code availabil-

ity, before the paper is concluded in Sect. 6.

In the second part of this study (Rautenhaus et al., 2015,

hereafter “Part 2”), we address forecast questions C to E.

A method to compute 3-D WCB probabilities from La-

grangian particle trajectories is introduced and evaluated, and

Met.3D is extended by a technique to visually analyse the de-

rived probabilities. To demonstrate the added value of 3-D vi-

sualization for forecasting, we present a comprehensive case

study with detailed meteorological interpretations of a fore-

cast case of TNF. The case study uses methods from both

papers and illustrates how Met.3D can be used in practice.

Readers primarily interested in the application of Met.3D

should read Sect. 3 in this part, skip the technical sections

and proceed to the case study in Part 2.

2 3-D and ensemble visualization in meteorology

Our work is related to 3-D visualization in meteorology and

to uncertainty and ensemble visualization.

2.1 3-D visualization in meteorology

Visualization tools in meteorology can be distinguished with

respect to application in a research setting and application

in an operational forecast setting (Papathomas et al., 1988).

As Koppert et al. (1998) point out, a tool in an operational

setting should offer techniques tailored to the specific fore-

casting task and not confuse the forecaster with large sets of

parameters that need to be configured. A research setting, on

the other hand, demands a tool that is flexible to adapt to dif-

ferent exploration tasks and data formats. Its visualizations

should be highly configurable by the user.

In forecasting, 2-D visualization systems prevail. With re-

spect to field campaigns with DLR involvement, the Mission

Support System (MSS) is frequently used, a tool that gener-

ates horizontal and vertical 2-D sections of the forecast data

upon user request (Rautenhaus et al., 2012). This tool mo-

tivated the design of our proposed bridge from 2-D to 3-D

that we describe in Sect. 3. Further 2-D systems that have

been applied include the German Weather Service (DWD)

NinJo workstation (Heizenrieder and Haucke, 2009) and the

ECMWF Metview software (Russell et al., 2010).

The few reports on the usage of 3-D visualization of atmo-

spheric model data in forecasting date to the 1990s and early

2000s. Treinish (1996), Treinish and Rothfusz (1997) and

Treinish (1998) reported on experiments with 3-D visualiza-

tion for local forecasting during the 1996 Olympic Games

in Atlanta. They concluded that an advantage of their 3-D

methods was “that they virtually eliminated the need to labo-

riously evaluate numerous two-dimensional images”, how-

ever, noted a lack of interactivity due to limitations in com-

putational performance. Schröder (1997), Lux and Frühauf

(1998) and Koppert et al. (1998) presented “RASSIN” and

its successor “VISUAL”, a 3-D forecasting system for us-

age within the DWD. Discussing their experience with an

operational test of the software, Koppert et al. (1998), too,

point out the importance of system performance for user ac-

ceptance. They furthermore highlight the need for common

concepts of operations (user interface and workflow) when

forecasters are asked to transition from a 2-D to a 3-D envi-

ronment.

McCaslin et al. (2000) presented “D3D” (Display 3D),

a 3-D software built at the United States Forecast Systems

Laboratory (FSL) on top of the “Vis5D” tool (Hibbard and

Santek, 1990). D3D’s user interface was designed to match

that of the 2-D “D2D” (Display 2D) software in use at the

National Weather Service Weather Forecast Offices (WFOs).

“Real-time forecast exercises” were conducted to evaluate

the value of 3-D visualization, and the software was installed

at a number of WFOs. A few case studies were presented,

including usage of D3D for the examination of tropical cy-

clones (Watson et al., 2002), the usage of 3-D trajectories

(Barjenbruch et al., 2002), and the analysis of the synoptic

situation during a tornado outbreak (Nietfeld, 2003). Szoke

et al. (2003) reported on experiences gained with the system.

They not only discuss the reluctance of forecasters to switch

from 2-D to 3-D, but also confidently state that for forecast-

ers trained with D3D it is “hard to deny that examining the

atmosphere using a 3-D tool is not more effective and com-

plete than using 2-D displays”. Szoke et al. (2003) also pos-

itively reported on the interactivity introduced by their sys-

tem. Interactively moveable vertical soundings and cross sec-

tions, for example, were very well perceived by the forecast-

ers. There was also an approach to ensemble visualization

with D3D. Alpert (2003) suggest to interpret the ensemble
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dimension as the vertical coordinate in Vis5D and to view a

2-D map of an ensemble product as a 3-D isosurface. Sub-

sequently, Nietfeld (2006) reported on the application of 3-D

techniques in a WFO to visualize observed radar data in the

forecast process, using the “GR2Analyst” software.

With respect to research environments, 3-D visualization

is more frequently used. Early approaches in the 1970s and

1980s used mainframe computers to create 3-D views or an-

imations of atmospheric observations and numerical model

output (e.g. Grotjahn and Chervin, 1984; Hibbard, 1986;

Papathomas et al., 1988; Hibbard et al., 1989; Schiavone

and Papathomas, 1990, and references therein). For example,

Wilhelmson et al. (1990) created an award-winning (cf. Mid-

dleton et al., 2005) animation movie of a numerically mod-

elled storm, a project that at that time still required multiple

months and a large amount of computer time (Wilhelmson

et al., 1990). Since around 1990, a number of workstation and

desktop visualization tools have appeared. Vis5D, mentioned

above, became a major 3-D visualization tool in meteorology

and was widely used into the 2000s (Hibbard, 2005; Mid-

dleton et al., 2005). However, its development was discon-

tinued. A number of other, mostly general-purpose, systems

that have been used in the atmospheric sciences are listed

by Schröder (1997), Böttinger et al. (1998) and Middleton

et al. (2005). They include the commercial systems “Appli-

cation Visualization System” (Upson et al., 1989; Favre and

Valle, 2005), “Iris Explorer” (Walton, 2005), the “IBM Data

Explorer” (Abram and Treinish, 1995; Watson, 1995, later

renamed to “OpenDX” and made open source; discontinued

in 2007), and “amira” (Stalling et al., 2005; now “Avizo”).

More recently, prominent tools include “Vapor” (Norton

and Clyne, 2012; Clyne et al., 2007) and the Unidata “Inte-

grated Data Viewer” (IDV) (Murray and McWhirter, 2007;

Murray et al., 2009). Vapor is an open-source 3-D visualiza-

tion software developed at the United States National Cen-

tre for Atmospheric Research. It features a number of 3-D

visualization techniques to view time-varying gridded data

sets; however, it does not provide techniques for ensemble

data or forecasting functionality. IDV is a comprehensive

Java application for the analysis and visualization of geo-

sciences data. It is based on the “Visualization for Algo-

rithm Development” (VisAD) library (e.g. Hibbard, 1998,

2005) and supports a variety of visualization methods, in-

cluding some 3-D support. For example, Yalda et al. (2012)

use IDV’s 3-D capabilities for interactive immersion learn-

ing. On a broader scope, “Paraview” (Henderson et al., 2004)

is an open-source, general-purpose visualization tool that

can also be used with meteorological data. In the context of

a graduate university course, Dyer and Amburn (2010) inves-

tigated how Paraview can be used in a meteorological setting.

Also, commercial general-purpose systems with 3-D capabil-

ities that are frequently used in the atmospheric domain in-

clude “Interactive Data Language” (IDL) (e.g., cf. Middleton

et al., 2005) and “Avizo Green” (e.g. Böttinger et al., 2013).

3-D visualization has also been used for virtual reality appli-

cations in teaching (e.g. Gallus et al., 2003, 2005).

A major reason why 2-D methods are often preferred in

the atmospheric sciences is that they are well suited to con-

vey quantitative information, as Middleton et al. (2005) point

out in a survey of visualization in meteorology. 2-D con-

tour lines and colour mappings can be used to convey a large

range of data values. In a 3-D depiction, only a small num-

ber of isosurfaces can be displayed without cluttering and

occlusion. However, a 3-D image is able to convey spatial

structure in all three dimensions, a distinct advantage com-

pared to 2-D methods. On the downside, spatial perception is

more challenging in 3-D. Determining the location of a data

feature displayed in a 2-D image is usually not an issue. In

a 3-D projection, achieving good spatial perception can be

difficult. Major influencing factors are, for example, shad-

ows (Wanger et al., 1992) and illumination models (e.g. Wei-

gle and Banks, 2008; Lindemann and Ropinski, 2011, and

references therein). The issue is also noted by Szoke et al.

(2003). As an approach, they have implemented a switch to

an overhead view and a vertically moveable map in D3D to

enable the forecaster to better judge the spatial position of

a 3-D feature.

2.2 Ensemble visualization

Ensemble visualization aims at identifying variability, sim-

ilarities and differences among ensemble members. It is

closely related to uncertainty visualization, of which Pang

et al. (1997) and Johnson and Sanderson (2003) provide early

overviews. In the atmospheric sciences, 2-D visualizations of

statistical quantities that summarize the ensemble distribu-

tion or that represent relative frequencies for events are fre-

quently used. Wilks (2011, ch. 7.6.6) lists a number of tech-

niques. For example, current products provided in ECMWF’s

“ecCharts” system (Lamy-Thépaut et al., 2013) include maps

of mean and standard deviation (SD), maps of threshold

probabilities (for example, the probability of precipitation

exceeding a critical threshold) and of derived statistical mea-

sures (for example, the extreme forecast index; Lalaurette,

2003).

In a recent survey – also including applications outside

the atmospheric domain – Obermaier and Joy (2014) clas-

sify ensemble visualization methods described in the litera-

ture into “location-based methods” and “feature-based meth-

ods”. Location-based methods compare ensemble properties

at fixed locations in the data set. In the simplest case, this

includes the ensemble mean, SD or probability as computed

at a given grid point. Such statistical quantities have been

visualized via colour maps, opacity, texture and animation

(Djurcilov et al., 2002; Rhodes et al., 2003; Lundstrom et al.,

2007). Also, glyphs have been used to display, for example,

uncertainty in wind fields (Wittenbrink et al., 1996). Feature-

based methods, on the other hand, extract features from each

ensemble member and aim at visually comparing the de-
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tected features. Examples include spaghetti plots (where the

isolines are the features), the joint display of detected cy-

clonic features (Hewson and Titley, 2010) and visualization

techniques for the prediction of hurricane tracks (Cox et al.,

2013). Recently, Whitaker et al. (2013) have generalized box

plots to contour box plots to enable an improved quantitative

and qualitative analysis of ensembles of 2-D isocontours and

level sets. In 3-D, the effect of uncertainty on the position of

3-D isosurfaces has been the topic of a number of studies. It

has been approached with, for instance, geometric displace-

ments (Grigoryan and Rheingans, 2004) and surface anima-

tion (Brown, 2004). In a study concerning the reconstruction

of the Earth’s subsurface model, Zehner et al. (2010) visu-

alize confidence intervals around an isosurface using addi-

tional transparent surfaces as well as lines connecting the sur-

faces. Recently, techniques have used stochastic modelling

of uncertainty in scalar ensembles to quantify and visualize

the possible occurrences of isosurfaces (Pöthkow and Hege,

2011; Pöthkow et al., 2011; Pfaffelmoser et al., 2011; Pfaffel-

moser and Westermann, 2012). The latter studies all include

examples from the atmospheric domain.

A few articles in the visualization literature have presented

software tools that put special emphasis on ensembles in

earth science applications. Potter et al. (2009) present the

“Ensemble-Vis” tool and investigated the usage of multiple

linked views to visualize 2-D weather simulation ensembles.

They conclude that the combination of standard statistical

displays (spaghetti plots, maps of mean and SD) with user

interaction facilitates clearer presentation and simpler explo-

ration of the data. In their “Noodles” tool, Sanyal et al. (2010)

enhanced spaghetti plots by glyphs and confidence ribbons

to highlight the Euclidean spread of 2-D contour ensembles.

They describe the usage of their methods by atmospheric

researchers investigating different parametrizations in the

Weather Research and Forecasting (WRF) model. Sanyal

et al. (2010) also highlighted the positive effect of interac-

tivity and linked views on the user and note the challenge

of potential generalization of their work to three dimensions.

Recently, Höllt et al. (2014) have presented “Ovis”, a system

for the visualization of 2-D ocean height-field ensemble data.

They again use linked views of maps, statistical plots and 3-D

renderings and demonstrate the use of time-series glyphs for

the comparative visualization of the ensembles at two dif-

ferent positions over time. Höllt et al. (2014) discussed the

application of their tool to off-shore oil operations and the

planning of underwater glider paths.

3 The 3-D ensemble visualization tool Met.3D

Met.3D has been developed to support ensemble data explo-

ration during forecasting, in particular for field campaigns

(at the time of writing this paper). Beside this primary objec-

tive, we have designed the software in a way that it can be

used as a framework into which new ensemble visualization

Figure 1. Real-world context for the T-NAWDEX-Falcon case used

for the examples: visible Meteosat satellite image of Europe and

the North Atlantic of 12:00 UTC, 19 October 2012 (Meteosat op-

erated by EUMETSAT, image processing by DLR-IPA). Important

features are the narrow trough to the west of the British Isles (dark

red line), the former Hurricane Rafael and the WCB manifest in the

cloud band east of the trough.

techniques can be implemented and evaluated with respect to

their use in forecasting. We note that Met.3D is not intended

to be a full-featured meteorological workstation; this would

be beyond the scope of our work.

At the time of writing, Met.3D supports forecast data from

the ECMWF Ensemble Prediction System (ENS), compris-

ing 50 perturbed forecast runs and an unperturbed control

run (Buizza et al., 2006; Miller et al., 2010). These 51 fore-

cast members approximate the distribution of possible future

weather scenarios (Leutbecher and Palmer, 2008).

The visualization examples shown in this paper use data

from the TNF forecast case of 19 October 2012. The satellite

image in Fig. 1 provides a real-world observation of major

features that appear in the visualizations: a distinct narrow

trough was located to the west of the British Isles. Upstream

of the trough the former Hurricane Rafael transformed into

a strong mid-latitude cyclone. East of the trough, ascend-

ing WCB air masses formed a cloud band extending from

Spain to the British Isles. The clouds further stretch along

a jet stream over southern Scandinavia and the Baltic Sea.

The static images shown in the following sections are com-

plemented by video clips contained in the Supplement to

this paper, helping to illustrate the interactive capabilities of

Met.3D. The videos are screen recordings realized on hard-

ware consisting of a consumer-class six-core Intel Xeon run-

ning at 2.67 GHz, equipped with 24 GB of RAM, a 512 GB

solid state drive and an Nvidia GeForce GTX 560Ti graphics

card with 2 GB of video memory.

www.geosci-model-dev.net/8/2329/2015/ Geosci. Model Dev., 8, 2329–2353, 2015



2334 M. Rautenhaus et al.: Three-dimensional visualization of ensemble weather forecasts – Part 1: Met.3D

3.1 User interface

Figure 2 shows the graphical user interface (GUI) of

Met.3D. The forecast data fields can be displayed in mul-

tiple 3-D views (Fig. 2a, b, c). In the horizontal, a cylin-

drical longitude–latitude projection is used. As common in

meteorology, the logarithm of pressure serves as the vertical

coordinate. Vertical scale, i.e. the proportion of vertical to

horizontal units, can be specified for each view individually.

Time navigation is provided for the forecast initialization (or

base, or run) time and the forecast valid time (Fig. 2d). This

way, subsequent forecast runs can be checked for consistency

by keeping the valid time fixed and changing the initializa-

tion time. A distinct feature is the ensemble navigation. The

user can select a specific forecast member for exploration,

animate over members and toggle the ensemble mean for all

currently displayed data fields (Fig. 2e).

Visual entities such as a horizontal or vertical cross sec-

tion, the base map or a 3-D isosurface are represented by “ac-

tors” and are assigned to a “scene”. A scene, in other words

a collection of actors, can be assigned to one of the views for

rendering. An actor can be part of multiple scenes. For ex-

ample, a cross section could be viewed as a traditional 2-D

image in one view, and be combined with a 3-D isosurface in

another. If the section is relocated, its position is updated in

both views. To keep the user interface simple, properties that

the user can modify for a particular actor (e.g. the isovalue of

an isosurface, the forecast variable displayed by an actor, the

associated colour palette) are arranged in a tree-like structure

on the left of the Met.3D window and are easily accessible

(Fig. 2f). If used in a forecast setting, only the uppermost

tree nodes are required by the user to, for instance, load pre-

defined forecast products.

Trafton and Hoffman (2007) point out the importance of

visual comparisons in the forecasting process. Met.3D’s ac-

tors can be synchronized in time and ensemble dimension,

its views can be synchronized to the same camera viewpoint.

Thus, side-by-side comparison of different data sets is facili-

tated.

3.2 A bridge from 2-D to 3-D

To help forecasters transition to the 3-D visualization envi-

ronment, we have implemented horizontal and vertical 2-D

sections. The sections reproduce the look of the correspond-

ing products in the DLR MSS (Rautenhaus et al., 2012), pro-

viding filled and line contours, wind barbs, coast lines and

graticule. In Met.3D, the sections are embedded into the 3-D

context and can be interactively moved in space by the user

in real time. This provides a very fast means to explore the

atmosphere’s vertical structure (by sliding a horizontal sec-

tion up and down), or the change in forecast variables along

a flight track when a waypoint is relocated (by moving a ver-

tical section). Also, the camera can be moved interactively to

zoom in, pan or tilt the view – for instance, to view multi-

ple sections stacked on each other from an angled viewpoint.

Figure 3 illustrates the concept. The forecast wind field is vi-

sualized by means of a horizontal and vertical section. The

horizontal map – largely resembling the corresponding prod-

uct from the MSS – is stacked on top of surface level con-

tours displaying the mean sea level pressure (Fig. 3b). The

vertical section is augmented by a 3-D isosurface of wind

speed (Fig. 3c); the isovalue is chosen such that the strongest

winds of the jet stream, an important indicator for the large

scale flow of the upper troposphere, are captured. The 3-D

display allows us to locate the vertical section in space and

additionally provides information on the spatial structure of

the jet.

We approach the challenge of spatial perception by draw-

ing projections of all rendered structures to the surface to im-

itate shadows generated by a light source above the scene. As

illustrated in Fig. 3b and c, the shadows help to qualitatively

judge the elevation of a feature, and also show its horizontal

location. To improve the quantitative judgement of elevation,

the user can colour the isosurface according to pressure ele-

vation, and place vertical poles in the scene that provide la-

belled pressure axes (Fig. 3c). The poles can be interactively

moved in the scene (by picking and dragging handles that ap-

pear in an “interaction mode”), so that different locations can

be probed.

Vertical sections can be drawn along an arbitrary num-

ber of waypoints (Fig. 3c). Analogous to vertical poles, each

waypoint and section segment displays a handle in interac-

tion mode that the user can drag to move the waypoint or

segment. They can also be moved synchronously in multi-

ple scenes, as illustrated in Fig. 4. Displayed are sections

of potential vorticity (Fig. 4a, the red colours around val-

ues of 2 PVU (potential vorticity unit) show the dynamic

tropopause) and cloud cover fraction (Fig. 4b). Wind barbs

overlain on a horizontal section can be configured to auto-

matically scale in size and density. In Fig. 5, the horizontal

section of equivalent potential temperature shows the differ-

ent character of air masses transported by Rafael. When the

user zooms into the view, Met.3D increases the density of

the wind barbs (Fig. 5b). The frontal zone along which the

typical change in wind direction occurs can now be well per-

ceived.

With respect to colours used in the visualizations, it is im-

portant to address perceptual issues (Hoffman et al., 1993).

To map scalar value to colour, we have implemented the

perceptually based hue–chroma–luminance (HCL) colour

space. Following Zeileis et al. (2009) and Stauffer et al.

(2015), the user can create colour palettes by specifying

ranges in hue, chroma and luminance. Alternatively, colours

can be explicitly specified to reproduce colour bars the user is

familiar with. An example is the colour palette for potential

vorticity shown in Fig. 4.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 2. The main user interface of Met.3D. We apply 2-D and 3-D visualization techniques to explore ensemble weather forecasts. (a)

Isosurfaces of cloud cover fraction of 0.5 coloured by elevation (hPa), and a vertical section of potential vorticity (PVU). (b) Horizontal

section with contour lines of the mean geopotential height field (m) and filled contours of its SD (m). (c) Normal curves applied to the wind

field to visualize the jet core. The white isosurface shows 45 ms−1. Colour coding in ms−1. (d–f) See text for details.

3.3 Ensemble support

Met.3D enables the forecaster to explore variation in the en-

semble, to identify regions in which the forecast is uncertain,

and to explore possible forecast scenarios. The user can in-

teractively navigate through the ensemble members to judge

the variability in the forecast. Each member can also be ex-

plored individually. Statistical measures including threshold

probabilities, mean, minimum, maximum and SD can be de-

rived on demand. For threshold probabilities (for example,

wind speed exceeding 45 ms−1 or cloud cover fraction being

below 0.2) the threshold value can be adjusted interactively.

Figure 6 shows an example of exploring the upper-level

ensemble wind field of the forecast from Monday, 15 Oc-

tober 2012, 00:00 UTC, valid at Friday, 19 October 2012,

18:00 UTC. To visualize the jet stream, two wind speed iso-

surfaces are rendered. The large variation of the ensemble re-

garding position, structure and strength of the jet stream over

the Atlantic highlights high uncertainty in this area. On the

other hand, the strong jet extending from Spain to Scandi-

navia is predicted with higher certainty; while in the mean

wind field the 45 ms−1 signal over the Atlantic is largely

smoothed out, it is present over Europe (Fig. 6d). However,

adding a horizontal section of wind speed SD (Fig. 6e) to the

isosurface of mean wind speed reveals that the position of the

jet is uncertain in particular on its northern side.

Figure 7 shows the probability of wind speed exceeding

45 ms−1. A high probability of over 70 % can again be found

over northern Europe (Fig. 7a). The large horizontal extent of

the area of low (10 %) probability above the Atlantic reflects

the uncertainty. The actual jet can occur anywhere in this re-

gion. Two days later, with decreasing forecast lead time, the

ensemble has significantly converged and the uncertainty has

decreased (Fig. 7b).

Figure 7c and d show the probability of the Schmidt–

Appleman criterion (Schumann, 1996), an indicator for the

occurrence of contrails (aircraft-induced clouds that also

have been the target of research flights; Voigt et al., 2010;

Kaufmann et al., 2014). Visualization of the probability of

the Schmidt–Appleman criterion being fulfilled shows that

contrails, in the example, can only occur between about 400

and 200 hPa. In the given case, a high probability can be ob-

served on the leading downstream edge of the jet.

3.4 Normal curves

In the volume visualizations shown in Figs. 6 and 7, the struc-

ture of the scalar fields inside the transparent isosurfaces can-

not easily be inferred. As stated in Sect. 2.1, this is a dis-

advantage of 3-D visualization: while an isosurface allows

for inference on the 3-D spatial structure of the displayed

data field, it only displays a single data value. Although two

or three isosurfaces can be rendered in a single image us-

ing transparency, the image quickly becomes illegible when

more surfaces are used. “Normal curves” were suggested by

Pfaffelmoser et al. (2011) to estimate the spatial distance be-

tween two isosurfaces. For our application, we propose to

use “3-D normal curves” as an intermediate means between
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Figure 3. Bridge from 2-D to 3-D visualization. (a) Horizontal

section of geopotential height (contour lines) and horizontal wind

speed (colour) at 250 hPa, as obtained from the DLR Mission

Support System. ECMWF deterministic forecast from 00:00 UTC,

17 October 2012, valid at 18:00 UTC, 19 October 2012. (b) The

same data, rendered by Met.3D and mapped into the 3-D context.

The section can be interactively moved by the user. (c) Vertical

section of horizontal wind speed (colour) and potential tempera-

ture (contour lines) in Met.3D, amended by a 50 ms−1 isosurface

of wind speed, coloured by pressure (hPa). Note how spatial per-

ception of the 3-D isosurface is aided by rendering shadows and

labelled vertical poles (animated version of this figure in the Sup-

plement at 00:05 min).

a 2-D section and a 3-D isosurface to visualize the structure

of scalar fields in the interior of an isosurface.

The curves are started on a transparent isosurface and pro-

ceed along the field’s gradient direction, i.e. normal to the

isosurface. The spacing of the curves can be controlled by

the user (cf. Sect. 4.4). We colour the curves according to

the scalar value. This way, we achieve a visual sampling of

a subdomain of the volume. In contrast to a 2-D section that

samples a planar subdomain, the normal curves sample a 3-D

subdomain enclosed by an isosurface via a discrete set of

lines. Following the gradient, the curves converge at local

extrema of the data field. This way, the user can at a glance

identify the locations and strengths of present extrema, and

judge the strength and direction of the gradient between an

extremum and the outer isosurface.

Figure 8 illustrates the approach. The goal is to identify

regions of maximum probability of cloud ice water content

exceeding 0.01 gkg−1, and to track the regions’ evolution

over time. The normal curves immediately show a maxi-

mum in the upper part of the transparent 40 % isosurface

(Fig. 8b and c). The corresponding shadows reveal that the

maximum is approximately located above the Pyrenees. In-

teraction with the vertical axis shows a vertical position be-

tween 300 and 200 hPa. Further visual aids can now be added

to obtain more quantitative information. In the example, the

horizontal section can be immediately placed in the region of

interest, without the need to search the entire vertical extent

of the model atmosphere (Fig. 8d).

While extrema can also be identified with an inner opaque

isosurface (cf. Fig. 7) or by interacting with 2-D sections, the

normal curve approach requires less interaction steps. This

is advantageous if the absolute values of the extrema are not

known beforehand (with isosurfaces the user needs to search

over isovalues), and if the extrema shall be visually tracked

over ensemble members or time. Concerning time, in partic-

ular probability values tend to decrease with increasing fore-

cast lead time; hence, a fixed isosurface is not well suited to

visualize the temporal evolution of a maximum.

In Fig. 2c (also shown in the video at 05:40 min), the

method is applied to the upper-level wind field shown in

Fig. 6. Here, the normal curves inside the 45 ms−1 isosur-

face converge to the string-like line of local maxima in the

wind field – the curves are used to identify the position of the

jet core and its strength.

4 Visualization algorithms and system architecture

Response time, the time required to display a new image af-

ter the user has interacted with, for example, camera or time

step, is crucial to the acceptance of an interactive visualiza-

tion tool, as Szoke et al. (2003) and Hibbard (2004) empha-

size. To achieve low response times, we make extensive use

of modern graphics processing units (GPUs). These highly

parallel processors provide high computational throughput

and memory bandwidth and are well suited to accelerate vi-

sualization algorithms.

GPU acceleration is implemented with OpenGL 4 and the

OpenGL Shading Language (GLSL)1, using vertex, geom-

1https://www.opengl.org/documentation/glsl/
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(a) (b)

Figure 4. Vertical sections can be moved interactively in Met.3D to explore the vertical structure of the atmosphere, for example along

potential flight track segments. (a) Potential vorticity (colour coding in PVU), (b) cloud cover fraction. Red colours in (a) mark the 2-PVU

surface and thus the dynamic tropopause. Note the low tropopause along the trough. Same forecast as in Fig. 3 (animated version of this

figure in the Supplement at 01:24 min).

(a) (b)

Figure 5. Met.3D automatically scales size and density of wind barbs overlain on horizontal sections. (a and b) Equivalent potential temper-

ature (colour coded in K) at 850 hPa, overlain with contour lines of geopotential height. Same forecast as in Fig. 3 (animated version of this

figure in the Supplement at 01:54 min).

etry, fragment and compute shaders. These small GPU pro-

grams allow the parallel execution of operations on the level

of a graphics vertex or of an output fragment (i.e. a single

pixel in the generated image), the generation of new geom-

etry by the graphics subsystem, or the general parallel ex-

ecution of operations. We will not go into detail of graphics

technology here, for an introduction to GPU-based visualiza-

tion we refer the reader to, for example, Bailey (2009, 2011,

2013) or Engel et al. (2006). On the CPU side, Met.3D is

implemented in C++.

A second important factor influencing response time is the

way data are read from disk and whether and how it needs

to be processed prior to visualization. We have designed an

ensemble data pipeline to handle this task efficiently.

In this section, we discuss the methods used to achieve

high visualization performance in Met.3D. After describing

the data that can be handled by the tool (Sect. 4.1), we discuss

the ensemble data pipeline (Sect. 4.2) and the GPU-based

visualization algorithms (Sect. 4.3 and 4.4).

4.1 Forecast data

The data upon which we have based our visualization meth-

ods are obtained from the ECMWF global ensemble weather

prediction system ENS and the high-resolution deterministic

integrated forecast system (IFS). One of our system design

goals was to support the forecast data in the format they can

be retrieved from the ECMWF Meteorological Archive and

Retrieval System (MARS). MARS outputs the data interpo-
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Figure 6. Navigation through the ensemble. Visualized are the 50 ms−1 (green opaque) and 30 ms−1 (yellow transparent) isosurfaces of

horizontal wind speed (forecast from 00:00 UTC, 15 October valid at 18:00 UTC, 19 October 2012). (a) Control run, members (b) 27 and

(c) 33, (d) ensemble mean, (e) ensemble mean augmented by a horizontal section of SD (ms−1), (f) ensemble maximum (animated version

of this figure in the Supplement at 02:26 min).

lated in the horizontal to a regular latitude–longitude grid.

In the vertical, the data are available on either a set of pre-

defined pressure levels (PLs), or, higher resolved and thus

better suited for 3-D visualization, on the native model grid

levels (MLs). For the latter, the model uses terrain following

hybrid sigma-pressure coordinates, as illustrated in Fig. 9.

The vertical-pressure coordinate pk of a grid point at level

k is defined by a set of fixed coefficients ak and bk and the

surface pressure psfc below the grid point (Untch and Hor-

tal, 2004): pk = ak + bk ×psfc. With increasing altitude the

influence of psfc decreases. During TNF, the operational en-

semble forecast was available with 62 levels (91 levels for

the deterministic forecast, increased by the time of writing

to 137 levels). At this resolution, levels are constant in pres-

sure above approximately 64 hPa (70 hPa)2. In the horizon-

tal, a spectral truncation of T639 (T1279) is available, cor-

responding to a regular latitude–longitude grid of approx.

0.28◦× 0.28◦ (0.15◦× 0.15◦). Forecasts are available twice

daily (starting at 00:00 and 12:00 UTC) at a time step of 3 h

up to 144 h forecast lead time and 6 h up to 240 h forecast

lead time.

For the examples in this paper, we use ENS data interpo-

lated horizontally to 1◦× 1◦ and to 0.25◦× 0.25◦; 1◦× 1◦ is

the grid spacing we were able to operationally retrieve during

TNF, as permitted by the available internet bandwidth and

interpolation time required by MARS. Deterministic data are

used at 0.15◦× 0.15◦ grid spacing. In the vertical, all 62 and

91 levels are used.

2http://old.ecmwf.int/products/data/technical/model_levels/

The forecast domain used in the examples encom-

passes 100◦ in longitude by 40◦ in latitude, resulting in

101× 41× 62 grid points for ENS data fields at 1◦× 1◦ grid

spacing, 401× 161× 62 points at 0.25◦× 0.25◦ grid spac-

ing and 669× 268× 91 points for the deterministic forecast

at 0.15◦× 0.15◦ grid spacing. Using floating point precision

(4 bytes per value), the data fields require approximately 1,

16 and 62 MB per member, time step and forecast parameter

in graphics memory. For visualizations using multiple fore-

cast parameters and the entire ensemble, the required mem-

ory quickly adds up.

Forecast data can be read directly from GRIB files output

by MARS or from NetCDF-CF3 files. Our goal was to mini-

mize the time span between data availability at ECMWF and

visualization. Hence, no pre-processing of the data prior to

usage in Met.3D is required. Forecast parameters not output

by the ECMWF model, however, need to be computed first.

For this purpose, Met.3D can be connected to the data pro-

cessing system of the DLR MSS, which derives additional

quantities (for example, relative humidity and potential vor-

ticity) from the forecast parameters output by ECMWF.

4.2 Ensemble processing pipeline

To process the ensemble data prior to rendering, we have

designed a data processing pipeline composed of modules

(“data sources”) that create, read or process data and that can

be combined in flexible ways. Figure 10 illustrates the con-

3http://cfconventions.org/
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Figure 7. Probability fields computed from the ensemble, valid at 18:00 UTC, 19 October 2012. (a and b) Probability of horizontal wind

speed exceeding 50 ms−1, as computed from the forecast initialized (a) at 00:00 UTC, 15 October 2012 and (b) at 00:00 UTC, 17 October

2012. Shown are the 70 % (red opaque) and 10 % (white transparent) isosurfaces. Note how the ensemble converges. (c and d) Probability

of contrail occurrence (Schmidt–Appleman criterion fulfilled and relative humidity greater than 80 %), as viewed from different camera

positions (80 % red opaque and 50 % white transparent) (animated version of this figure in the Supplement at 03:23 min).

cept. Algorithms in the data sources (for example, ensem-

ble statistics or trajectory filtering; cf. Part 2) can be imple-

mented to execute on either CPU or GPU (the latter via com-

pute shaders). All data sources are connected to a memory

manager that caches intermediate results. The actors that im-

plement the visualization methods are placed at the end of

a pipeline. They send “requests” into the pipeline to obtain

a specific data item. These requests are composed of multiple

key/value pairs similar to the Web Map Service requests used

in the MSS (see Rautenhaus et al., 2012, for details). A re-

quest emitted into a pipeline propagates from data source to

data source. Each data source interprets the keys it requires.

If the requested operation has been executed before and the

result has been cached, no action is taken. Otherwise, the data

source defines a processing task to perform the requested op-

eration. The task, however, is not executed immediately. If

applicable, remaining keys are passed on to the data source’s

input(s). If a data source requires additional input, it can also

append keys to the request.

All processing tasks defined this way are assembled into

a task graph that is passed to a scheduler for execution. Based

on the dependencies provided by the graph structure and in-

formation carried by the tasks, the scheduler can process the

tasks. For example, tasks that have to be performed for all

members of the ensemble can be executed in parallel.

As an example, consider the pipeline depicted in Fig. 10b.

The volume actor at the end of the pipeline emits a request

for a scalar field containing the probability of horizontal wind

speed exceeding 45 ms−1. The module computing the proba-

bility field requires the wind field of each ensemble member,

regridded to a common grid. Hence, requests for regridded

data fields containing the members’ wind speed are emitted

and a task is set up to compute the probability from these

fields. The regridding module, in turn, requests that the wind

speed fields are read from disk by the reader module. For an

ensemble of size M , the resulting task graph (Fig. 10c) con-

tains M tasks to read the wind field of a single member, M

tasks to regrid these fields to a common grid and one task
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Figure 8. Normal curves help to analyse the topology of 3-D scalar fields. They reveal the distribution of data values in a subdomain

enclosed by a 3-D isosurface and enable fast identification and tracking of local extrema. (a–c) Probability of cloud ice water content

exceeding 0.01 gkg−1. The white transparent isosurface shows 40 % probability. Colour coding in %. (d) Details of the identified maximum

are inspected with a horizontal section at 250 hPa. Forecast from 00:00 UTC, 17 October 2012 valid at 12:00 UTC, 20 October 2012 (animated

version of this figure in the Supplement at 04:28 min).

to compute the probabilities. The regridding tasks are well

suited to be executed in parallel.

To indicate an order of magnitude of the response times

that Met.3D achieves on our test hardware when the dis-

played data field is changed, Table 1 lists timings for chang-

ing the forecast time in the horizontal section in Fig. 3. Tim-

ings are provided for displaying a single member of the en-

semble and for displaying the ensemble mean (the latter as

an example of a statistic that requires all members of all vari-

ables when computed on demand), both when data need to be

read from disk and when it is available in cache. If the data

to be visualized are available in cache, no task graph needs

to be executed and the response time is of the order of a few

milliseconds. If data need to be read from disk, the response

time is bounded by the disk’s bandwidth. This becomes no-

ticeable in particular when ensemble statistical quantities are

derived on demand. For the TNF data set at 0.25◦ grid spac-

ing, all members of the ensemble encompass approximately

3.2 GB that need to be read from disk. Our test hardware re-

quires about 17 s for this task. One possibility to decrease this

time is to pre-compute frequently used statistical quantities.

In our set-up, this can be done with the MSS data process-

ing system. However, the interactivity to change, for exam-

ple, the threshold for a probability field is lost with this solu-

tion. Alternatively, the system performance can be increased

by using pre-loading techniques to hide disk access. Here,

the data for an anticipated subsequent time step are read in

the background while the user explores the current time step.

The current Met.3D architecture is prepared to implement

such techniques. However, comprehensive optimizations of

the system performance were outside the scope of this project

and are left for future work.

4.3 GPU-based visualization algorithms

Met.3D’s visualization algorithms support data fields on both

hybrid sigma-pressure levels and on pressure levels. The dif-

ference is how the data fields are sampled on the GPU to

obtain a value at a particular position in longitude–latitude-
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Figure 9. Hybrid sigma-pressure levels used by the ECMWF

model. (a) The elevation of the model levels (green lines; the exam-

ple shows levels from the 31 level model; level indices k in green)

changes with surface pressure (black curve at the bottom). The data

value for a given pressure value p can be located at different lev-

els in the grid (the red line marks the location of p= 600 hPa). (b)

Example of how the surface orography affects the vertical displace-

ment of the grid points in a vertical section.

Table 1. Order of magnitude of response times achieved by Met.3D

to display a new image after the user has advanced the forecast time

for the horizontal section in Fig. 3b, displaying either data of a sin-

gle member or of the ensemble mean (the latter an example of a

statistic that requires all members of all variables when computed

on demand). Timings are measured on the test hardware described

in Sect. 3 and given for both forecast data at 1◦ grid spacing and

at 0.25◦ grid spacing; 12 parallel threads are used by the scheduler

for task graph execution. Fig. 3b uses four forecast variables, read-

ing all ensemble members (for computation of the mean) from the

disk hence involves reading 4× 51× 1 MB at 1◦ grid spacing and

4× 51× 16 MB at 0.25◦ grid spacing.

Data Source 1◦ 0.25◦

Single member disk (NetCDF) 50 ms 365 ms

Ensemble mean disk (NetCDF) 0.85 s 17 s

Single member member in cache < 10 ms 25 ms

Ensemble mean mean in cache < 10 ms 25 ms

pressure space – an operation required by all visualiza-

tion algorithms. In the horizontal, data fields on a regular

longitude–latitude grid are supported.

To use the data on the GPU, a single forecast variable of

a single member is stored in a 3-D texture (i.e. a 3-D data

array) in GPU memory. We assume that these data fields fit

into GPU memory. Longitude–latitude axes, as well as pres-

sure levels for PL grids, are stored in an additional 1-D tex-

ture. For ML grids, the corresponding 2-D psfc field and the

coefficients ak and bk are stored. This allows for computation

of the pressure coordinate of a grid point on the fly, without

the need to use additional graphics memory for a 3-D texture

with pressure values.

Horizontal 2-D sections on a pressure surface p are ren-

dered by placing the vertices of a grid of triangles horizon-

tally at the positions of the data grid points and vertically at

p (Fig. 11a). Data sampling only needs to be done when p is

changed. Executed in parallel for each vertex, a binary search

in the vertex shader yields the model levels (or pressure lev-

els) k and k+ 1 enclosing p in the corresponding grid col-

umn. Following the ECMWF FULLPOS interpolation rou-

tines (Yessad, 2014), interpolation between these two levels

is done linearly in ln(p). The results are cached in a 2-D

texture. Filled contours are rendered by assigning colour to

each fragment within a triangle in the fragment shader, using

the horizontally hardware-interpolated scalar value. To ob-

tain a colour, colour palettes (cf. Sect. 3.2) are stored as 1-D

transfer functions in 1-D textures. These textures are used as

lookup tables (LUTs), mapping a scalar value to a colour.

Line contours are generated by a marching squares (e.g.

Hansen and Johnson, 2005, ch. 1) implementation in a ge-

ometry shader. Each grid cell of the cached 2-D cross section

texture is examined in parallel and, if applicable, a line seg-

ment is drawn. Graticule, coast and border lines are overlain

on each horizontal section to improve spatial perception (cf.

Fig. 3b). Wind barbs are also generated in a geometry shader.

It takes the horizontal wind field’s u and v components as in-

put and generates the geometry of the barbs, again exploiting

GPU parallelism.

Vertical sections are rendered with a similar grid of trian-

gles. A triangle vertex is drawn for each vertical (model or

pressure) level and each of a number of intermediate hori-

zontal points along a line connecting the waypoints the user

has specified (Fig. 9b). The distance between the intermedi-

ate points can be specified. A vertex shader computes the ver-

tical position of each vertex and places it accordingly. This

operation is a simple lookup for PL data and involves interpo-

lation of psfc and computation of the model level pressure for

ML grids. Scalar values are interpolated horizontally, also in

the vertex shader, on the level on which the vertex is placed.

They are also cached in a 2-D texture that is updated if a way-

point is moved. Filled and line contours are generated equiv-

alently to those in the horizontal sections.

Three-dimensional isosurfaces are rendered with front-to-

back raycasting (Krüger and Westermann, 2003; Engel et al.,

2006) implemented in the fragment shader. For each frag-

ment (pixel) of the output image, a ray is cast through the

data volume, sampling it at regular intervals and thus finding

isosurface crossings. For this type of visualization algorithm,

sampling the scalar volume is more expensive, as we need to

interpolate in all three spatial dimensions to an arbitrary po-

sition in longitude–latitude-pressure space. For PL data, the

grid is rectilinear (Fig. 11b) and can be sampled using texture

mapping (e.g. Bailey, 2009), thus benefiting from the fast tri-

linear hardware interpolation provided by modern GPUs. By

mapping the longitude–latitude-pressure coordinates of the
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Figure 10. Pipeline concept of Met.3D: (a) data sources are connected to form a pipeline, into which a visualization “actor” sends data

requests; (b) sample pipeline to visualize the probability of horizontal wind speed exceeding 45 ms−1. A request for the probability triggers

further requests up the pipeline; (c) Task graph generated by the pipeline in (b).

sampling position to texture coordinates (tlon, tlat, tp) on the

unit cube, the GPU interpolates the 3-D texture at an arbitrary

position. For regular grids, this mapping is a simple linear

scaling. Since, however, PL grids retrieved from MARS are

irregularly spaced in the vertical, we need a method to map

pressure to tp. This is realized by means of an LUT stored in

an additional 1-D texture. The level indices k can be linearly

scaled to tp,k ∈ (0. . .1). Since we know the pressure values

pk at the levels k, we can compute a continuous k̃ for inter-

mediate p by linearly interpolating in ln(p) (Fig. 11b). k̃ can

subsequently be scaled to tp. These mappings from p to tp
are pre-computed for a number, say 2048, of pressure values

and stored in the LUT that can be accessed in the shader.

ML grids are not rectilinear and thus sampling becomes

more complicated. As illustrated in Fig. 11b, the continu-

ous level index k̃ in general is not the same for adjacent grid

columns. In the worst case, a given p is located between dif-

ferent model levels in its four surrounding grid columns. Tri-

linear hardware interpolation requires k̃ to be the same in all

surrounding grid columns, it hence cannot be used. Conse-

quently, we need to split the interpolation into four vertical

interpolations in the grid columns and a subsequent bilin-

ear horizontal interpolation. A naïve approach is to use the

binary search used for the horizontal sections for the ver-

tical interpolations; however, our experiments showed that

rendering times can be reduced by a factor of about 2 when

again making use of an LUT approach for hardware interpo-

lation. However, the horizontal interpolation needs to be im-

plemented in software. ML sampling is hence over 4 times

more expensive than PL sampling.

(a)

(b)

Figure 11. Sampling data fields in GPU shaders. (a) For each vertex

of a horizontal section, model levels k and k+1 are found by binary

search. The scalar value is linearly interpolated in ln(p) between

these two levels. (b) PL grids are rectilinear (left), allowing for the

usage of trilinear hardware interpolation between the grid points

surrounding a sample position (red dot). For ML grids (right), the

sample position can be located between different model levels k for

two adjacent grid columns, thus prohibiting hardware interpolation.

To use hardware interpolation for the ML in the vertical,

we need to extend the LUT approach. First, the horizontal

texture coordinates tlon and tlat are set to the horizontal po-
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sition of the grid columns. Since the model level pressure

varies with psfc, we in principle need to pre-compute one

LUT for every psfc value that occurs in the forecast field. We

instead make use of a 2-D LUT, containing LUTs for dis-

crete values of psfc reflecting the expected range of psfc in

the data. Using bilinear hardware interpolation, this LUT is

used to interpolate in both psfc and ln(p) to obtain a map-

ping from ln(p) to tp. The additional memory requirement

is reasonable: for an LUT using 2048 entries in the vertical

and 600 entries for psfc between 1050 and 450 hPa, approxi-

mately 9 MB of GPU memory are required in float precision

(i.e. 4 bytes/value). The table can be shared among variables

on the same grid.

The traversal of the data volume is accelerated with an

empty-space skipping strategy (Krüger and Westermann,

2003). The longitude–latitude-pressure space covered by

a data field is divided uniformly into a regular grid of Ni ×

Nj ×Nk cells. For each cell, minimum and maximum data

values are computed. In the shader, the information is used to

skip cells in which an isosurface cannot possibly be located.

Due to the different horizontal and vertical scales, care has

to be taken when choosing the step size for traversing non-

empty cells. Depending on the factor that is used to scale

ln(p) to a z coordinate in visualization space, the vertical dis-

tance between two grid points often is considerably smaller

than the horizontal distance. The step size chosen needs to be

small enough to ensure that no grid point is skipped during

traversal.

Once an isosurface crossing has been identified, the iso-

surface normal (equivalent to the gradient of the scalar field

at the crossing position) is computed via central differences.

The pixel colour is subsequently determined using the com-

monly used Blinn–Phong lighting model (e.g Engel et al.,

2006). Colour can be pre-defined or obtained from a transfer

function. Also, a second scalar field can be mapped to the

isosurface to colour, for example, a wind speed isosurface by

temperature.

Table 2 lists typical rendering times for images shown in

this paper. Note that the performance of the raycaster de-

pends on the visualized data as well as on camera viewpoint.

In particular the effectiveness of the empty-space skipping

strategy for a selected isovalue depends strongly on the spa-

tial distribution of the data values. During user interaction,

the step size used by the raycaster to sample the data fields

can be reduced (cf. Table 2). While this temporarily reduces

image quality, rendering time is also reduced.

Two-dimensional sections are rendered at the same per-

formance for ML and PL data sets, as the same number of

interpolation operations needs to be performed for both grid

types. For raycasted images, Table 2 provides timings for ML

data sets and PL data sets with the same number of vertical

levels. Due to the reduced number of vertical interpolation

operations, PL data are typically rendered by a factor of two

to three faster than ML data.

Table 2. Order of magnitude of rendering times achieved by Met.3D

for selected visualizations from this paper. Timings are measured on

the test hardware described in Sect. 3. ECMWF ENS data at a grid

spacing of 1◦ in both longitude and latitude are used. The data fields

are available in GPU memory. ML refers to visualizations from hy-

brid sigma-pressure model levels (62 levels), PL refers to visualiza-

tions from data fields regridded to 62 pressure levels chosen equal

to the levels of an ML grid defined by a constant surface pressure

of 1000 hPa. Timings are average values of continuous rendering

over 30 s. A Met.3D window of 1600 by 900 pixels is used (the size

used for the video in the Supplement, corresponding to a viewport

of 1192 by 864 pixels). “Animated” for cross sections refers to verti-

cally sliding a horizontal section or moving a waypoint of a vertical

section.

Figure Setting ML PL

Fig. 3b static 2.3 ms

Fig. 3b animated 2.8 ms

Fig. 4a static 6.2 ms

Fig. 4a animated 6.8 ms

Fig. 6a step size 0.1 417 ms 114 ms

Fig. 6a step size 1 107 ms 47 ms

Fig. 7a step size 0.1 222 ms 73 ms

Fig. 7a step size 1 62 ms 39 ms

Fig. 7c step size 0.1 248 ms 76 ms

Fig. 7c step size 1 72 ms 40 ms

Fig. 2c step size 0.1 273 ms 100 ms

Fig. 2c step size 1 83 ms 67 ms

We note that as for the data pipeline, comprehensive op-

timizations of the visualization algorithms were outside the

scope of our work. In particular with respect to the raycaster,

further optimizations are possible, for example, by integrat-

ing an adaptive step size strategy.

4.4 Computation of normal curves

Normal curve computation is implemented in a compute

shader. Figure 12 illustrates the proposed normal curve al-

gorithm. To generate a set of seed points, rays aligned with

the three world space axes (longitude, latitude, pressure) are

cast through the data volume. The rays are started at regu-

larly spaced points (grey arrows; the spacing can be adjusted

by the user). To avoid the regular pattern of these initial start

points being reflected by the normal curves, we disturb the

ray positions by a random factor (black arrows). The inter-

section points of the rays with the selected outer isosurface

are then used as initial seed points for the normal curves

(green dots). In particular in regions of high curvature, mul-

tiple rays can hit the isosurface at close-by points on the sur-

face. To prevent normal curves from being started close to-

gether, a regular volume with a grid size of the average initial

ray distance is placed over the scene (yellow grid). Only one
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Figure 12. Computation of normal curves. Seeding points for the

curves (green dots) are placed at the intersections between axis

aligned rays (black arrows) and the outer isosurface (only rays from

two directions are shown for illustration). Only a single seed is al-

lowed in each grid box of the yellow volume.

seed is allowed per grid cell. Hence, if a seed point falls into

a cell already occupied, it is discarded (illustrated in the or-

ange grid cell). The normal curves are integrated in parallel

in the direction of the scalar field’s gradient, using a fourth-

order Runge–Kutta scheme. The gradient is computed with

the same method used for isosurface shading. If present, the

integration can be stopped at an inner opaque isosurface (il-

lustrated by the red isosurface in Fig. 12).

5 Impact of (not) regridding on ensemble statistical

quantities

A challenge that arises from aiming at interactive ensemble

visualization is the efficient yet accurate computation of sta-

tistical quantities from the ensemble predictions. We com-

pute statistical quantities per grid point. Probabilities, for ex-

ample, are computed by evaluating for every member and

for each grid point a given probability criterion (for instance,

wind speed exceeding a given threshold). The evaluation of

the criterion yields for every member a binary volume, with

the bits set when the criterion is fulfilled. Probabilities are

computed by counting the number of members with a set bit

for each grid point. Other statistical measures are computed

similarly for each grid point over the ensemble dimension.

For 2-D grids, this is common procedure (Wilks, 2011)

and also for 3-D grids not an issue as long as a given grid

point is located at the same spatial position in all members.

However, due to surface pressure varying between ensemble

members, this is not the case for data on ML grids. Hence,

depending on the vertical gradient of the forecast variable

from which a statistical quantity is computed, an error is in-

troduced. One approach to this issue is to vertically regrid all

ensemble members to a common grid, for example, the one

defined by the mean surface pressure (as done in the example

pipeline in Fig. 10). This, however, introduces an additional

interpolation step and demands computational resources.

In this section, we investigate the visual and quantitative

differences between statistical quantities computed from the

Figure 13. (a) SD of surface pressure, σ(psfc). Forecast from

00:00 UTC, 15 October 2012, valid at 18:00 UTC, 19 October 2012.

Red contour lines show mean sea level pressure. (b) Vertical sec-

tion of the pressure difference (yellow-blue-black colour bar in hPa)

between highest and lowest ensemble member, rendered on top of

a wireframe map of σ(psfc).

original ML grids and those computed from data fields re-

gridded to a common grid. The differences are compared to

an additional error that is introduced by linearly interpolat-

ing the statistical quantities. At ECMWF, maps of statisti-

cal quantities on pressure levels are computed from the indi-

vidual member’s forecast data on these pressure levels. This

implies that a forecast meteorological variable is first inter-

polated to the target vertical position for each member (us-

ing linear interpolation in p or ln(p); cf. Yessad, 2014), fol-

lowed by the computation of the statistical quantity. If, on the

contrary, we first compute the statistical quantity on the 3-D

model grid and then linearly interpolate to the target vertical

position, an error is introduced due to the non-linear nature

of most statistical measures. The same problem arises in the

horizontal dimensions.

In the following, we analyse regridding and interpolation

error for the forecast data we had available from TNF. We

present results from the forecast initialized at 00:00 UTC,

15 October 2012 and valid at 114 h lead time at 18:00 UTC,

19 October 2012. This case is representative for the data set,

results for other time steps of the TNF data set are similar.

5.1 Variation in grid-point pressure

First, we estimate typical vertical grid-point displacements

that can be observed between ensemble members. Fig-

ure 13a shows the SD of psfc for the example case. It reaches

values of 8 to 10 hPa in the uncertain regions of the fore-
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(a) (d)

(b) (e)

(c) (f)

Figure 14. Visual differences between statistical quantities computed from a vertically regridded ensemble to those computed from the

original ensemble. Horizontal section at 950 hPa (approx. model levels 51–55 in Figs. 15 and 16) of (a–c) p(|v|> 20ms−1) (%) and (d–

f) σ(RH). Same forecast as in Fig. 13. Shown is (a) the probability and (d) SD computed from the original model grid, (b and e) computed

from members regridded to the grid defined by the mean psfc, and (c and f) the difference between both fields.

cast. This particularly applies to the low-pressure systems

over the Atlantic and the northern British Isles. Figure 13b

shows a vertical cross section of the maximum pressure dif-

ference between any two members per grid point in these

two areas. Close to the surface, the difference reaches 40 hPa,

corresponding (at low altitudes) to an elevation offset of

about 400 m. In most other regions, however, differences are

smaller. Also, as expected from the model grid topology, dif-

ferences vanish in upper atmospheric levels.

5.2 Difference due to vertical regridding

Vertical regridding is implemented as a data source that can

be integrated into the Met.3D ensemble processing pipeline

(cf. Fig. 10). The user can toggle between visualizations from

original and from regridded data fields, and, if required, per-

manently enable regridding. If statistical quantities are com-

puted from the original member grids, the resulting field is

interpreted on a grid defined by the mean surface pressure.

On our test hardware (cf. Sect. 3), the cost of single-

threaded CPU regridding on average is about 60 ms per mem-

ber and variable for the TNF ENS forecast at 1◦ grid spacing

(256 742 grid points per 3-D field) and about 1 s at 0.25◦ grid

spacing (4 997 262 grid points). Even though multiple en-

semble members can be processed in parallel on a multi-core

machine and the regridding process could be further sped

up using the GPU, there is a delay in particular for high-

resolution data sets and visualizations using multiple vari-

ables.

We have visually inspected a number of 2-D and 3-D

renderings of statistical quantities of several meteorological

variables. As expected, the largest visual differences appear

close to the surface. They become most manifest in horizon-

tal sections, which are most sensitive to vertical variations

in a 3-D data field. Figure 14 shows two typical low-altitude

examples, the probability of horizontal wind speed exceed-

ing 20 ms−1, p(|v|> 20ms−1), and the SD of relative hu-

midity, σ(RH). From our inspection we find that differences
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Figure 15. Distribution of differences between statistical quantities computed from a vertically regridded ensemble to those computed from

the original ensemble. Plots are generated from all 256 742 grid points of the data field. Same forecast as in Fig. 13. Shown are (a and d)

µ(|v|), (b and e) σ(|v|) and (c and f) p(|v|> 20ms−1); (a–c) distribution and vertical occurrence of absolute values of the quantities. (d–f)

Distribution and vertical occurrence of differences due to regridding (denoted by regrid1); note the logarithmic scale of the histograms in

(d–f). Probability values are discrete due to the size of the ensemble (51 members).

tend to be larger for variables that depend on moisture and

variables derived thereof; however, we could not find any ex-

amples in which visualized structures were significantly al-

tered. For example, while there is some visible difference in

σ(RH) along Rafael’s warm front, the structure itself is not

significantly altered.

Visual differences strongly depend on the employed colour

palette and visualized data range. Depending on the range

of values covered by a single colour, small changes might

simply not be reflected in the visualization. To ensure that

differences in general are small, we have performed a sta-

tistical analysis of the entire TNF data set. Figure 15 shows

results for three statistical quantities computed from the wind

field of the example case: mean µ(|v|), SD σ(|v|), and

p(|v|> 20ms−1). The scatter plots show that for all three

quantities the largest differences appear at lower altitudes

(higher model level indices). Also, differences mostly are

small compared to absolute values of the quantities. For ex-

ample, at only a few grid points the difference in σ(|v|) and

p(|v|> 20ms−1) exceeds 1 ms−1 and 10 %, respectively.

The range of differences observed in Fig. 14 is well reflected

in the histogram.

Larger differences appear for statistical quantities com-

puted from moist variables (Fig. 16). Again, the histogram

for σ(RH) confirms the range of differences shown in Fig. 14

(Fig. 16d). For probabilities of potential vorticity and cloud

cover, differences of up to 30 % can occur (Fig. 16e and f).

However, for most grid points, differences are smaller.

Figure 17 shows a histogram of σ(psfc) of the example

case, overlain with the bin-averaged difference in σ(|v|). As

can be expected, larger differences on average occur in re-

gions with high σ(psfc). However, even for large σ(psfc),

most differences are small (not shown). We hence cannot

state that large σ(psfc) in general accounts for large differ-

ences.
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Figure 16. The same as Fig. 15 but for variables depending on moisture; (a and d) SD of relative humidity; (b and e) probability of potential

vorticity exceeding 2 PVU; (c and f) Probability of grid box cloud cover fraction falling below 0.05.
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Figure 17. Histogram of σ(psfc), overlain with the bin-averaged

difference of σ(psfc) against the differences between σ(|v|) com-

puted from a vertically regridded ensemble and computed from the

original member grids. Same forecast as in Fig. 13.

5.3 Error due to vertical interpolation of statistical

quantities

The error introduced by vertical linear interpolation of a sta-

tistical quantity depends on the quantity. Consider the exam-

ple given in Table 3. Due to the linear nature of the ensemble

mean, there is no difference whether we first compute the

mean at the grid points and then interpolate to the sample lo-

cation or vice versa. For non-linear quantities including SD

and probability, the results are different.

Figure 18 shows distributions of the interpolation errors

for σ(|v|) and p(|v|> 20ms−1). Note that in contrast to the

differences caused by regridding, the largest errors due to in-

terpolation occur in upper atmospheric levels, where the ver-

tical distance between model levels becomes larger. Between

the surface and approximately model level 10 (approximately

100 hPa), the order of magnitude of the interpolation errors

is comparable to that of the differences due to regridding. At

middle atmospheric levels, both errors are at a minimum, as

shown by the vertical profile of horizontally averaged differ-

ences. At the upper boundary of the model atmosphere, in-

terpolation errors become significantly larger, These regions,

however, are not relevant for the forecast cases we are inter-

ested in.
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Figure 18. Distribution of errors due to vertical linear interpolation (denoted by interp1) of statistical quantities. (a) Distribution of errors

of σ(|v|) (top), and vertical occurrence of the errors (bottom). (b) The same for p(|v|> 20ms−1). (c) Vertical profile of level average

differences due to regridding (crosses) and interpolation (dots). Same forecast as in Fig. 13.

Table 3. Example of vertically interpolating statistical quantities. Consider an ensemble of three members and corresponding scalar quantities

s1 .. s3 at the two vertical levels k and k+ 1. While the mean value µ(s), interpolated to the mid-level between k and k+ 1, equals the mean

of the interpolated scalar values, this is not true for the SD σ(s) and the probability that a scalar value exceeds 1.5, p(s > 1.5). The subscript

i refers to “interpolated”.

Level s1 s2 s3 µ(si) µi(s) σ (si) σi(s) p(si > 1.5) pi(s > 1.5)

k 0.8 1.7 1.8 1.433 0.45 0.66

Mid-level 1.4 1.45 1.4 1.4166 1.4166 0.24 0.44 0 0.5

k+ 1 2.0 1.2 1.0 1.40 0.43 0.33

5.4 Discussion

The examples show that the errors introduced by comput-

ing the statistical quantities from the original member grids

are of comparable magnitude to the errors introduced by ver-

tically interpolating the computed quantities. For most grid

points, both are negligible and result in only little difference

in the visualization. However, for some variables and cases

(in particular moist variables), differences can be of the same

order of magnitude as the statistical quantity itself.

We conclude that for general exploration of the forecast

data, it is sufficient for the user to use the “fast” option and vi-

sualize quantities computed from the original member grids.

However, if the result is crucial for an important decision,

our advice is to switch to regridded quantities and accept

the additional compute time. The “best” results and those

most comparable to products obtained from ECMWF can be

achieved by first interpolating each member to the desired

vertical pressure and then computing the statistical quanti-

ties. In this case, neither regridding nor vertical interpolation

of the quantity corrupts the result. In Met.3D, this is possible

for horizontal sections.

6 Conclusions

We have presented Met.3D, a new open-source tool that

provides interactive 3-D visualization techniques for nu-

merical ensemble weather prediction data in a way suit-

able for weather forecasting. The development of Met.3D

has been motivated by the application of forecasting during

aircraft-based atmospheric field campaigns, in particular, by

the requirements of the T-NAWDEX-Falcon 2012 campaign.

However, we see the tool applicable to a wider range of appli-

cations, including the analysis of ensemble simulation output

in atmospheric research and the usage of Met.3D to support

teaching in meteorology classes.

Our work is concerned with meaningful 3-D depiction and

ensemble visualization, two challenging topics of weather

forecast visualization. We have addressed a number of chal-

lenges that have been discussed in the literature, including

prevention of a decoupling between commonly used 2-D and

new 3-D visualization methods, spatial perception in 3-D

scenes, suitable uncertainty visualization techniques, and

system performance. Interactivity is key to our approach. It

is facilitated by exploiting the computational power provided

by modern graphics processing units and by means of a flexi-

ble, modular system architecture. We have built a bridge from
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proven 2-D visualization methods commonly used in mete-

orology to 3-D visualization; 2-D products are rendered in

a 3-D context, a product’s position can be changed interac-

tively. When 3-D elements are visualized, spatial perception

is improved by displaying shadows on the Earth’s surface,

enabling the user to judge the horizontal position and rel-

ative elevation of an element. Quantitative height informa-

tion can be obtained by means of interactive vertical axes.

We have proposed normal curves, a novel visualization tech-

nique to reveal the structure inside a transparent 3-D iso-

surface of a scalar field. With normal curves, the locations

and magnitudes of local extrema in the visualized data can

be identified at a glance. To visually provide information on

forecast uncertainty, Met.3D implements support for ensem-

ble forecasts. The tool is designed to allow for integration

of both feature-based and location-based ensemble visualiza-

tion techniques. In the presented version, forecast products

can be animated over the ensemble dimension, and statistical

quantities can be derived and visualized on demand. Con-

cerning the computation of statistical quantities from fore-

cast data on hybrid sigma-pressure grids, we have shown that

ignoring the variation in grid-point pressure between the en-

semble members has little impact on the visualization.

The paper at hand is the first of a two-part study. We

have focussed on Met.3D’s functionality, system architecture

and visualization algorithms. In Part 2, we focus on the spe-

cific forecast requirements of T-NAWDEX-Falcon and use

Met.3D to predict warm conveyor belt situations. Ensemble

particle trajectories are employed to predict a probability of

warm conveyor belt occurrence. In particular, a case study,

revisiting a forecast case from T-NAWDEX-Falcon, demon-

strates the practical application of Met.3D and highlights the

potential of the software to improve the weather forecasting

process.

Future work needs to include careful evaluation of the pre-

sented visualization techniques to study their impact on tasks

performed by meteorologists and atmospheric researchers in

their daily work. We discuss our point of view on the added

value of interactive 3-D ensemble visualization for forecast-

ing after the presentation of the case study in the conclusions

of Part 2. For example, in our experience, the provided in-

teractivity for 2-D sections and the ability to add features as

3-D elements helps to much faster build a mental model of

the atmosphere. This, of course, reflects our personal percep-

tion. We plan to evaluate the issue with a user study in the

near future.

We will actively use Met.3D during upcoming field cam-

paigns, including a future NAWDEX campaign scheduled for

2016. We also see much potential for further research in me-

teorological visualization. With respect to 3-D visualization,

further improvement of spatial perception is very important.

In the Met.3D version presented here, shadows are only ren-

dered on the Earth’s surface. Global illumination techniques

(e.g. Jönsson et al., 2014) that, for example, allow 3-D el-

ements to mutually cast shadows on each other, may fur-

ther improve the user’s judgement of spatial relationships.

Also, the impact of different projections on perceived spatial

distance needs to be studied. Met.3D currently is restricted

to a cylindrical map projection in the horizontal. Additional

challenges include the efficient rendering from further native

model grid topologies and real-time placement of text labels

to convey quantitative information. The latter applies in par-

ticular to 2-D and 3-D contour lines and surfaces. Due to the

employed GPU implementation of the 2-D marching squares

contouring algorithm, continuous line geometry is not eas-

ily available. Hence, it is difficult to compute positions for

labels.

With respect to ensemble and uncertainty visualization,

open questions are abundant, as reflected by the literature

surveyed in Sect. 2. In Part 2, we introduce a feature-based

approach for WCBs. Further approaches, both feature based

and location based, can be implemented in Met.3D to study

their feasibility and applicability in meteorology.

With the development of Met.3D, we have demonstrated

how we envision 3-D and ensemble techniques to become

a part of standard meteorological visualization. The tool pro-

vides a solid software infrastructure that opens the door to in-

vestigate the above-listed and other research questions, thus

enabling the further advancement of meteorological visual-

ization.

Code availability

To facilitate ease of deployment and of future research and

developments, we have made the source code of Met.3D

available as open-source under the GNU General Public Li-

cense, version 3. Please enter the following into your web

browser to go to the software repository: https://bitbucket.

org/wxmetvis/met.3d; here you can obtain an up-to-date ver-

sion of the software. We welcome user feedback as well as

contributions that help with the further development of the

code. If you are interested, please contact us.

The Supplement related to this article is available online

at doi:10.5194/gmd-8-2329-2015-supplement.
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