Development and technical paper 21 May 2015
Development and technical paper | 21 May 2015
The Met Office Global Coupled model 2.0 (GC2) configuration
K. D. Williams et al.
Related authors
David Walters, Anthony J. Baran, Ian Boutle, Malcolm Brooks, Paul Earnshaw, John Edwards, Kalli Furtado, Peter Hill, Adrian Lock, James Manners, Cyril Morcrette, Jane Mulcahy, Claudio Sanchez, Chris Smith, Rachel Stratton, Warren Tennant, Lorenzo Tomassini, Kwinten Van Weverberg, Simon Vosper, Martin Willett, Jo Browse, Andrew Bushell, Kenneth Carslaw, Mohit Dalvi, Richard Essery, Nicola Gedney, Steven Hardiman, Ben Johnson, Colin Johnson, Andy Jones, Colin Jones, Graham Mann, Sean Milton, Heather Rumbold, Alistair Sellar, Masashi Ujiie, Michael Whitall, Keith Williams, and Mohamed Zerroukat
Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, https://doi.org/10.5194/gmd-12-1909-2019, 2019
Short summary
Short summary
Global Atmosphere (GA) configurations of the Unified Model (UM) and Global Land (GL) configurations of JULES are developed for use in any global atmospheric modelling application. We describe a recent iteration of these configurations, GA7/GL7, which includes new aerosol and snow schemes and addresses the four critical errors identified in GA6. GA7/GL7 will underpin the UK's contributions to CMIP6, and hence their documentation is important.
Yoko Tsushima, Florent Brient, Stephen A. Klein, Dimitra Konsta, Christine C. Nam, Xin Qu, Keith D. Williams, Steven C. Sherwood, Kentaroh Suzuki, and Mark D. Zelinka
Geosci. Model Dev., 10, 4285–4305, https://doi.org/10.5194/gmd-10-4285-2017, https://doi.org/10.5194/gmd-10-4285-2017, 2017
Short summary
Short summary
Cloud feedback is the largest uncertainty associated with estimates of climate sensitivity. Diagnostics have been developed to evaluate cloud processes in climate models. For this understanding to be reflected in better estimates of cloud feedbacks, it is vital to continue to develop such tools and to exploit them fully during the model development process. Code repositories have been created to store and document the programs which will allow climate modellers to compute these diagnostics.
Keith D. Williams and Alejandro Bodas-Salcedo
Geosci. Model Dev., 10, 2547–2566, https://doi.org/10.5194/gmd-10-2547-2017, https://doi.org/10.5194/gmd-10-2547-2017, 2017
Short summary
Short summary
The simulation of cloud is problematic for general circulation models. As clouds come in differing types, areal coverage, altitude and reflectivity, it is possible for a model to appear to perform well against a particular observational dataset through a compensation of errors. Here we evaluate a model's cloud simulation against a range of observational datasets, globally and across weather–climate timescales, in order to provide a comprehensive assessment.
David Walters, Ian Boutle, Malcolm Brooks, Thomas Melvin, Rachel Stratton, Simon Vosper, Helen Wells, Keith Williams, Nigel Wood, Thomas Allen, Andrew Bushell, Dan Copsey, Paul Earnshaw, John Edwards, Markus Gross, Steven Hardiman, Chris Harris, Julian Heming, Nicholas Klingaman, Richard Levine, James Manners, Gill Martin, Sean Milton, Marion Mittermaier, Cyril Morcrette, Thomas Riddick, Malcolm Roberts, Claudio Sanchez, Paul Selwood, Alison Stirling, Chris Smith, Dan Suri, Warren Tennant, Pier Luigi Vidale, Jonathan Wilkinson, Martin Willett, Steve Woolnough, and Prince Xavier
Geosci. Model Dev., 10, 1487–1520, https://doi.org/10.5194/gmd-10-1487-2017, https://doi.org/10.5194/gmd-10-1487-2017, 2017
Short summary
Short summary
Global Atmosphere (GA) configurations of the Unified Model (UM) and Global Land (GL) configurations of JULES are developed for use in any global atmospheric modelling application.
We describe a recent iteration of these configurations: GA6/GL6. This includes ENDGame: a new dynamical core designed to improve the model's accuracy, stability and scalability. GA6 is now operational in a variety of Met Office and UM collaborators applications and hence its documentation is important.
We describe a recent iteration of these configurations: GA6/GL6. This includes ENDGame: a new dynamical core designed to improve the model's accuracy, stability and scalability. GA6 is now operational in a variety of Met Office and UM collaborators applications and hence its documentation is important.
Veronika Eyring, Mattia Righi, Axel Lauer, Martin Evaldsson, Sabrina Wenzel, Colin Jones, Alessandro Anav, Oliver Andrews, Irene Cionni, Edouard L. Davin, Clara Deser, Carsten Ehbrecht, Pierre Friedlingstein, Peter Gleckler, Klaus-Dirk Gottschaldt, Stefan Hagemann, Martin Juckes, Stephan Kindermann, John Krasting, Dominik Kunert, Richard Levine, Alexander Loew, Jarmo Mäkelä, Gill Martin, Erik Mason, Adam S. Phillips, Simon Read, Catherine Rio, Romain Roehrig, Daniel Senftleben, Andreas Sterl, Lambertus H. van Ulft, Jeremy Walton, Shiyu Wang, and Keith D. Williams
Geosci. Model Dev., 9, 1747–1802, https://doi.org/10.5194/gmd-9-1747-2016, https://doi.org/10.5194/gmd-9-1747-2016, 2016
Short summary
Short summary
A community diagnostics and performance metrics tool for the evaluation of Earth system models (ESMs) in CMIP has been developed that allows for routine comparison of single or multiple models, either against predecessor versions or against observations.
D. N. Walters, K. D. Williams, I. A. Boutle, A. C. Bushell, J. M. Edwards, P. R. Field, A. P. Lock, C. J. Morcrette, R. A. Stratton, J. M. Wilkinson, M. R. Willett, N. Bellouin, A. Bodas-Salcedo, M. E. Brooks, D. Copsey, P. D. Earnshaw, S. C. Hardiman, C. M. Harris, R. C. Levine, C. MacLachlan, J. C. Manners, G. M. Martin, S. F. Milton, M. D. Palmer, M. J. Roberts, J. M. Rodríguez, W. J. Tennant, and P. L. Vidale
Geosci. Model Dev., 7, 361–386, https://doi.org/10.5194/gmd-7-361-2014, https://doi.org/10.5194/gmd-7-361-2014, 2014
Bijoy Thompson, Claudio Sanchez, Boon Chong Peter Heng, Rajesh Kumar, Jianyu Liu, Xiang-Yu Huang, and Pavel Tkalich
Geosci. Model Dev., 14, 1081–1100, https://doi.org/10.5194/gmd-14-1081-2021, https://doi.org/10.5194/gmd-14-1081-2021, 2021
Short summary
Short summary
This article describes the development and ocean forecast evaluation of an atmosphere–ocean coupled prediction system for the Maritime Continent domain, which includes the eastern Indian and western Pacific oceans. The coupled system comprises regional configurations of the atmospheric model MetUM and ocean model NEMO, coupled using the OASIS3-MCT libraries. The model forecast deviation of selected fields relative to observations is within acceptable error limits of operational forecast models.
Mark R. Muetzelfeldt, Reinhard Schiemann, Andrew G. Turner, Nicholas P. Klingaman, Pier Luigi Vidale, and Malcolm J. Roberts
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-652, https://doi.org/10.5194/hess-2020-652, 2021
Preprint under review for HESS
Short summary
Short summary
Simulating East-Asian Summer Monsoon (EASM) rainfall poses many challenges because of its multi-scale nature. We evaluate 3 setups of a 14-km global climate model against observations to see if they improve simulated rainfall. We do this over catchment basins of different sizes to estimate how model performance depends on spatial scale. Using explicit convection improves rainfall diurnal cycle, yet more model tuning is needed to improve mean and intensity biases in simulated summer rainfall.
Jane P. Mulcahy, Colin Johnson, Colin G. Jones, Adam C. Povey, Catherine E. Scott, Alistair Sellar, Steven T. Turnock, Matthew T. Woodhouse, Nathan Luke Abraham, Martin B. Andrews, Nicolas Bellouin, Jo Browse, Ken S. Carslaw, Mohit Dalvi, Gerd A. Folberth, Matthew Glover, Daniel P. Grosvenor, Catherine Hardacre, Richard Hill, Ben Johnson, Andy Jones, Zak Kipling, Graham Mann, James Mollard, Fiona M. O'Connor, Julien Palmiéri, Carly Reddington, Steven T. Rumbold, Mark Richardson, Nick A. J. Schutgens, Philip Stier, Marc Stringer, Yongming Tang, Jeremy Walton, Stephanie Woodward, and Andrew Yool
Geosci. Model Dev., 13, 6383–6423, https://doi.org/10.5194/gmd-13-6383-2020, https://doi.org/10.5194/gmd-13-6383-2020, 2020
Short summary
Short summary
Aerosols are an important component of the Earth system. Here, we comprehensively document and evaluate the aerosol schemes as implemented in the physical and Earth system models, HadGEM3-GC3.1 and UKESM1. This study provides a useful characterisation of the aerosol climatology in both models, facilitating the understanding of the numerous aerosol–climate interaction studies that will be conducted for CMIP6 and beyond.
Marie-Estelle Demory, Ségolène Berthou, Jesús Fernández, Silje L. Sørland, Roman Brogli, Malcolm J. Roberts, Urs Beyerle, Jon Seddon, Rein Haarsma, Christoph Schär, Erasmo Buonomo, Ole B. Christensen, James M. Ciarlo ̀, Rowan Fealy, Grigory Nikulin, Daniele Peano, Dian Putrasahan, Christopher D. Roberts, Retish Senan, Christian Steger, Claas Teichmann, and Robert Vautard
Geosci. Model Dev., 13, 5485–5506, https://doi.org/10.5194/gmd-13-5485-2020, https://doi.org/10.5194/gmd-13-5485-2020, 2020
Short summary
Short summary
Now that global climate models (GCMs) can run at similar resolutions to regional climate models (RCMs), one may wonder whether GCMs and RCMs provide similar regional climate information. We perform an evaluation for daily precipitation distribution in PRIMAVERA GCMs (25–50 km resolution) and CORDEX RCMs (12–50 km resolution) over Europe. We show that PRIMAVERA and CORDEX simulate similar distributions. Considering both datasets at such a resolution results in large benefits for impact studies.
Alex West, Mat Collins, and Ed Blockley
Geosci. Model Dev., 13, 4845–4868, https://doi.org/10.5194/gmd-13-4845-2020, https://doi.org/10.5194/gmd-13-4845-2020, 2020
Short summary
Short summary
This study calculates sea ice energy fluxes from data produced by ice mass balance buoys (devices measuring ice elevation and temperature). It is shown how the resulting dataset can be used to evaluate a coupled climate model (HadGEM2-ES), with biases in the energy fluxes seen to be consistent with biases in the sea ice state and surface radiation. This method has potential to improve sea ice model evaluation, so as to better understand spread in model simulations of sea ice state.
Vidya Varma, Olaf Morgenstern, Paul Field, Kalli Furtado, Jonny Williams, and Patrick Hyder
Atmos. Chem. Phys., 20, 7741–7751, https://doi.org/10.5194/acp-20-7741-2020, https://doi.org/10.5194/acp-20-7741-2020, 2020
Short summary
Short summary
The present generation of global climate models has an insufficiently reflected short-wave radiation, especially over the Southern Ocean. This leads to an excessive heating of the ocean surface in the model, creating sea surface temperature biases and subsequent problems with atmospheric dynamics. Misrepresentation of clouds could be attributed to this radiation bias; we try to address this issue by slowing the growth rate of ice crystals and improving the supercooled liquid clouds in the model.
Reinhard Schiemann, Panos Athanasiadis, David Barriopedro, Francisco Doblas-Reyes, Katja Lohmann, Malcolm J. Roberts, Dmitry V. Sein, Christopher D. Roberts, Laurent Terray, and Pier Luigi Vidale
Weather Clim. Dynam., 1, 277–292, https://doi.org/10.5194/wcd-1-277-2020, https://doi.org/10.5194/wcd-1-277-2020, 2020
Short summary
Short summary
In blocking situations the westerly atmospheric flow in the midlatitudes is blocked by near-stationary high-pressure systems. Blocking can be associated with extremes such as cold spells and heat waves. Climate models are known to underestimate blocking occurrence. Here, we assess the latest generation of models and find improvements in simulated blocking, partly due to increases in model resolution. These new models are therefore more suitable for studying climate extremes related to blocking.
Torben Koenigk, Ramon Fuentes-Franco, Virna Meccia, Oliver Gutjahr, Laura C. Jackson, Adrian L. New, Pablo Ortega, Christopher Roberts, Malcolm Roberts, Thomas Arsouze, Doroteaciro Iovino, Marie-Pierre Moine, and Dmitry V. Sein
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-41, https://doi.org/10.5194/os-2020-41, 2020
Revised manuscript not accepted
Short summary
Short summary
The mixing of water masses into the deep ocean in the North Atlantic is important for the entire global ocean circulation. We use seven global climate models to investigate the effect of increasing the model resolution on this deep ocean mixing. The main result is that increased model resolution leads to a deeper mixing of water masses in the Labrador Sea but has less effect in the Greenland Sea. However, most of the models overestimate the deep ocean mixing compared to observations.
Mike Bush, Tom Allen, Caroline Bain, Ian Boutle, John Edwards, Anke Finnenkoetter, Charmaine Franklin, Kirsty Hanley, Humphrey Lean, Adrian Lock, James Manners, Marion Mittermaier, Cyril Morcrette, Rachel North, Jon Petch, Chris Short, Simon Vosper, David Walters, Stuart Webster, Mark Weeks, Jonathan Wilkinson, Nigel Wood, and Mohamed Zerroukat
Geosci. Model Dev., 13, 1999–2029, https://doi.org/10.5194/gmd-13-1999-2020, https://doi.org/10.5194/gmd-13-1999-2020, 2020
Short summary
Short summary
In this paper we define the first Regional Atmosphere and Land (RAL) science configuration for kilometre-scale modelling using the Unified Model (UM) as the basis for the atmosphere and the Joint UK Land Environment Simulator (JULES) for the land. RAL1 defines the science configuration of the dynamics and physics schemes of the atmosphere and land. This configuration will provide a model baseline for any future weather or climate model developments to be described against.
Alexander T. Archibald, Fiona M. O'Connor, Nathan Luke Abraham, Scott Archer-Nicholls, Martyn P. Chipperfield, Mohit Dalvi, Gerd A. Folberth, Fraser Dennison, Sandip S. Dhomse, Paul T. Griffiths, Catherine Hardacre, Alan J. Hewitt, Richard S. Hill, Colin E. Johnson, James Keeble, Marcus O. Köhler, Olaf Morgenstern, Jane P. Mulcahy, Carlos Ordóñez, Richard J. Pope, Steven T. Rumbold, Maria R. Russo, Nicholas H. Savage, Alistair Sellar, Marc Stringer, Steven T. Turnock, Oliver Wild, and Guang Zeng
Geosci. Model Dev., 13, 1223–1266, https://doi.org/10.5194/gmd-13-1223-2020, https://doi.org/10.5194/gmd-13-1223-2020, 2020
Short summary
Short summary
Here we present a description and evaluation of the UKCA stratosphere–troposphere chemistry scheme (StratTrop vn 1.0) implemented in the UK Earth System Model (UKESM1). UKCA StratTrop represents a substantial step forward compared to previous versions of UKCA. We show here that it is fully suited to the challenges of representing interactions in a coupled Earth system model and identify key areas and components for future development that will make it even better in the future.
Malcolm J. Roberts, Alex Baker, Ed W. Blockley, Daley Calvert, Andrew Coward, Helene T. Hewitt, Laura C. Jackson, Till Kuhlbrodt, Pierre Mathiot, Christopher D. Roberts, Reinhard Schiemann, Jon Seddon, Benoît Vannière, and Pier Luigi Vidale
Geosci. Model Dev., 12, 4999–5028, https://doi.org/10.5194/gmd-12-4999-2019, https://doi.org/10.5194/gmd-12-4999-2019, 2019
Short summary
Short summary
We investigate the role that horizontal grid spacing plays in global coupled climate model simulations, together with examining the efficacy of a new design of simulation experiments that is being used by the community for multi-model comparison. We found that finer grid spacing in both atmosphere and ocean–sea ice models leads to a general reduction in bias compared to observations, and that once eddies in the ocean are resolved, several key climate processes are greatly improved.
Catherine Guiavarc'h, Jonah Roberts-Jones, Chris Harris, Daniel J. Lea, Andrew Ryan, and Isabella Ascione
Ocean Sci., 15, 1307–1326, https://doi.org/10.5194/os-15-1307-2019, https://doi.org/10.5194/os-15-1307-2019, 2019
Short summary
Short summary
Coupled atmosphere–ocean modelling systems allow changes in the ocean to directly and immediately feed back on the atmosphere and enable improved weather prediction and ocean forecasts. This is particularly true if the coupled feedbacks are also considered in the way real-time observations of the atmospheric and oceanic states are used to obtain the initial conditions for the forecasts. Here we demonstrate promising performance from such a coupled system when used for ocean prediction.
Alex West, Mat Collins, Ed Blockley, Jeff Ridley, and Alejandro Bodas-Salcedo
The Cryosphere, 13, 2001–2022, https://doi.org/10.5194/tc-13-2001-2019, https://doi.org/10.5194/tc-13-2001-2019, 2019
Short summary
Short summary
This study presents a framework for examining the causes of model errors in Arctic sea ice volume, using HadGEM2-ES as a case study. Simple models are used to estimate how much of the error in energy arriving at the ice surface is due to error in key Arctic climate variables. The method quantifies how each variable affects sea ice volume balance and shows that for HadGEM2-ES an annual mean low bias in ice thickness is likely due to errors in surface melt onset.
David Walters, Anthony J. Baran, Ian Boutle, Malcolm Brooks, Paul Earnshaw, John Edwards, Kalli Furtado, Peter Hill, Adrian Lock, James Manners, Cyril Morcrette, Jane Mulcahy, Claudio Sanchez, Chris Smith, Rachel Stratton, Warren Tennant, Lorenzo Tomassini, Kwinten Van Weverberg, Simon Vosper, Martin Willett, Jo Browse, Andrew Bushell, Kenneth Carslaw, Mohit Dalvi, Richard Essery, Nicola Gedney, Steven Hardiman, Ben Johnson, Colin Johnson, Andy Jones, Colin Jones, Graham Mann, Sean Milton, Heather Rumbold, Alistair Sellar, Masashi Ujiie, Michael Whitall, Keith Williams, and Mohamed Zerroukat
Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, https://doi.org/10.5194/gmd-12-1909-2019, 2019
Short summary
Short summary
Global Atmosphere (GA) configurations of the Unified Model (UM) and Global Land (GL) configurations of JULES are developed for use in any global atmospheric modelling application. We describe a recent iteration of these configurations, GA7/GL7, which includes new aerosol and snow schemes and addresses the four critical errors identified in GA6. GA7/GL7 will underpin the UK's contributions to CMIP6, and hence their documentation is important.
Manu Anna Thomas, Abhay Devasthale, Torben Koenigk, Klaus Wyser, Malcolm Roberts, Christopher Roberts, and Katja Lohmann
Geosci. Model Dev., 12, 1679–1702, https://doi.org/10.5194/gmd-12-1679-2019, https://doi.org/10.5194/gmd-12-1679-2019, 2019
Short summary
Short summary
Cloud processes occur at scales ranging from few micrometres to hundreds of kilometres. Their representation in global climate models and their fidelity are thus sensitive to the choice of spatial resolution. Here, cloud radiative effects simulated by models are evaluated using a satellite dataset, with a focus on investigating the sensitivity to spatial resolution. The evaluations are carried out using two approaches: the traditional statistical comparisons and the process-oriented evaluation.
Daniel T. McCoy, Paul R. Field, Gregory S. Elsaesser, Alejandro Bodas-Salcedo, Brian H. Kahn, Mark D. Zelinka, Chihiro Kodama, Thorsten Mauritsen, Benoit Vanniere, Malcolm Roberts, Pier L. Vidale, David Saint-Martin, Aurore Voldoire, Rein Haarsma, Adrian Hill, Ben Shipway, and Jonathan Wilkinson
Atmos. Chem. Phys., 19, 1147–1172, https://doi.org/10.5194/acp-19-1147-2019, https://doi.org/10.5194/acp-19-1147-2019, 2019
Short summary
Short summary
The largest single source of uncertainty in the climate sensitivity predicted by global climate models is how much low-altitude clouds change as the climate warms. Models predict that the amount of liquid within and the brightness of low-altitude clouds increase in the extratropics with warming. We show that increased fluxes of moisture into extratropical storms in the midlatitudes explain the majority of the observed trend and the modeled increase in liquid water within these storms.
David Storkey, Adam T. Blaker, Pierre Mathiot, Alex Megann, Yevgeny Aksenov, Edward W. Blockley, Daley Calvert, Tim Graham, Helene T. Hewitt, Patrick Hyder, Till Kuhlbrodt, Jamie G. L. Rae, and Bablu Sinha
Geosci. Model Dev., 11, 3187–3213, https://doi.org/10.5194/gmd-11-3187-2018, https://doi.org/10.5194/gmd-11-3187-2018, 2018
Short summary
Short summary
We document the latest version of the shared UK global configuration of the
NEMO ocean model. This configuration will be used as part of the climate
models for the UK contribution to the IPCC 6th Assessment Report.
30-year integrations forced with atmospheric forcing show that the new
configurations have an improved simulation in the Southern Ocean with the
near-surface temperatures and salinities and the sea ice all matching the
observations more closely.
Reinhard Schiemann, Pier Luigi Vidale, Len C. Shaffrey, Stephanie J. Johnson, Malcolm J. Roberts, Marie-Estelle Demory, Matthew S. Mizielinski, and Jane Strachan
Hydrol. Earth Syst. Sci., 22, 3933–3950, https://doi.org/10.5194/hess-22-3933-2018, https://doi.org/10.5194/hess-22-3933-2018, 2018
Short summary
Short summary
A new generation of global climate models with resolutions between 50 and 10 km is becoming available. Here, we assess how well one such model simulates European precipitation. We find clear improvements in the mean precipitation pattern, and importantly also for extreme daily precipitation over 30 major European river basins. Despite remaining limitations, new high-resolution global models hold great promise for improved climate predictions of European precipitation at impact-relevant scales.
Jeff K. Ridley, Edward W. Blockley, Ann B. Keen, Jamie G. L. Rae, Alex E. West, and David Schroeder
Geosci. Model Dev., 11, 713–723, https://doi.org/10.5194/gmd-11-713-2018, https://doi.org/10.5194/gmd-11-713-2018, 2018
Short summary
Short summary
The sea ice component of the Met Office coupled climate model, HadGEM3-GC3.1, is presented and evaluated. We determine that the mean state of the sea ice is well reproduced for the Arctic; however, a warm sea surface temperature bias over the Southern Ocean results in a low Antarctic sea ice cover.
Dustin J. Swales, Robert Pincus, and Alejandro Bodas-Salcedo
Geosci. Model Dev., 11, 77–81, https://doi.org/10.5194/gmd-11-77-2018, https://doi.org/10.5194/gmd-11-77-2018, 2018
Short summary
Short summary
This paper introduces a new version of diagnostic software (COSP2) intended to facilitate more straightforward comparisons between climate models and observational cloud datasets. This version allows users to more closely incorporate their own models assumptions within COSP, while also being computationally more efficient and straightforward for users to extend and build upon.
Huw W. Lewis, Juan Manuel Castillo Sanchez, Jennifer Graham, Andrew Saulter, Jorge Bornemann, Alex Arnold, Joachim Fallmann, Chris Harris, David Pearson, Steven Ramsdale, Alberto Martínez-de la Torre, Lucy Bricheno, Eleanor Blyth, Victoria A. Bell, Helen Davies, Toby R. Marthews, Clare O'Neill, Heather Rumbold, Enda O'Dea, Ashley Brereton, Karen Guihou, Adrian Hines, Momme Butenschon, Simon J. Dadson, Tamzin Palmer, Jason Holt, Nick Reynard, Martin Best, John Edwards, and John Siddorn
Geosci. Model Dev., 11, 1–42, https://doi.org/10.5194/gmd-11-1-2018, https://doi.org/10.5194/gmd-11-1-2018, 2018
Short summary
Short summary
In the real world the atmosphere, oceans and land surface are closely interconnected, and yet prediction systems tend to treat them in isolation. Those feedbacks are often illustrated in natural hazards, such as when strong winds lead to large waves and coastal damage, or when prolonged rainfall leads to saturated ground and high flowing rivers. For the first time, we have attempted to represent some of the feedbacks between sky, sea and land within a high-resolution forecast system for the UK.
Yoko Tsushima, Florent Brient, Stephen A. Klein, Dimitra Konsta, Christine C. Nam, Xin Qu, Keith D. Williams, Steven C. Sherwood, Kentaroh Suzuki, and Mark D. Zelinka
Geosci. Model Dev., 10, 4285–4305, https://doi.org/10.5194/gmd-10-4285-2017, https://doi.org/10.5194/gmd-10-4285-2017, 2017
Short summary
Short summary
Cloud feedback is the largest uncertainty associated with estimates of climate sensitivity. Diagnostics have been developed to evaluate cloud processes in climate models. For this understanding to be reflected in better estimates of cloud feedbacks, it is vital to continue to develop such tools and to exploit them fully during the model development process. Code repositories have been created to store and document the programs which will allow climate modellers to compute these diagnostics.
Pierre Mathiot, Adrian Jenkins, Christopher Harris, and Gurvan Madec
Geosci. Model Dev., 10, 2849–2874, https://doi.org/10.5194/gmd-10-2849-2017, https://doi.org/10.5194/gmd-10-2849-2017, 2017
Keith D. Williams and Alejandro Bodas-Salcedo
Geosci. Model Dev., 10, 2547–2566, https://doi.org/10.5194/gmd-10-2547-2017, https://doi.org/10.5194/gmd-10-2547-2017, 2017
Short summary
Short summary
The simulation of cloud is problematic for general circulation models. As clouds come in differing types, areal coverage, altitude and reflectivity, it is possible for a model to appear to perform well against a particular observational dataset through a compensation of errors. Here we evaluate a model's cloud simulation against a range of observational datasets, globally and across weather–climate timescales, in order to provide a comprehensive assessment.
Rafael Abel, Claus W. Böning, Richard J. Greatbatch, Helene T. Hewitt, and Malcolm J. Roberts
Ocean Sci. Discuss., https://doi.org/10.5194/os-2017-24, https://doi.org/10.5194/os-2017-24, 2017
Revised manuscript not accepted
Short summary
Short summary
In coupled global atmosphere ocean models a feedback from ocean surface currents to atmospheric winds was found. Surface winds are energized by about 30 % of the ocean currents. We were able to implement this feedback in uncoupled ocean models which results in a realistic surface flux coupling. Due to changes in the dissipation the kinetic energy of the time-variable flow is increased up to 10 % when this feedback is implemented. Implementation in other models should be straightforward.
David Walters, Ian Boutle, Malcolm Brooks, Thomas Melvin, Rachel Stratton, Simon Vosper, Helen Wells, Keith Williams, Nigel Wood, Thomas Allen, Andrew Bushell, Dan Copsey, Paul Earnshaw, John Edwards, Markus Gross, Steven Hardiman, Chris Harris, Julian Heming, Nicholas Klingaman, Richard Levine, James Manners, Gill Martin, Sean Milton, Marion Mittermaier, Cyril Morcrette, Thomas Riddick, Malcolm Roberts, Claudio Sanchez, Paul Selwood, Alison Stirling, Chris Smith, Dan Suri, Warren Tennant, Pier Luigi Vidale, Jonathan Wilkinson, Martin Willett, Steve Woolnough, and Prince Xavier
Geosci. Model Dev., 10, 1487–1520, https://doi.org/10.5194/gmd-10-1487-2017, https://doi.org/10.5194/gmd-10-1487-2017, 2017
Short summary
Short summary
Global Atmosphere (GA) configurations of the Unified Model (UM) and Global Land (GL) configurations of JULES are developed for use in any global atmospheric modelling application.
We describe a recent iteration of these configurations: GA6/GL6. This includes ENDGame: a new dynamical core designed to improve the model's accuracy, stability and scalability. GA6 is now operational in a variety of Met Office and UM collaborators applications and hence its documentation is important.
We describe a recent iteration of these configurations: GA6/GL6. This includes ENDGame: a new dynamical core designed to improve the model's accuracy, stability and scalability. GA6 is now operational in a variety of Met Office and UM collaborators applications and hence its documentation is important.
Jason Holt, Patrick Hyder, Mike Ashworth, James Harle, Helene T. Hewitt, Hedong Liu, Adrian L. New, Stephen Pickles, Andrew Porter, Ekaterina Popova, J. Icarus Allen, John Siddorn, and Richard Wood
Geosci. Model Dev., 10, 499–523, https://doi.org/10.5194/gmd-10-499-2017, https://doi.org/10.5194/gmd-10-499-2017, 2017
Short summary
Short summary
Accurately representing coastal and shelf seas in global ocean models is one of the grand challenges of Earth system science. Here, we explore what the options are for improving this by exploring what the important physical processes are that need to be represented. We use a simple scale analysis to investigate how large the resulting models would need to be. We then compare this with how computer power is increasing to provide estimates of when this might be feasible in the future.
Mark J. Webb, Timothy Andrews, Alejandro Bodas-Salcedo, Sandrine Bony, Christopher S. Bretherton, Robin Chadwick, Hélène Chepfer, Hervé Douville, Peter Good, Jennifer E. Kay, Stephen A. Klein, Roger Marchand, Brian Medeiros, A. Pier Siebesma, Christopher B. Skinner, Bjorn Stevens, George Tselioudis, Yoko Tsushima, and Masahiro Watanabe
Geosci. Model Dev., 10, 359–384, https://doi.org/10.5194/gmd-10-359-2017, https://doi.org/10.5194/gmd-10-359-2017, 2017
Short summary
Short summary
The Cloud Feedback Model Intercomparison Project (CFMIP) aims to improve understanding of cloud-climate feedback mechanisms and evaluation of cloud processes and cloud feedbacks in climate models. CFMIP also aims to improve understanding of circulation, regional-scale precipitation and non-linear changes. CFMIP is contributing to the 6th phase of the Coupled Model Intercomparison Project (CMIP6) by coordinating a hierarchy of targeted experiments with cloud-related model outputs.
Reindert J. Haarsma, Malcolm J. Roberts, Pier Luigi Vidale, Catherine A. Senior, Alessio Bellucci, Qing Bao, Ping Chang, Susanna Corti, Neven S. Fučkar, Virginie Guemas, Jost von Hardenberg, Wilco Hazeleger, Chihiro Kodama, Torben Koenigk, L. Ruby Leung, Jian Lu, Jing-Jia Luo, Jiafu Mao, Matthew S. Mizielinski, Ryo Mizuta, Paulo Nobre, Masaki Satoh, Enrico Scoccimarro, Tido Semmler, Justin Small, and Jin-Song von Storch
Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, https://doi.org/10.5194/gmd-9-4185-2016, 2016
Short summary
Short summary
Recent progress in computing power has enabled climate models to simulate more processes in detail and on a smaller scale. Here we present a common protocol for these high-resolution runs that will foster the analysis and understanding of the impact of model resolution on the simulated climate. These runs will also serve as a more reliable source for assessing climate risks that are associated with small-scale weather phenomena such as tropical cyclones.
Helene T. Hewitt, Malcolm J. Roberts, Pat Hyder, Tim Graham, Jamie Rae, Stephen E. Belcher, Romain Bourdallé-Badie, Dan Copsey, Andrew Coward, Catherine Guiavarch, Chris Harris, Richard Hill, Joël J.-M. Hirschi, Gurvan Madec, Matthew S. Mizielinski, Erica Neininger, Adrian L. New, Jean-Christophe Rioual, Bablu Sinha, David Storkey, Ann Shelly, Livia Thorpe, and Richard A. Wood
Geosci. Model Dev., 9, 3655–3670, https://doi.org/10.5194/gmd-9-3655-2016, https://doi.org/10.5194/gmd-9-3655-2016, 2016
Short summary
Short summary
We examine the impact in a coupled model of increasing atmosphere and ocean horizontal resolution and the frequency of coupling between the atmosphere and ocean. We demonstrate that increasing the ocean resolution from 1/4 degree to 1/12 degree has a major impact on ocean circulation and global heat transports. The results add to the body of evidence suggesting that ocean resolution is an important consideration when developing coupled models for weather and climate applications.
Veronika Eyring, Mattia Righi, Axel Lauer, Martin Evaldsson, Sabrina Wenzel, Colin Jones, Alessandro Anav, Oliver Andrews, Irene Cionni, Edouard L. Davin, Clara Deser, Carsten Ehbrecht, Pierre Friedlingstein, Peter Gleckler, Klaus-Dirk Gottschaldt, Stefan Hagemann, Martin Juckes, Stephan Kindermann, John Krasting, Dominik Kunert, Richard Levine, Alexander Loew, Jarmo Mäkelä, Gill Martin, Erik Mason, Adam S. Phillips, Simon Read, Catherine Rio, Romain Roehrig, Daniel Senftleben, Andreas Sterl, Lambertus H. van Ulft, Jeremy Walton, Shiyu Wang, and Keith D. Williams
Geosci. Model Dev., 9, 1747–1802, https://doi.org/10.5194/gmd-9-1747-2016, https://doi.org/10.5194/gmd-9-1747-2016, 2016
Short summary
Short summary
A community diagnostics and performance metrics tool for the evaluation of Earth system models (ESMs) in CMIP has been developed that allows for routine comparison of single or multiple models, either against predecessor versions or against observations.
Alex E. West, Alison J. McLaren, Helene T. Hewitt, and Martin J. Best
Geosci. Model Dev., 9, 1125–1141, https://doi.org/10.5194/gmd-9-1125-2016, https://doi.org/10.5194/gmd-9-1125-2016, 2016
Short summary
Short summary
This study compares two methods of coupling a sea ice model to an atmospheric model in a series of idealized one-dimensional experiments. The JULES method calculates surface variables in the atmosphere; the CICE method calculates surface variables in the sea ice. It is found that simulations of all variables are more accurate in the JULES method, likely because of the shorter time step of the atmosphere.
J. G. L. Rae, H. T. Hewitt, A. B. Keen, J. K. Ridley, A. E. West, C. M. Harris, E. C. Hunke, and D. N. Walters
Geosci. Model Dev., 8, 2221–2230, https://doi.org/10.5194/gmd-8-2221-2015, https://doi.org/10.5194/gmd-8-2221-2015, 2015
Short summary
Short summary
The paper presents a new sea ice configuration, GSI6.0, in the Met Office coupled atmosphere-ocean-ice model. Differences in the sea ice from a previous configuration (GSI4.0) are explained in the context of a previously published sensitivity study. In summer, Arctic sea ice is thicker and more extensive than in GSI4.0, bringing it closer to the observationally derived data sets. In winter, the Arctic ice is thicker but less extensive than in GSI4.0.
M. S. Mizielinski, M. J. Roberts, P. L. Vidale, R. Schiemann, M.-E. Demory, J. Strachan, T. Edwards, A. Stephens, B. N. Lawrence, M. Pritchard, P. Chiu, A. Iwi, J. Churchill, C. del Cano Novales, J. Kettleborough, W. Roseblade, P. Selwood, M. Foster, M. Glover, and A. Malcolm
Geosci. Model Dev., 7, 1629–1640, https://doi.org/10.5194/gmd-7-1629-2014, https://doi.org/10.5194/gmd-7-1629-2014, 2014
A. Megann, D. Storkey, Y. Aksenov, S. Alderson, D. Calvert, T. Graham, P. Hyder, J. Siddorn, and B. Sinha
Geosci. Model Dev., 7, 1069–1092, https://doi.org/10.5194/gmd-7-1069-2014, https://doi.org/10.5194/gmd-7-1069-2014, 2014
J. P. Mulcahy, D. N. Walters, N. Bellouin, and S. F. Milton
Atmos. Chem. Phys., 14, 4749–4778, https://doi.org/10.5194/acp-14-4749-2014, https://doi.org/10.5194/acp-14-4749-2014, 2014
D. N. Walters, K. D. Williams, I. A. Boutle, A. C. Bushell, J. M. Edwards, P. R. Field, A. P. Lock, C. J. Morcrette, R. A. Stratton, J. M. Wilkinson, M. R. Willett, N. Bellouin, A. Bodas-Salcedo, M. E. Brooks, D. Copsey, P. D. Earnshaw, S. C. Hardiman, C. M. Harris, R. C. Levine, C. MacLachlan, J. C. Manners, G. M. Martin, S. F. Milton, M. D. Palmer, M. J. Roberts, J. M. Rodríguez, W. J. Tennant, and P. L. Vidale
Geosci. Model Dev., 7, 361–386, https://doi.org/10.5194/gmd-7-361-2014, https://doi.org/10.5194/gmd-7-361-2014, 2014
A. E. West, A. B. Keen, and H. T. Hewitt
The Cryosphere, 7, 555–567, https://doi.org/10.5194/tc-7-555-2013, https://doi.org/10.5194/tc-7-555-2013, 2013
Related subject area
Climate and Earth system modeling
Understanding the development of systematic errors in the Asian summer monsoon
ICON in Climate Limited-area Mode (ICON release version 2.6.1): a new regional climate model
Evaluation of polar stratospheric clouds in the global chemistry–climate model SOCOLv3.1 by comparison with CALIPSO spaceborne lidar measurements
Lossy compression of Earth system model data based on a hierarchical tensor with Adaptive-HGFDR (v1.0)
Methane chemistry in a nutshell – the new submodels CH4 (v1.0) and TRSYNC (v1.0) in MESSy (v2.54.0)
Coordinating an operational data distribution network for CMIP6 data
Implementation of sequential cropping into JULESvn5.2 land-surface model
Development of four-dimensional variational assimilation system based on the GRAPES–CUACE adjoint model (GRAPES–CUACE-4D-Var V1.0) and its application in emission inversion
HIRM v1.0: a hybrid impulse response model for climate modeling and uncertainty analyses
CLIMADA v1.4.1: towards a globally consistent adaptation options appraisal tool
FORTE 2.0: a fast, parallel and flexible coupled climate model
Optimization of the sulfate aerosol hygroscopicity parameter in WRF-Chem
Updated European hydraulic pedotransfer functions with communicated uncertainties in the predicted variables (euptfv2)
Spin-up characteristics with three types of initial fields and the restart effects on forecast accuracy in the GRAPES global forecast system
GTS v1.0: a macrophysics scheme for climate models based on a probability density function
Calibration of temperature-dependent ocean microbial processes in the cGENIE.muffin (v0.9.13) Earth system model
Description and evaluation of aerosol in UKESM1 and HadGEM3-GC3.1 CMIP6 historical simulations
DiRong1.0: a distributed implementation for improving routing network generation in model coupling
Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations
Geospatial input data for the PALM model system 6.0: model requirements, data sources and processing
Exploring the parameter space of the COSMO-CLM v5.0 regional climate model for the Central Asia CORDEX domain
The benefits of increasing resolution in global and regional climate simulations for European climate extremes
European daily precipitation according to EURO-CORDEX regional climate models (RCMs) and high-resolution global climate models (GCMs) from the High-Resolution Model Intercomparison Project (HighResMIP)
Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6
A computationally efficient method for probabilistic local warming projections constrained by history matching and pattern scaling, demonstrated by WASP–LGRTC-1.0
R2D2 v2.0: accounting for temporal dependences in multivariate bias correction via analogue rank resampling
Extending the Modular Earth Submodel System (MESSy v2.54) model hierarchy: the ECHAM/MESSy IdeaLized (EMIL) model setup
Boreal summer intraseasonal oscillation in a superparameterized general circulation model: effects of air–sea coupling and ocean mean state
Reduced Complexity Model Intercomparison Project Phase 1: introduction and evaluation of global-mean temperature response
Modeling land surface processes over a mountainous rainforest in Costa Rica using CLM4.5 and CLM5
A new bias-correction method for precipitation over complex terrain suitable for different climate states: a case study using WRF (version 3.8.1)
A process-based evaluation of the Intermediate Complexity Atmospheric Research Model (ICAR) 1.0.1
ISSM-SLPS: geodetically compliant Sea-Level Projection System for the Ice-sheet and Sea-level System Model v4.17
Newly developed aircraft routing options for air traffic simulation in the chemistry–climate model EMAC 2.53: AirTraf 2.0
Quantifying CanESM5 and EAMv1 sensitivities to Mt. Pinatubo volcanic forcing for the CMIP6 historical experiment
Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform
MIROC-INTEG-LAND version 1: a global biogeochemical land surface model with human water management, crop growth, and land-use change
Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 2: Sensitivity analysis and model calibration
Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 1: Implementation and model behaviour
Effects of Coupling a Stochastic Convective Parameterization with Zhang-McFarlane Scheme on Precipitation Simulation in the DOE E3SMv1 Atmosphere Model
The E3SM version 1 single-column model
RadNet 1.0: exploring deep learning architectures for longwave radiative transfer
Efficient ensemble data assimilation for coupled models with the Parallel Data Assimilation Framework: example of AWI-CM (AWI-CM-PDAF 1.0)
Modelling mineral dust emissions and atmospheric dispersion with MADE3 in EMAC v2.54
Evaluation of the University of Victoria Earth System Climate Model version 2.10 (UVic ESCM 2.10)
Earth System Model Evaluation Tool (ESMValTool) v2.0 – diagnostics for emergent constraints and future projections from Earth system models in CMIP
Evaluating the land-surface energy partitioning in ERA5
Robust Ecosystem Demography (RED version 1.0): a parsimonious approach to modelling vegetation dynamics in Earth system models
The GGCMI Phase 2 emulators: global gridded crop model responses to changes in CO2, temperature, water, and nitrogen (version 1.0)
Role of vegetation in representing land surface temperature in the CHTESSEL (CY45R1) and SURFEX-ISBA (v8.1) land surface models: a case study over Iberia
Gill M. Martin, Richard C. Levine, José M. Rodriguez, and Michael Vellinga
Geosci. Model Dev., 14, 1007–1035, https://doi.org/10.5194/gmd-14-1007-2021, https://doi.org/10.5194/gmd-14-1007-2021, 2021
Short summary
Short summary
Our study highlights a number of different techniques that can be employed to investigate the sources of model error. We demonstrate how this methodology can be used to identify the regions and model components responsible for the development of long-standing errors in the Asian summer monsoon. Once these are known, further work can be done to explore the local processes contributing to this behaviour and their sensitivity to changes in physical parameterisations and/or model resolution.
Trang Van Pham, Christian Steger, Burkhardt Rockel, Klaus Keuler, Ingo Kirchner, Mariano Mertens, Daniel Rieger, Günther Zängl, and Barbara Früh
Geosci. Model Dev., 14, 985–1005, https://doi.org/10.5194/gmd-14-985-2021, https://doi.org/10.5194/gmd-14-985-2021, 2021
Short summary
Short summary
A new regional climate model was prepared based on a weather forecast model. Slow processes of the climate system such as ocean state development and greenhouse gas emissions were implemented. A model infrastructure and evaluation tools were also prepared to facilitate long-term simulations and model evalution. The first ICON-CLM results were close to observations and comparable to those from COSMO-CLM, the recommended model being used at the Deutscher Wetterdienst and CLM Community.
Michael Steiner, Beiping Luo, Thomas Peter, Michael C. Pitts, and Andrea Stenke
Geosci. Model Dev., 14, 935–959, https://doi.org/10.5194/gmd-14-935-2021, https://doi.org/10.5194/gmd-14-935-2021, 2021
Short summary
Short summary
We evaluate polar stratospheric clouds (PSCs) as simulated by the chemistry–climate model (CCM) SOCOLv3.1 in comparison with measurements by the CALIPSO satellite. A cold bias results in an overestimated PSC area and mountain-wave ice is underestimated, but we find overall good temporal and spatial agreement of PSC occurrence and composition. This work confirms previous studies indicating that simplified PSC schemes may also achieve good approximations of the fundamental properties of PSCs.
Zhaoyuan Yu, Dongshuang Li, Zhengfang Zhang, Wen Luo, Yuan Liu, Zengjie Wang, and Linwang Yuan
Geosci. Model Dev., 14, 875–887, https://doi.org/10.5194/gmd-14-875-2021, https://doi.org/10.5194/gmd-14-875-2021, 2021
Short summary
Short summary
Few lossy compression methods consider both the global and local multidimensional coupling correlations, which could lead to information loss in data compression. Here we develop an adaptive lossy compression method, Adaptive-HGFDR, to capture both the global and local variation of multidimensional coupling correlations and improve approximation accuracy. The method can achieve good compression performances for most flux variables with significant spatiotemporal heterogeneity.
Franziska Winterstein and Patrick Jöckel
Geosci. Model Dev., 14, 661–674, https://doi.org/10.5194/gmd-14-661-2021, https://doi.org/10.5194/gmd-14-661-2021, 2021
Short summary
Short summary
Atmospheric methane is currently a hot topic in climate research. This is partly due to its chemically active nature. We introduce a simplified approach to simulate methane in climate models to enable large sensitivity studies by reducing computational cost but including the crucial feedback of methane on stratospheric water vapour. We further provide options to simulate the isotopic content of methane and to generate output for an inverse optimization technique for emission estimation.
Ruth Petrie, Sébastien Denvil, Sasha Ames, Guillaume Levavasseur, Sandro Fiore, Chris Allen, Fabrizio Antonio, Katharina Berger, Pierre-Antoine Bretonnière, Luca Cinquini, Eli Dart, Prashanth Dwarakanath, Kelsey Druken, Ben Evans, Laurent Franchistéguy, Sébastien Gardoll, Eric Gerbier, Mark Greenslade, David Hassell, Alan Iwi, Martin Juckes, Stephan Kindermann, Lukasz Lacinski, Maria Mirto, Atef Ben Nasser, Paola Nassisi, Eric Nienhouse, Sergey Nikonov, Alessandra Nuzzo, Clare Richards, Syazwan Ridzwan, Michel Rixen, Kim Serradell, Kate Snow, Ag Stephens, Martina Stockhause, Hans Vahlenkamp, and Rick Wagner
Geosci. Model Dev., 14, 629–644, https://doi.org/10.5194/gmd-14-629-2021, https://doi.org/10.5194/gmd-14-629-2021, 2021
Short summary
Short summary
This paper describes the infrastructure that is used to distribute Coupled Model Intercomparison Project Phase 6 (CMIP6) data around the world for analysis by the climate research community. It is expected that there will be ~20 PB (petabytes) of data available for analysis. The operations team performed a series of preparation "data challenges" to ensure all components of the infrastructure were operational for when the data became available for timely data distribution and subsequent analysis.
Camilla Mathison, Andrew J. Challinor, Chetan Deva, Pete Falloon, Sébastien Garrigues, Sophie Moulin, Karina Williams, and Andy Wiltshire
Geosci. Model Dev., 14, 437–471, https://doi.org/10.5194/gmd-14-437-2021, https://doi.org/10.5194/gmd-14-437-2021, 2021
Short summary
Short summary
Sequential cropping (also known as multiple or double cropping) is a common cropping system, particularly in tropical regions. Typically, land surface models only simulate a single crop per year. To understand how sequential crops influence surface fluxes, we implement sequential cropping in JULES to simulate all the crops grown within a year at a given location in a seamless way. We demonstrate the method using a site in Avignon, four locations in India and a regional run for two Indian states.
Chao Wang, Xingqin An, Qing Hou, Zhaobin Sun, Yanjun Li, and Jiangtao Li
Geosci. Model Dev., 14, 337–350, https://doi.org/10.5194/gmd-14-337-2021, https://doi.org/10.5194/gmd-14-337-2021, 2021
Kalyn Dorheim, Steven J. Smith, and Ben Bond-Lamberty
Geosci. Model Dev., 14, 365–375, https://doi.org/10.5194/gmd-14-365-2021, https://doi.org/10.5194/gmd-14-365-2021, 2021
Short summary
Short summary
Simple climate models are frequently used in research and decision-making communities because of their tractability and low computational cost. Simple climate models are diverse, including highly idealized and process-based models. Here we present a hybrid approach that combines the strength of two types of simple climate models in a flexible framework. This hybrid approach has provided insights into the climate system and opens an avenue for investigating radiative forcing uncertainties.
David N. Bresch and Gabriela Aznar-Siguan
Geosci. Model Dev., 14, 351–363, https://doi.org/10.5194/gmd-14-351-2021, https://doi.org/10.5194/gmd-14-351-2021, 2021
Short summary
Short summary
Climate change is a fact and adaptation a necessity. The Economics of Climate Adaptation methodology provides a framework to integrate risk and reward perspectives of different stakeholders, underpinned by the CLIMADA impact modelling platform. This extended version of CLIMADA enables risk assessment and options appraisal in a modular form and occasionally bespoke fashion yet with high reusability of functionalities to foster usage in interdisciplinary studies and international collaboration.
Adam T. Blaker, Manoj Joshi, Bablu Sinha, David P. Stevens, Robin S. Smith, and Joël J.-M. Hirschi
Geosci. Model Dev., 14, 275–293, https://doi.org/10.5194/gmd-14-275-2021, https://doi.org/10.5194/gmd-14-275-2021, 2021
Short summary
Short summary
FORTE 2.0 is a flexible coupled atmosphere–ocean general circulation model that can be run on modest hardware. We present two 2000-year simulations which show that FORTE 2.0 is capable of producing a stable climate. Earlier versions of FORTE were used for a wide range of studies, ranging from aquaplanet configurations to investigating the cold European winters of 2009–2010. This paper introduces the updated model for which the code and configuration are now publicly available.
Ah-Hyun Kim, Seong Soo Yum, Dong Yeong Chang, and Minsu Park
Geosci. Model Dev., 14, 259–273, https://doi.org/10.5194/gmd-14-259-2021, https://doi.org/10.5194/gmd-14-259-2021, 2021
Short summary
Short summary
A new method to estimate the sulfate aerosol hygroscopicity parameter (κSO4) is suggested that can consider κSO4 for two different sulfate species instead of prescribing a single κSO4 value, as in most previous studies. The new method simulates more realistic cloud droplet concentrations and, thus, a more realistic cloud albedo effect than the original method. The new method is simple and readily applicable to modeling studies investigating sulfate aerosols’ effect in aerosol–cloud interactions.
Brigitta Szabó, Melanie Weynants, and Tobias K. D. Weber
Geosci. Model Dev., 14, 151–175, https://doi.org/10.5194/gmd-14-151-2021, https://doi.org/10.5194/gmd-14-151-2021, 2021
Short summary
Short summary
This paper presents updated European prediction algorithms (euptf2) to compute soil hydraulic parameters from easily available soil properties. The new algorithms lead to significantly better predictions and provide a built-in prediction uncertainty computation. The influence of predictor variables on predicted soil hydraulic properties is explored and practical guidance on how to use the derived PTFs is provided. A website and an R package facilitate easy application of the updated predictions.
Zhanshan Ma, Chuanfeng Zhao, Jiandong Gong, Jin Zhang, Zhe Li, Jian Sun, Yongzhu Liu, Jiong Chen, and Qingu Jiang
Geosci. Model Dev., 14, 205–221, https://doi.org/10.5194/gmd-14-205-2021, https://doi.org/10.5194/gmd-14-205-2021, 2021
Short summary
Short summary
The spin-up in GRAPES_GFS, under different initial fields, goes through a dramatic adjustment in the first half-hour of integration and slow dynamic and thermal adjustments afterwards. It lasts for at least 6 h, with model adjustment gradually completed from lower to upper layers in the model. Thus, the forecast results, at least in the first 6 h, should be avoided when used. In addition, the spin-up process should repeat when the model simulation is interrupted.
Chein-Jung Shiu, Yi-Chi Wang, Huang-Hsiung Hsu, Wei-Ting Chen, Hua-Lu Pan, Ruiyu Sun, Yi-Hsuan Chen, and Cheng-An Chen
Geosci. Model Dev., 14, 177–204, https://doi.org/10.5194/gmd-14-177-2021, https://doi.org/10.5194/gmd-14-177-2021, 2021
Short summary
Short summary
A cloud macrophysics scheme utilizing grid-mean hydrometeor information is developed and evaluated for climate models. The GFS–TaiESM–Sundqvist (GTS) scheme can simulate variations of cloud fraction associated with relative humidity (RH) in a more consistent way than the default scheme of CAM5.3. Through better cloud–RH distributions, the GTS scheme helps to better represent cloud fraction, cloud radiative forcing, and thermodynamic-related climatic fields in climate simulations.
Katherine A. Crichton, Jamie D. Wilson, Andy Ridgwell, and Paul N. Pearson
Geosci. Model Dev., 14, 125–149, https://doi.org/10.5194/gmd-14-125-2021, https://doi.org/10.5194/gmd-14-125-2021, 2021
Short summary
Short summary
Temperature is a controller of metabolic processes and therefore also a controller of the ocean's biological carbon pump (BCP). We calibrate a temperature-dependent version of the BCP in the cGENIE Earth system model. Since the pre-industrial period, warming has intensified near-surface nutrient recycling, supporting production and largely offsetting stratification-induced surface nutrient limitation. But at the same time less carbon that sinks out of the surface then reaches the deep ocean.
Jane P. Mulcahy, Colin Johnson, Colin G. Jones, Adam C. Povey, Catherine E. Scott, Alistair Sellar, Steven T. Turnock, Matthew T. Woodhouse, Nathan Luke Abraham, Martin B. Andrews, Nicolas Bellouin, Jo Browse, Ken S. Carslaw, Mohit Dalvi, Gerd A. Folberth, Matthew Glover, Daniel P. Grosvenor, Catherine Hardacre, Richard Hill, Ben Johnson, Andy Jones, Zak Kipling, Graham Mann, James Mollard, Fiona M. O'Connor, Julien Palmiéri, Carly Reddington, Steven T. Rumbold, Mark Richardson, Nick A. J. Schutgens, Philip Stier, Marc Stringer, Yongming Tang, Jeremy Walton, Stephanie Woodward, and Andrew Yool
Geosci. Model Dev., 13, 6383–6423, https://doi.org/10.5194/gmd-13-6383-2020, https://doi.org/10.5194/gmd-13-6383-2020, 2020
Short summary
Short summary
Aerosols are an important component of the Earth system. Here, we comprehensively document and evaluate the aerosol schemes as implemented in the physical and Earth system models, HadGEM3-GC3.1 and UKESM1. This study provides a useful characterisation of the aerosol climatology in both models, facilitating the understanding of the numerous aerosol–climate interaction studies that will be conducted for CMIP6 and beyond.
Hao Yu, Li Liu, Chao Sun, Ruizhe Li, Xinzhu Yu, Cheng Zhang, Zhiyuan Zhang, and Bin Wang
Geosci. Model Dev., 13, 6253–6263, https://doi.org/10.5194/gmd-13-6253-2020, https://doi.org/10.5194/gmd-13-6253-2020, 2020
Short summary
Short summary
Routing network generation is a major step for initializing the data transfer functionality for model coupling. The distributed implementation for routing network generation (DiRong1.0) proposed in this paper can significantly improve the global implementation of routing network generation used in some existing coupling software, because it does not introduce any gather–broadcast communications and achieves much lower complexity in terms of time, memory, and communication.
Øyvind Seland, Mats Bentsen, Dirk Olivié, Thomas Toniazzo, Ada Gjermundsen, Lise Seland Graff, Jens Boldingh Debernard, Alok Kumar Gupta, Yan-Chun He, Alf Kirkevåg, Jörg Schwinger, Jerry Tjiputra, Kjetil Schanke Aas, Ingo Bethke, Yuanchao Fan, Jan Griesfeller, Alf Grini, Chuncheng Guo, Mehmet Ilicak, Inger Helene Hafsahl Karset, Oskar Landgren, Johan Liakka, Kine Onsum Moseid, Aleksi Nummelin, Clemens Spensberger, Hui Tang, Zhongshi Zhang, Christoph Heinze, Trond Iversen, and Michael Schulz
Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, https://doi.org/10.5194/gmd-13-6165-2020, 2020
Short summary
Short summary
The second version of the coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. The temperature and precipitation patterns has improved compared to NorESM1. The model reaches present-day warming levels to within 0.2 °C of observed temperature but with a delayed warming during the late 20th century. Under the four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the warming in the period of 2090–2099 compared to 1850–1879 reaches 1.3, 2.2, 3.1, and 3.9 K.
Wieke Heldens, Cornelia Burmeister, Farah Kanani-Sühring, Björn Maronga, Dirk Pavlik, Matthias Sühring, Julian Zeidler, and Thomas Esch
Geosci. Model Dev., 13, 5833–5873, https://doi.org/10.5194/gmd-13-5833-2020, https://doi.org/10.5194/gmd-13-5833-2020, 2020
Short summary
Short summary
For realistic microclimate simulations in urban areas with PALM 6.0, detailed description of surface types, buildings and vegetation is required. This paper shows how such input data sets can be derived with the example of three German cities. Various data sources are used, including remote sensing, municipal data collections and open data such as OpenStreetMap. The collection and preparation of input data sets is tedious. Future research aims therefore at semi-automated tools to support users.
Emmanuele Russo, Silje Lund Sørland, Ingo Kirchner, Martijn Schaap, Christoph C. Raible, and Ulrich Cubasch
Geosci. Model Dev., 13, 5779–5797, https://doi.org/10.5194/gmd-13-5779-2020, https://doi.org/10.5194/gmd-13-5779-2020, 2020
Short summary
Short summary
The parameter space of the COSMO-CLM RCM is investigated for the Central Asia CORDEX domain using a perturbed physics ensemble (PPE) with different parameter values. Results show that only a subset of model parameters presents relevant changes in model performance and these changes depend on the considered region and variable: objective calibration methods are highly necessary in this case. Additionally, the results suggest the need for calibrating an RCM when targeting different domains.
Carley E. Iles, Robert Vautard, Jane Strachan, Sylvie Joussaume, Bernd R. Eggen, and Chris D. Hewitt
Geosci. Model Dev., 13, 5583–5607, https://doi.org/10.5194/gmd-13-5583-2020, https://doi.org/10.5194/gmd-13-5583-2020, 2020
Short summary
Short summary
We investigate how increased resolution affects the simulation of European climate extremes for global and regional climate models to inform modelling strategies. Precipitation extremes become heavier with higher resolution, especially over mountains, wind extremes become somewhat stronger, and for temperature extremes warm biases are reduced over mountains. Differences with resolution for the global model appear to come from downscaling effects rather than improved large-scale circulation.
Marie-Estelle Demory, Ségolène Berthou, Jesús Fernández, Silje L. Sørland, Roman Brogli, Malcolm J. Roberts, Urs Beyerle, Jon Seddon, Rein Haarsma, Christoph Schär, Erasmo Buonomo, Ole B. Christensen, James M. Ciarlo ̀, Rowan Fealy, Grigory Nikulin, Daniele Peano, Dian Putrasahan, Christopher D. Roberts, Retish Senan, Christian Steger, Claas Teichmann, and Robert Vautard
Geosci. Model Dev., 13, 5485–5506, https://doi.org/10.5194/gmd-13-5485-2020, https://doi.org/10.5194/gmd-13-5485-2020, 2020
Short summary
Short summary
Now that global climate models (GCMs) can run at similar resolutions to regional climate models (RCMs), one may wonder whether GCMs and RCMs provide similar regional climate information. We perform an evaluation for daily precipitation distribution in PRIMAVERA GCMs (25–50 km resolution) and CORDEX RCMs (12–50 km resolution) over Europe. We show that PRIMAVERA and CORDEX simulate similar distributions. Considering both datasets at such a resolution results in large benefits for impact studies.
George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang
Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, https://doi.org/10.5194/gmd-13-5425-2020, 2020
Short summary
Short summary
To estimate the effects of human land use activities on the carbon–climate system, a new set of global gridded land use forcing datasets was developed to link historical land use data to eight future scenarios in a standard format required by climate models. This new generation of land use harmonization (LUH2) includes updated inputs, higher spatial resolution, more detailed land use transitions, and the addition of important agricultural management layers; it will be used for CMIP6 simulations.
Philip Goodwin, Martin Leduc, Antti-Ilari Partanen, H. Damon Matthews, and Alex Rogers
Geosci. Model Dev., 13, 5389–5399, https://doi.org/10.5194/gmd-13-5389-2020, https://doi.org/10.5194/gmd-13-5389-2020, 2020
Short summary
Short summary
Numerical climate models are used to make projections of future surface warming for different pathways of future greenhouse gas emissions, where future surface warming will vary from place to place. However, it is so expensive to run complex models using supercomputers that future projections can only be produced for a small number of possible future emissions pathways. This study presents an efficient climate model to make projections of local surface warming using a desktop computer.
Mathieu Vrac and Soulivanh Thao
Geosci. Model Dev., 13, 5367–5387, https://doi.org/10.5194/gmd-13-5367-2020, https://doi.org/10.5194/gmd-13-5367-2020, 2020
Short summary
Short summary
We propose a multivariate bias correction (MBC) method to adjust the spatial and/or inter-variable properties of climate simulations, while also accounting for their temporal dependences (e.g., autocorrelations).
It consists on a method reordering the ranks of the time series according to their multivariate distance to a reference time series.
Results show that temporal correlations are improved while spatial and inter-variable correlations are still satisfactorily corrected.
Hella Garny, Roland Walz, Matthias Nützel, and Thomas Birner
Geosci. Model Dev., 13, 5229–5257, https://doi.org/10.5194/gmd-13-5229-2020, https://doi.org/10.5194/gmd-13-5229-2020, 2020
Short summary
Short summary
Numerical models of Earth's climate system have been gaining more and more complexity over the last decades. Therefore, it is important to establish simplified models to improve process understanding. In our study, we present and document the development of a new simplified model setup within the framework of a complex climate model system that uses the same routines to calculate atmospheric dynamics as the complex model but is simplified in the representation of clouds and radiation.
Yingxia Gao, Nicholas P. Klingaman, Charlotte A. DeMott, and Pang-Chi Hsu
Geosci. Model Dev., 13, 5191–5209, https://doi.org/10.5194/gmd-13-5191-2020, https://doi.org/10.5194/gmd-13-5191-2020, 2020
Short summary
Short summary
Both the air–sea coupling and ocean mean state affect the fidelity of simulated boreal summer intraseasonal oscillation (BSISO). To elucidate their relative effects on the simulated BSISO, a set of experiments was conducted using a superparameterized AGCM and its coupled version. Both air–sea coupling and cold ocean mean state improve the BSISO amplitude due to the suppression of the overestimated variance, while the former (latter) could further upgrade (degrade) the BSISO propagation.
Zebedee R. J. Nicholls, Malte Meinshausen, Jared Lewis, Robert Gieseke, Dietmar Dommenget, Kalyn Dorheim, Chen-Shuo Fan, Jan S. Fuglestvedt, Thomas Gasser, Ulrich Golüke, Philip Goodwin, Corinne Hartin, Austin P. Hope, Elmar Kriegler, Nicholas J. Leach, Davide Marchegiani, Laura A. McBride, Yann Quilcaille, Joeri Rogelj, Ross J. Salawitch, Bjørn H. Samset, Marit Sandstad, Alexey N. Shiklomanov, Ragnhild B. Skeie, Christopher J. Smith, Steve Smith, Katsumasa Tanaka, Junichi Tsutsui, and Zhiang Xie
Geosci. Model Dev., 13, 5175–5190, https://doi.org/10.5194/gmd-13-5175-2020, https://doi.org/10.5194/gmd-13-5175-2020, 2020
Short summary
Short summary
Computational limits mean that we cannot run our most comprehensive climate models for all applications of interest. In such cases, reduced complexity models (RCMs) are used. Here, researchers working on 15 different models present the first systematic community effort to evaluate and compare RCMs: the Reduced Complexity Model Intercomparison Project (RCMIP). Our research ensures that users of RCMs can more easily evaluate the strengths, weaknesses and limitations of their tools.
Jaeyoung Song, Gretchen R. Miller, Anthony T. Cahill, Luiza Maria T. Aparecido, and Georgianne W. Moore
Geosci. Model Dev., 13, 5147–5173, https://doi.org/10.5194/gmd-13-5147-2020, https://doi.org/10.5194/gmd-13-5147-2020, 2020
Short summary
Short summary
The performance of a land surface model (CLM4.5 and 5.0) was examined against a suite of measurements from a tropical montane rainforest in Costa Rica. Both versions failed to capture the effects of frequent rainfall events and mountainous terrain on temperature, leaf wetness, photosynthesis, and transpiration. While the new model version eliminated some errors, it still cannot precisely simulate a number of processes. This suggests that two key components of the model need modification.
Patricio Velasquez, Martina Messmer, and Christoph C. Raible
Geosci. Model Dev., 13, 5007–5027, https://doi.org/10.5194/gmd-13-5007-2020, https://doi.org/10.5194/gmd-13-5007-2020, 2020
Short summary
Short summary
This work presents a new bias-correction method for precipitation that considers orographic characteristics, which can be used in studies where the latter strongly changes. The three-step correction method consists of a separation into orographic features, correction of low-intensity precipitation, and application of empirical quantile mapping. Seasonal bias induced by the global climate model is fully corrected. Rigorous cross-validations illustrate the method's applicability and robustness.
Johannes Horak, Marlis Hofer, Ethan Gutmann, Alexander Gohm, and Mathias W. Rotach
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-317, https://doi.org/10.5194/gmd-2020-317, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
The presented process based evaluation of the atmospheric model ICAR is conducted to derive recommendations to increase the likelihood of its results being correct for the right reasons. We conclude that a different diagnosis of the atmospheric background state is necessary, as well as a model top at an elevation of at least 10 km. Alternative boundary conditions at the top were not found effective in reducing this model top elevation. The results have wide implications for future ICAR studies.
Eric Larour, Lambert Caron, Mathieu Morlighem, Surendra Adhikari, Thomas Frederikse, Nicole-Jeanne Schlegel, Erik Ivins, Benjamin Hamlington, Robert Kopp, and Sophie Nowicki
Geosci. Model Dev., 13, 4925–4941, https://doi.org/10.5194/gmd-13-4925-2020, https://doi.org/10.5194/gmd-13-4925-2020, 2020
Short summary
Short summary
ISSM-SLPS is a new projection system for future sea level that increases the resolution and accuracy of current projection systems and improves the way uncertainty is treated in such projections. This will pave the way for better inclusion of state-of-the-art results from existing intercomparison efforts carried out by the scientific community, such as GlacierMIP2 or ISMIP6, into sea-level projections.
Hiroshi Yamashita, Feijia Yin, Volker Grewe, Patrick Jöckel, Sigrun Matthes, Bastian Kern, Katrin Dahlmann, and Christine Frömming
Geosci. Model Dev., 13, 4869–4890, https://doi.org/10.5194/gmd-13-4869-2020, https://doi.org/10.5194/gmd-13-4869-2020, 2020
Short summary
Short summary
This paper describes the updated submodel AirTraf 2.0 which simulates global air traffic in the ECHAM/MESSy Atmospheric Chemistry (EMAC) model. Nine aircraft routing options have been integrated, including contrail avoidance, minimum economic costs, and minimum climate impact. Example simulations reveal characteristics of different routing options on air traffic performances. The consistency of the AirTraf simulations is verified with literature data.
Landon A. Rieger, Jason N. S. Cole, John C. Fyfe, Stephen Po-Chedley, Philip J. Cameron-Smith, Paul J. Durack, Nathan P. Gillett, and Qi Tang
Geosci. Model Dev., 13, 4831–4843, https://doi.org/10.5194/gmd-13-4831-2020, https://doi.org/10.5194/gmd-13-4831-2020, 2020
Short summary
Short summary
Recently, the stratospheric aerosol forcing dataset used as an input to the Coupled Model Intercomparison Project phase 6 was updated. This work explores the impact of those changes on the modelled historical climates in the CanESM5 and EAMv1 models. Temperature differences in the stratosphere shortly after the Pinatubo eruption are found to be significant, but surface temperatures and precipitation do not show a significant change.
Shaoqing Zhang, Haohuan Fu, Lixin Wu, Yuxuan Li, Hong Wang, Yunhui Zeng, Xiaohui Duan, Wubing Wan, Li Wang, Yuan Zhuang, Hongsong Meng, Kai Xu, Ping Xu, Lin Gan, Zhao Liu, Sihai Wu, Yuhu Chen, Haining Yu, Shupeng Shi, Lanning Wang, Shiming Xu, Wei Xue, Weiguo Liu, Qiang Guo, Jie Zhang, Guanghui Zhu, Yang Tu, Jim Edwards, Allison Baker, Jianlin Yong, Man Yuan, Yangyang Yu, Qiuying Zhang, Zedong Liu, Mingkui Li, Dongning Jia, Guangwen Yang, Zhiqiang Wei, Jingshan Pan, Ping Chang, Gokhan Danabasoglu, Stephen Yeager, Nan Rosenbloom, and Ying Guo
Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, https://doi.org/10.5194/gmd-13-4809-2020, 2020
Short summary
Short summary
Science advancement and societal needs require Earth system modelling with higher resolutions that demand tremendous computing power. We successfully scale the 10 km ocean and 25 km atmosphere high-resolution Earth system model to a new leading-edge heterogeneous supercomputer using state-of-the-art optimizing methods, promising the solution of high spatial resolution and time-varying frequency. Corresponding technical breakthroughs are of significance in modelling and HPC design communities.
Tokuta Yokohata, Tsuguki Kinoshita, Gen Sakurai, Yadu Pokhrel, Akihiko Ito, Masashi Okada, Yusuke Satoh, Etsushi Kato, Tomoko Nitta, Shinichiro Fujimori, Farshid Felfelani, Yoshimitsu Masaki, Toshichika Iizumi, Motoki Nishimori, Naota Hanasaki, Kiyoshi Takahashi, Yoshiki Yamagata, and Seita Emori
Geosci. Model Dev., 13, 4713–4747, https://doi.org/10.5194/gmd-13-4713-2020, https://doi.org/10.5194/gmd-13-4713-2020, 2020
Short summary
Short summary
The most significant feature of MIROC-INTEG-LAND is that the land surface model that describes the processes of the energy and water balances, human water management, and crop growth incorporates a land-use decision-making model based on economic activities. The future simulations indicate that changes in climate have significant impacts on crop yields, land use, and irrigation water demand.
Chia-Te Chien, Markus Pahlow, Markus Schartau, and Andreas Oschlies
Geosci. Model Dev., 13, 4691–4712, https://doi.org/10.5194/gmd-13-4691-2020, https://doi.org/10.5194/gmd-13-4691-2020, 2020
Short summary
Short summary
We demonstrate sensitivities of tracers to parameters of a new optimality-based plankton–ecosystem model (OPEM) in the UVic-ESCM. We find that changes in phytoplankton subsistence nitrogen quota strongly impact the nitrogen inventory, nitrogen fixation, and elemental stoichiometry of ordinary phytoplankton and diazotrophs. We introduce a new likelihood-based metric for model calibration, and it shows the capability of constraining globally averaged oxygen, nitrate, and DIC concentrations.
Markus Pahlow, Chia-Te Chien, Lionel A. Arteaga, and Andreas Oschlies
Geosci. Model Dev., 13, 4663–4690, https://doi.org/10.5194/gmd-13-4663-2020, https://doi.org/10.5194/gmd-13-4663-2020, 2020
Short summary
Short summary
The stoichiometry of marine biotic processes is important for the regulation of atmospheric CO2 and hence the global climate. We replace a simplistic, fixed-stoichiometry plankton module in an Earth system model with an optimal-regulation model with variable stoichiometry. Our model compares better to the observed carbon transfer from the surface to depth and surface nutrient distributions. This work could aid our ability to describe and project the role of marine ecosystems in the Earth system.
Yong Wang, Guang J. Zhang, Shaocheng Xie, Wuyin Lin, George C. Craig, Qi Tang, and Hsi-Yen Ma
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-249, https://doi.org/10.5194/gmd-2020-249, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
A stochastic deep convection parameterization is implemented into the U.S. Department of Energy Energy Exascale Earth System Model Atmosphere Model version 1 (EAMv1). Compared to the default model, the well-known problem of
too much light rain and too little heavy rainis largely alleviated over the tropics with the stochastic scheme. Results from this study provide important insights into the model performance of EAMv1 when stochasticity is included in deep convective parameterization.
Peter A. Bogenschutz, Shuaiqi Tang, Peter M. Caldwell, Shaocheng Xie, Wuyin Lin, and Yao-Sheng Chen
Geosci. Model Dev., 13, 4443–4458, https://doi.org/10.5194/gmd-13-4443-2020, https://doi.org/10.5194/gmd-13-4443-2020, 2020
Short summary
Short summary
This paper documents a tool that has been developed that can be used to accelerate the development and understanding of climate models. This version of the model, known as a the single-column model, is much faster to run than the full climate model, and we demonstrate that this tool can be used to quickly exploit model biases that arise due to physical processes. We show examples of how this single-column model can directly benefit the field.
Ying Liu, Rodrigo Caballero, and Joy Merwin Monteiro
Geosci. Model Dev., 13, 4399–4412, https://doi.org/10.5194/gmd-13-4399-2020, https://doi.org/10.5194/gmd-13-4399-2020, 2020
Short summary
Short summary
The calculation of atmospheric radiative transfer is the most computationally expensive part of climate models. Reducing this computational burden could potentially improve our ability to simulate the earth's climate at finer scales. We propose using a statistical model – a deep neural network – to compute approximate radiative transfer in the earth's atmosphere. We demonstrate a significant reduction in computational burden as compared to a traditional scheme, especially when using GPUs.
Lars Nerger, Qi Tang, and Longjiang Mu
Geosci. Model Dev., 13, 4305–4321, https://doi.org/10.5194/gmd-13-4305-2020, https://doi.org/10.5194/gmd-13-4305-2020, 2020
Short summary
Short summary
Data assimilation combines observations with numerical models to get an improved estimate of the model state. This work discusses the technical aspects of how a coupled model that simulates the ocean and the atmosphere can be augmented by data assimilation functionality provided in generic form by the open-source software PDAF (Parallel Data Assimilation Framework). A very efficient program is obtained that can be executed on high-performance computers.
Christof G. Beer, Johannes Hendricks, Mattia Righi, Bernd Heinold, Ina Tegen, Silke Groß, Daniel Sauer, Adrian Walser, and Bernadett Weinzierl
Geosci. Model Dev., 13, 4287–4303, https://doi.org/10.5194/gmd-13-4287-2020, https://doi.org/10.5194/gmd-13-4287-2020, 2020
Short summary
Short summary
Mineral dust aerosol plays an important role in the climate system. Previously, dust emissions have often been represented in global models by prescribed monthly-mean emission fields representative of a specific year. We now apply an online calculation of wind-driven dust emissions. This results in an improved agreement with observations, due to a better representation of the highly variable dust emissions. Increasing the model resolution led to an additional performance gain.
Nadine Mengis, David P. Keller, Andrew H. MacDougall, Michael Eby, Nesha Wright, Katrin J. Meissner, Andreas Oschlies, Andreas Schmittner, Alexander J. MacIsaac, H. Damon Matthews, and Kirsten Zickfeld
Geosci. Model Dev., 13, 4183–4204, https://doi.org/10.5194/gmd-13-4183-2020, https://doi.org/10.5194/gmd-13-4183-2020, 2020
Short summary
Short summary
In this paper, we evaluate the newest version of the University of Victoria Earth System Climate Model (UVic ESCM 2.10). Combining recent model developments as a joint effort, this version is to be used in the next phase of model intercomparison and climate change studies. The UVic ESCM 2.10 is capable of reproducing changes in historical temperature and carbon fluxes well. Additionally, the model is able to reproduce the three-dimensional distribution of many ocean tracers.
Axel Lauer, Veronika Eyring, Omar Bellprat, Lisa Bock, Bettina K. Gier, Alasdair Hunter, Ruth Lorenz, Núria Pérez-Zanón, Mattia Righi, Manuel Schlund, Daniel Senftleben, Katja Weigel, and Sabrina Zechlau
Geosci. Model Dev., 13, 4205–4228, https://doi.org/10.5194/gmd-13-4205-2020, https://doi.org/10.5194/gmd-13-4205-2020, 2020
Short summary
Short summary
The Earth System Model Evaluation Tool is a community software tool designed for evaluation and analysis of climate models. New features of version 2.0 include analysis scripts for important large-scale features in climate models, diagnostics for extreme events, regional model and impact evaluation. In this paper, newly implemented climate metrics, emergent constraints for climate-relevant feedbacks and diagnostics for future model projections are described and illustrated with examples.
Brecht Martens, Dominik L. Schumacher, Hendrik Wouters, Joaquín Muñoz-Sabater, Niko E. C. Verhoest, and Diego G. Miralles
Geosci. Model Dev., 13, 4159–4181, https://doi.org/10.5194/gmd-13-4159-2020, https://doi.org/10.5194/gmd-13-4159-2020, 2020
Short summary
Short summary
Climate reanalyses are widely used in different fields and an in-depth evaluation of the different variables provided by reanalyses is a necessary means to provide feedback on the quality to their users and the operational centres producing these data sets. In this study, we show the improvements of ECMWF's latest climate reanalysis (ERA5) upon its predecessor (ERA-Interim) in partitioning the available energy at the land surface.
Arthur P. K. Argles, Jonathan R. Moore, Chris Huntingford, Andrew J. Wiltshire, Anna B. Harper, Chris D. Jones, and Peter M. Cox
Geosci. Model Dev., 13, 4067–4089, https://doi.org/10.5194/gmd-13-4067-2020, https://doi.org/10.5194/gmd-13-4067-2020, 2020
Short summary
Short summary
The Robust Ecosystem Demography (RED) model simulates cohorts of vegetation through mass classes. RED establishes a framework for representing demographic changes through competition, growth, and mortality across the size distribution of a forest. The steady state of the model can be solved analytically, enabling initialization. When driven by mean growth rates from a land-surface model, RED is able to fit the observed global vegetation map, giving a map of implicit mortality rates.
James A. Franke, Christoph Müller, Joshua Elliott, Alex C. Ruane, Jonas Jägermeyr, Abigail Snyder, Marie Dury, Pete D. Falloon, Christian Folberth, Louis François, Tobias Hank, R. Cesar Izaurralde, Ingrid Jacquemin, Curtis Jones, Michelle Li, Wenfeng Liu, Stefan Olin, Meridel Phillips, Thomas A. M. Pugh, Ashwan Reddy, Karina Williams, Ziwei Wang, Florian Zabel, and Elisabeth J. Moyer
Geosci. Model Dev., 13, 3995–4018, https://doi.org/10.5194/gmd-13-3995-2020, https://doi.org/10.5194/gmd-13-3995-2020, 2020
Short summary
Short summary
Improving our understanding of the impacts of climate change on crop yields will be critical for global food security in the next century. The models often used to study the how climate change may impact agriculture are complex and costly to run. In this work, we describe a set of global crop model emulators (simplified models) developed under the Agricultural Model Intercomparison Project. Crop model emulators make agricultural simulations more accessible to policy or decision makers.
Miguel Nogueira, Clément Albergel, Souhail Boussetta, Frederico Johannsen, Isabel F. Trigo, Sofia L. Ermida, João P. A. Martins, and Emanuel Dutra
Geosci. Model Dev., 13, 3975–3993, https://doi.org/10.5194/gmd-13-3975-2020, https://doi.org/10.5194/gmd-13-3975-2020, 2020
Short summary
Short summary
We used earth observations to evaluate and improve the representation of land surface temperature (LST) and vegetation coverage over Iberia in CHTESSEL and SURFEX land surface models. We demonstrate the added value of updating the vegetation types and fractions together with the representation of vegetation coverage seasonality. Results show a large reduction in daily maximum LST systematic error during warm months, with neutral impacts in other seasons.
Cited articles
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., and Arkin, P.: The Version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present), J. Hydrometeorol., 4, 1147–1167, 2003.
Allan, R. P., Liu, C., Loeb, N. G., Palmer, M. D., Roberts, M., Smith, D., and Vidale, P.-L.: Changes in global net radiative imbalance 1985–2012, Geophys. Res. Lett., 41, 5588–5597, https://doi.org/10.1002/2014GL060962, 2014.
Anstey, J. A. and Shepherd, T. G.: High-latitude influence of the quasi-biennial oscillation, Q. J. Roy. Meteor. Soc., 140, 1–21, 2014.
Anstey, J. A., Davini, P., Gray, L. J., Woollings, T. J., Butchart, N., Cagnazzo, C., Christiansen, B., Hardiman, S. C., Osprey, S. M., and Yang, S. T.: Multi-model analysis of Northern Hemisphere winter blocking: model biases and the role of resolution, J. Geophys. Res., 118, 3956–3971, https://doi.org/10.1002/jgrd.50231, 2012.
Bellenger, H., Guilyardi, E., Leloup, E., Lengaigne, M., and Vialard, J.: ENSO representation in climate models: F}rom {CMIP3 to CMIP5, Clim. Dynam., 42, 1999–2018, https://doi.org/10.1007/s00382-013-1783-z, 2014.
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R .L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
Bodas-Salcedo, A., Webb, M. J., Bony, S., Chepfer, H., Dufresne, J. L., Klein, S., Zhang, Y., Marchand, R., Haynes, J. M., Pincus, R., and John, V. O.: COSP: satellite simulation software for model assessment, B. Am. Meteorol. Soc., 92, 1023–1043, https://doi.org/10.1175/2011BAMS2856.1, 2011.
Bodas-Salcedo, A., Williams, K. D., Field, P. R., and Lock, A. P.: The surface downwelling solar radiation surplus over the Southern Ocean in the Met Office model: the role of midlatitude cyclone clouds, J. Climate, 25, 7467–7486, https://doi.org/10.1175/JCLI-D-11-00702.1, 2012.
Bodas-Salcedo, A., Williams, K. D., Ringer, M. A., Beau, I., Cole, J. N. S., Dufresne, J.-L., Koshiro, T., Stevens, B., Wang, Z., and Yokohata, T.: Origins of the solar radiation biases over the S}outhern Ocean in {CFMIP2 models, J. Climate, 27, 41–56, https://doi.org/10.1175/JCLI-D-13-00169.1, 2014.
Bony, S., Colman, R., Kattsov, V. M., Allan, R. P., Bretherton, C. S., Dufresne, J. L., Hall, A., Hallegate, S., Holland, M. M., Ingram, W. J., Randall, D. A., Soden, B. J., Tselioudis, G., and Webb, M. J.: How well do we understand and evaluate climate change feedback processes?, J. Climate, 19, 3445–3482, https://doi.org/10.1175/JCLI3819.1, 2006.
Brewer, A. M.: Evidence for a world circulation provided by the measurements of helium and water vapor distribution in the stratosphere, Q. J. Roy. Meteor. Soc., 75, 351–363, 1949.
Brohan, P., Kennedy, J., Harris, I., Tett, S. F. B., and Jones, P. D.: Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850, J. Geophys. Res., 111, D12106, https://doi.org/10.1029/2005JD006548, 2006.
Brown, A. R., Milton, S., Cullen, M., Golding, B., Mitchell, J., and Shelly, A.: Unified modelling and prediction of weather and climate: a 25 year journey, B. Am. Meteorol. Soc., 93, 1865–1877, https://doi.org/10.1175/BAMS-D-12-00018.1, 2012.
Cassou, C., Terray, L., Hurrel, J., and Deser, C.: North Atlantic winter climate regimes: spatial asymmetry, stationarity with time, and ocean forcing, J. Climate, 17, 1055–1067, 2004.
Chepfer, H., Bony, S., Winker, D., Chiriaco, M., Dufresne, J.-L., and Sèze, G.: Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model., Geophys. Res. Lett., 35, L15704, https://doi.org/10.1029/2008GL034207, 2008.
Chepfer, H., Bony, S., Winker, D., Cesana, G., Dufresne, J.-L., Minnis, P., Stubenrauch, C. J., and Zeng, S.: The GCM Oriented Calipso Cloud Product (CALIPSO-GOCCP), J. Geophys. Res., 115, D00H16, https://doi.org/10.1029/2009JD012251, 2010.
Chu, J.-H., Sampson, C. R., Levine, A. S., and Fukada, E.: The Joint Typhoon Warning Center tropical cyclone best-tracks, 1945–2000, Tech. Rep. NRL/MR/7540-02-16, Naval Research Laboratory, 112 pp., 2002.
Cullen, M. J. P.: The unified forecast/climate model, Meteorol. Mag., 122, 81–94, 1993.
Davini, P., Cagnazzo, C., Fogli, P. G., Manzini, E., Gualdi, S., and Navarra, A.: European blocking and Atlantic jet stream variability in the NCEP/NCAR reanalysis and the CMCC-CMS climate model, Clim. Dynam., 43, 71–85, https://doi.org/10.1007/s00382-013-1873-y, 2014.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hölm, E. V., Isaksen, L., Kallberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, P. K., Peubey, C., de Rosnay, P., Tavolato, C., Thêpaut, J. N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukainen, M.: Evalutation of climate models, in: IPCC WGI Fifth Assessment Report, chap. 9, Cambridge University Press, Cambridge, UK, New York, NY, USA, 2013.
Froude, L. S. R.: TIGGE: Comparison of the prediction of Northern Hemisphere extratropical cyclones by different ensemble prediction systems, Weather Forecast., 25, 819–836, 2010.
The HadGEM2 Development Team: G. M. Martin, Bellouin, N., Collins, W. J., Culverwell, I. D., Halloran, P. R., Hardiman, S. C., Hinton, T. J., Jones, C. D., McDonald, R. E., McLaren, A. J., O'Connor, F. M., Roberts, M. J., Rodriguez, J. M., Woodward, S., Best, M. J., Brooks, M. E., Brown, A. R., Butchart, N., Dearden, C., Derbyshire, S. H., Dharssi, I., Doutriaux-Boucher, M., Edwards, J. M., Falloon, P. D., Gedney, N., Gray, L. J., Hewitt, H. T., Hobson, M., Huddleston, M. R., Hughes, J., Ineson, S., Ingram, W. J., James, P. M., Johns, T. C., Johnson, C. E., Jones, A., Jones, C. P., Joshi, M. M., Keen, A. B., Liddicoat, S., Lock, A. P., Maidens, A. V., Manners, J. C., Milton, S. F., Rae, J. G. L., Ridley, J. K., Sellar, A., Senior, C. A., Totterdell, I. J., Verhoef, A., Vidale, P. L., and Wiltshire, A.: The HadGEM2 family of Met Office Unified Model climate configurations, Geosci. Model Dev., 4, 723–757, https://doi.org/10.5194/gmd-4-723-2011, 2011.
Hall, A. and Qu, X.: Using the current seasonal cycle to constrain snow albedo feedback in future climate change, Geophys. Res. Lett., 33, L03502, https://doi.org/10.1029/2005GL025127, 2006.
Hannachi, A., Barnes, E. A., and Woollings, T.: Behaviour of the winter North Atlantic eddy-driven jet stream in the CMIP3 integrations, Clim. Dynam., 41, 995–1007, https://doi.org/10.1007/s00382-012-1560-4, 2013.
Hewitt, H. T., Copsey, D., Culverwell, I. D., Harris, C. M., Hill, R. S. R., Keen, A. B., McLaren, A. J., and Hunke, E. C.: Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system, Geosci. Model Dev., 4, 223–253, https://doi.org/10.5194/gmd-4-223-2011, 2011.
Hodges, K.: Feature tracking on a unit sphere, Mon. Weather Rev., 123, 3458–3465, 1995.
Holton, J. R. and Tan, H. C.: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb, J. Atmos. Sci., 37, 2200–2208, 1980.
Hunke, E. C. and Lipscomb, W. H.: CICE: The Los Alamos sea ice model, documentation and software. Version 3.1, Tech. Rep. LA-CC-98-16, Los Alamos National Laboratory, Los Alamos, NM, 2004.
Ingleby, B. and Huddleston, M.: Quality control of ocean temperature and salinity profiles – historical and real-time data, J. Marine Syst., 65, 158–175, https://doi.org/10.1016/j.jmarsys.2005.11.019, 2007.
Jiang, J. H., Su, H., Zhai, C., Perun, V. S., Genio, A. D., Nazarenko, L. S., Donner, L. J., Horowitz, L., Seman, C., Cole, J., Gettelman, A., Ringer, M. A., Rotstayn, L., Jeffrey, S., Wu, T., Brient, F., Dufresne, J.-L., Kawai, H., Koshiro, T., Watanabe, M., Lécuyer, T. S., Volodin, E. M., Iversen, T., Drange, H., Mesquita, M. D. S., Read, W. G., Waters, J. W., Tian, B., Teixeira, J., and Stephens, G. L.: Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA A-Train satellite observations, J. Geophys. Res., 117, D14105, https://doi.org/10.1029/2011JD017237, 2012.
Jones, P. W.: First and second-order conservative remapping schemes for grids in spherical coordinates, Mon. Weather Rev., 127, 2204–2210, 1999.
Josey, S. A., Kent, E. C., and Taylor, P. K.: The S}outhampton Oceanography Centre (SOC) ocean – atmosphere heat, momentum and freshwater flux atlas, Report 6, Southampton Oceanography Centre, European Way, Southamton, {SO14 3ZH, UK, 55 pp., 1998.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–471, 1996.
Kang, S. M., Held, I. M., Frierson, D. M. W., and Zhao, M.: The response of the ITCZ to extratropical thermal forcing: i}dealized slab-ocean experiments with a {GCM, J. Climate, 21, 3521–3532, https://doi.org/10.1175/2007JCLI2146.1, 2008.
Kim, D., Sperber, K., Stern, W., Waliser, D., Kang, I.-S., Maloney, E., Wang, W., Weickmann, K., Benedict, J., and Khairoutdinov, M.: Application of MJO simulation diagnostics to climate models, J. Climate, 22, 6413–6436, 2009.
Kim, D., Xavier, P., Maloney, E., Wheeler, M., Waliser, D., Sperber, K., Hendon, H., Zhang, C., Neale, R., and Hwang, Y.-T.: Process-oriented MJO simulation diagnostic: moisture sensitivity of simulated convection, J. Climate, 27, 5379–5395, 2014.
Klein, S. A., Jiang, X., Boyle, J., Malyshev, S., and Xie, S.: Diagnosis of the summertime warm and dry bias over the U.S. S}outhern Great Plains in the {GFDL climate model using a weather forecasting approach, Geophys. Res. Lett., 33, L18805, https://doi.org/10.1029/2006GL027567, 2006.
Klein, S. A., Zhang, Y., Zelinka, M. D., Pincus, R., Boyle, J., and Gleckler, P. J.: Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator, J. Geophys. Res., 118, 1329–1342, https://doi.org/10.1002/jgrd.50141, 2013.
Klingaman, N. and Woolnough, S.: The role of air–sea coupling in the simulation of the Madden–Julian Oscillation in the Hadley Centre model, Q. J. Roy. Meteor. Soc., 140, 2272–2286, https://doi.org/10.1002/qj.2295, 2014.
Landsea, C. W. and Franklin, J. L.: Atlantic hurricane database uncertainty and presentation of a new database format, Mon. Weather Rev., 141, 3576–3592, https://doi.org/10.1175/MWR-D-12-00254.1, 2013.
Lengaigne, M., Guilyardi, E., Boulanger, J.-P., Menkes, C., Delecluse, P., Inness, P., Cole, J., and Slingo, J.: Triggering of El Nino by westerly wind events in a coupled general circulation model, Clim. Dynam., 23, 601–620, 2004.
Liu, C., Allan, R. P., Berrisford, P., Mayer, M., Hyder, P., Loeb, N., Smith, D., Vidale, P.-L., and Edwards, J. M.: Combining satellite observations and reanalysis energy transports to estimate global net surface energy fluxes 1985–2012, J. Geophys. Res., submitted, 2015.
Ma, H.-Y., Xie, S., Klein, S. A., Williams, K. D., Boyle, J. S., Bony, S., Douville, H., Fermepin, S., Medeiros, B., Tyteca, S., Watanabe, M., and Williamson, D.: On the correspondence between mean forecast errors and climate errors in CMIP5 models, J. Climate, 17, 1781–1798, https://doi.org/10.1175/JCLI-D-13-00474.1, 2014.
MacLachlan, C., Arribas, A., Peterson, D., Maidens, A., Fereday, D., Scaife, A. A., Gordon, M., Vellinga, M., Williams, A., Comer, R. E., Camp, J., Xavier, P., and Madec, G.: Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system, Q. J. Roy. Meteor. Soc., https://doi.org/10.1002/qj.2396, in press, 2015.
Madec, G.: NEMO ocean engine, Tech. Rep. 27, Note du Pole de modélisation, I}nstitut Pierre-Simon Laplace {(IPSL), 2008.
Martin, G. M., Milton, S. F., Senior, C. A., Brooks, M. E., Ineson, S., Reichler, T., and Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modelling weather and climate, J. Climate, 23, 5933–5957, https://doi.org/10.1175/2010JCLI3541.1, 2010.
Megann, A., Storkey, D., Aksenov, Y., Alderson, S., Calvert, D., Graham, T., Hyder, P., Siddorn, J., and Sinha, B.: GO5.0: the joint NERC–Met Office NEMO global ocean model for use in coupled and forced applications, Geosci. Model Dev., 7, 1069–1092, https://doi.org/10.5194/gmd-7-1069-2014, 2014.
Nam, C., Bony, S., Dufresne, J.-L., and Chepfer, H.: The "too few, too bright" tropical low-cloud problem in CMIP5 models, Geophys. Res. Lett., 39, L21801, https://doi.org/10.1029/2012GL053421, 2012.
Rae, J. G. L., Hewitt, H. T., Keen, A. J., Ridley, J. K., West, A. E., Harris, C. M., Hunke, E. C., and Walters, D. N.: Development of G}lobal Sea Ice 5.0 and 6.0 CICE configurations for the {Met Office Global Coupled Model, Geosci. Model Dev. Discuss., 8, 2529–2554, https://doi.org/10.5194/gmdd-8-2529-2015, 2015.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of SST, sea ice and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670, 2003.
Roberts, M. J., Vidale, P. L., Mizielinski, M., Demory, M.-E., Schiemann, R., Strachan, J., Hodges, K., Camp, J., and Bell, R.: Tropical cyclones in the UPSCALE ensemble of high resolution global climate models, J. Climate, 28, 574-596 https://doi.org/10.1175/JCLI-D-14-00131.1, 2015.
Rowell, D. P.: Simulating SST teleconnections to Africa: what is the state of the art?, J. Climate, 26, 5397–5417, https://doi.org/10.1175/JCLI-D-12-00761.1, 2013.
Scaife, A. A., Copsey, D., Gordon, C., Harris, C., Hinton, T., Keeley, S., O'Neill, A., Roberts, M., and Williams, K.: Improved Atlantic winter blocking in a climate model, Geophys. Res. Lett., 38, L23703, https://doi.org/10.1029/2011GL049573, 2011.
Scaife, A. A., Arribas, A., Blockley, E., Brookshaw, A., Clark, R. T., Dunstone, N., Eade, R., Fereday, D., Folland, C. K., Gordon, M., Hermanson, L., Knight, J. R., Lea, D. J., MacLachlan, C., Maidens, A., Martin, M., Peterson, A. K., Smith, D., Vellinga, M., Wallace, E., Waters, J., and Williams, A.: Skillful long-range prediction of European and North American winters, Geophys. Res. Lett., 41, 2514–2519, https://doi.org/10.1002/2014GL059637, 2014.
Schade, L. R. and Emanuel, K. A.: The ocean's effect on the intensity of tropical cyclones: results from a simple coupled atmosphere–ocean model, J. Atmos. Sci., 56, 642–651, 1999.
Schweiger, A., Lindsay, R., Zhang, J., Steele, M., Stern, H., and Kwok, R.: Uncertainty in modeled Arctic sea ice volume, J. Geophys. Res., 116, C00D06, https://doi.org/10.1029/2011JC007084, 2011.
Senior, C. A., Andrews, T., Burton, C., Chadwick, R., Copsey, D., Graham, T., Hyder, P., Jackson, L., McDonald, R., Ridley, J., and Ringer, M.: Idealised climate change simulations with a high resolution physical model, HadGEM3-GC2, in preparation, 2015.
Shelly, A., Xavier, P., Copsey, D., Johns, T., Rodriguez, J. M., Milton, S., and Klingaman, N.: Coupled versus uncoupled hindcast simulations of the Madden–Julian Oscillation in the Year of Tropical Convection, Geophys. Res. Lett., 41, 5670–5677, https://doi.org/10.1002/2013GL059062, 2014.
Simpson, J., Adler, R., and North, G.: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite, B. Am. Meteorol. Soc., 69, 278–295, 1988.
Smeed, D. A., McCarthy, G. D., Cunningham, S. A., Frajka-Williams, E., Rayner, D., Johns, W. E., Meinen, C. S., Baringer, M. O., Moat, B. I., Duchez, A., and Bryden, H. L.: Observed decline of the Atlantic meridional overturning circulation 2004–2012, Ocean Sci., 10, 29–38, https://doi.org/10.5194/os-10-29-2014, 2014.
Smith, R. N. B.: A scheme for predicting layer clouds and their water content in a general circulation model, Q. J. Roy. Meteor. Soc., 116, 435–460, 1990.
Sperber, K. R. and Kim, D.: Simplified metrics for the identification of the Madden–Julian Oscillation in models, Atmos. Sci. Lett., 13, 187–193, 2012.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Tibaldi, S. and Molteni, F.: On the operational predictability of blocking, Tellus A, 42, 343–365, 1990.
Trenberth, K. E. and Fasullo, J. T.: Simulation of present-day and Twenty-First-Century energy budgets of the Southern Oceans, J. Climate, 23, 440–454, https://doi.org/10.1175/2009JCLI3152.1, 2010.
Valcke, S.: The OASIS3 coupler: a European climate modelling community software, Geosci. Model Dev., 6, 373–388, https://doi.org/10.5194/gmd-6-373-2013, 2013.
Vosper, S. B., Wells, H., and Brown, A. R.: Accounting for non-uniform static stability in orographic drag parametrization, Q. J. Roy. Meteor. Soc., 135, 815–822, https://doi.org/10.1002/qj.407, 2009.
Walters, D. N., Best, M. J., Bushell, A. C., Copsey, D., Edwards, J. M., Falloon, P. D., Harris, C. M., Lock, A. P., Manners, J. C., Morcrette, C. J., Roberts, M. J., Stratton, R. A., Webster, S., Wilkinson, J. M., Willett, M. R., Boutle, I. A., Earnshaw, P. D., Hill, P. G., MacLachlan, C., Martin, G. M., Moufouma-Okia, W., Palmer, M. D., Petch, J. C., Rooney, G. G., Scaife, A. A., and Williams, K. D.: The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES Global Land 3.0/3.1 configurations, Geosci. Model Dev., 4, 919–941, https://doi.org/10.5194/gmd-4-919-2011, 2011.
Walters, D. N., Brooks, M. E., Boutle, I. A., Melvin, T. R. O., Stratton, R. A., Bushell, A. C., Copsey, D., Earnshaw, P. E., Gross, M. S., Hardiman, S. C., Harris, C. M., Heming, J. T., Klingaman, N. P., Levine, R. C., Manners, J., Martin, G. M., Milton, S. F., Mittermaier, M. P., Morcrette, C. J., Riddick, T. C., Roberts, M. J., Selwood, P. M., Tennant, W.J., Vidale, P.-L., Wilkinson, J. M., Wood, N., Woolnough, S. J., and Xavier, P. K.: The M}et Office Unified Model Global Atmosphere 6.0 and JULES {Global Land 6.0 configurations, in preparation, 2015.
Williams, K. D., Bodas-Salcedo, A., Deque, M., Fermepin, S., Medeiros, B., Watanabe, M., Jakob, C., Klein, S. A., Senior, C. A., and Williamson, D. L.: The T}ranspose-AMIP {II experiment and its application to the understanding of Southern Ocean cloud biases in climate models, J. Climate, 26, 3258–3274, https://doi.org/10.1175/JCLI-D-12-00429.1, 2013.
Wilson, D. R., Bushell, A. C., Kerr-Munslow, A. M., Price, J. D., and Morcrette, C. J.: PC2}: a prognostic cloud fraction and condensation scheme. {I: Scheme description, Q. J. Roy. Meteor. Soc., 134, 2093–2107, https://doi.org/10.1002/qj.333, 2008.
Winker, D. M., Pelon, J., Coakley Jr, J. A., Ackerman, S. A., Charlson, R. J., Colarco, P. R., Flamant, P., Fu, Q., Hoff, R. M., Kittaka, C., Kubar, T. L., Treut, H. L., McCormick, M. P., Mégie, G., Poole, L., Powell, K., Trepte, C., Vaughan, M. A., and Wielicki, B. A.: The CALIPSO mission: a global 3D view of aerosols and clouds, B. Am. Meteorol. Soc., 91, 1211–1229, https://doi.org/10.1175/2010BAMS3009.1, 2010.
Wood, N., Stainforth, A., White, A., Allen, T., Diamantakis, M., Gross, M., Melvin, T., Smith, C., Vosper, S., Zerroukat, M., and Thuburn, J.: An inherently mass-conserving semi-implicit semi-Lagrangian discretisation of the deep-atmosphere global nonhydrostatic equations, Q. J. Roy. Meteor. Soc., 140, 1505–1520, https://doi.org/10.1002/qj.2235, 2014.
Woollings, T., Hannachi, A., and Hoskins, B.: Variability of the North Atlantic eddy-driven jet stream, Q. J. Roy. Meteor. Soc., 136, 856–868, 2010.
Zappa, G., Shaffrey, L. C., and Hodges, K. I.: The ability of CMIP5 models to simulate North Atlantic extratropical cyclones, J. Climate, 26, 5379–5396, 2013.