Articles | Volume 8, issue 1
https://doi.org/10.5194/gmd-8-115-2015
https://doi.org/10.5194/gmd-8-115-2015
Model description paper
 | 
30 Jan 2015
Model description paper |  | 30 Jan 2015

Assessing the nonlinear response of fine particles to precursor emissions: development and application of an extended response surface modeling technique v1.0

B. Zhao, S. X. Wang, J. Xing, K. Fu, J. S. Fu, C. Jang, Y. Zhu, X. Y. Dong, Y. Gao, W. J. Wu, J. D. Wang, and J. M. Hao

Related authors

Photochemical roles of rapid economic growth and potential abatement strategies on tropospheric ozone over South and East Asia in 2030
S. Chatani, M. Amann, A. Goel, J. Hao, Z. Klimont, A. Kumar, A. Mishra, S. Sharma, S. X. Wang, Y. X. Wang, and B. Zhao
Atmos. Chem. Phys., 14, 9259–9277, https://doi.org/10.5194/acp-14-9259-2014,https://doi.org/10.5194/acp-14-9259-2014, 2014
Emission trends and mitigation options for air pollutants in East Asia
S. X. Wang, B. Zhao, S. Y. Cai, Z. Klimont, C. P. Nielsen, T. Morikawa, J. H. Woo, Y. Kim, X. Fu, J. Y. Xu, J. M. Hao, and K. B. He
Atmos. Chem. Phys., 14, 6571–6603, https://doi.org/10.5194/acp-14-6571-2014,https://doi.org/10.5194/acp-14-6571-2014, 2014
Source, transport and impacts of a heavy dust event in the Yangtze River Delta, China, in 2011
X. Fu, S. X. Wang, Z. Cheng, J. Xing, B. Zhao, J. D. Wang, and J. M. Hao
Atmos. Chem. Phys., 14, 1239–1254, https://doi.org/10.5194/acp-14-1239-2014,https://doi.org/10.5194/acp-14-1239-2014, 2014
NOx emissions in China: historical trends and future perspectives
B. Zhao, S. X. Wang, H. Liu, J. Y. Xu, K. Fu, Z. Klimont, J. M. Hao, K. B. He, J. Cofala, and M. Amann
Atmos. Chem. Phys., 13, 9869–9897, https://doi.org/10.5194/acp-13-9869-2013,https://doi.org/10.5194/acp-13-9869-2013, 2013

Related subject area

Atmospheric sciences
Modelling wind farm effects in HARMONIE–AROME (cycle 43.2.2) – Part 1: Implementation and evaluation
Jana Fischereit, Henrik Vedel, Xiaoli Guo Larsén, Natalie E. Theeuwes, Gregor Giebel, and Eigil Kaas
Geosci. Model Dev., 17, 2855–2875, https://doi.org/10.5194/gmd-17-2855-2024,https://doi.org/10.5194/gmd-17-2855-2024, 2024
Short summary
Analytical and adaptable initial conditions for dry and moist baroclinic waves in the global hydrostatic model OpenIFS (CY43R3)
Clément Bouvier, Daan van den Broek, Madeleine Ekblom, and Victoria A. Sinclair
Geosci. Model Dev., 17, 2961–2986, https://doi.org/10.5194/gmd-17-2961-2024,https://doi.org/10.5194/gmd-17-2961-2024, 2024
Short summary
Challenges of constructing and selecting the “perfect” boundary conditions for the large-eddy simulation model PALM
Jelena Radović, Michal Belda, Jaroslav Resler, Kryštof Eben, Martin Bureš, Jan Geletič, Pavel Krč, Hynek Řezníček, and Vladimír Fuka
Geosci. Model Dev., 17, 2901–2927, https://doi.org/10.5194/gmd-17-2901-2024,https://doi.org/10.5194/gmd-17-2901-2024, 2024
Short summary
A machine learning approach for evaluating Southern Ocean cloud radiative biases in a global atmosphere model
Sonya L. Fiddes, Marc D. Mallet, Alain Protat, Matthew T. Woodhouse, Simon P. Alexander, and Kalli Furtado
Geosci. Model Dev., 17, 2641–2662, https://doi.org/10.5194/gmd-17-2641-2024,https://doi.org/10.5194/gmd-17-2641-2024, 2024
Short summary
Decision Support System version 1.0 (DSS v1.0) for air quality management in Delhi, India
Gaurav Govardhan, Sachin D. Ghude, Rajesh Kumar, Sumit Sharma, Preeti Gunwani, Chinmay Jena, Prafull Yadav, Shubhangi Ingle, Sreyashi Debnath, Pooja Pawar, Prodip Acharja, Rajmal Jat, Gayatry Kalita, Rupal Ambulkar, Santosh Kulkarni, Akshara Kaginalkar, Vijay K. Soni, Ravi S. Nanjundiah, and Madhavan Rajeevan
Geosci. Model Dev., 17, 2617–2640, https://doi.org/10.5194/gmd-17-2617-2024,https://doi.org/10.5194/gmd-17-2617-2024, 2024
Short summary

Cited articles

Amann, M., Cofala, J., Gzella, A., Heyes, C., Klimont, Z., and Schopp, W.: Estimating concentrations of fine particulate matter in urban background air of European cities, Interim Report IR-07-001, available at: http://www.iiasa.ac.at (last access: 25 January 2015), International Institute for Applied Systems Analysis, Laxenburg, Austria, 50, 2007.
Carlton, A. G., Bhave, P. V., Napelenok, S. L., Edney, E. D., Sarwar, G., Pinder, R. W., Pouliot, G. A., and Houyoux, M.: Model Representation of Secondary Organic Aerosol in CMAQv4.7, Environ. Sci. Technol., 44, 8553–8560, https://doi.org/10.1021/Es100636q, 2010.
Carmichael, G. R., Sandu, A., and Potra, F. A.: Sensitivity analysis for atmospheric chemistry models via automatic differentiation, Atmos. Environ., 31, 475–489, https://doi.org/10.1016/S1352-2310(96)00168-9, 1997.
Dickerson, R. R., Stedman, D. H., and Delany, A. C.: Direct Measurements of Ozone and Nitrogen-Dioxide Photolysis Rates in the Troposphere, J. Geophys. Res.-Ocean., 87, 4933–4946, https://doi.org/10.1029/Jc087ic07p04933, 1982.
Dong, X. Y., Li, J., Fu, J. S., Gao, Y., Huang, K., and Zhuang, G. S.: Inorganic aerosols responses to emission changes in Yangtze River Delta, China, Sci. Total. Environ., 481, 522–532, https://doi.org/10.1016/j.scitotenv.2014.02.076, 2014.
Download