Articles | Volume 7, issue 6
https://doi.org/10.5194/gmd-7-2817-2014
https://doi.org/10.5194/gmd-7-2817-2014
Methods for assessment of models
 | 
02 Dec 2014
Methods for assessment of models |  | 02 Dec 2014

Uncertainty in Lagrangian pollutant transport simulations due to meteorological uncertainty from a mesoscale WRF ensemble

W. M. Angevine, J. Brioude, S. McKeen, and J. S. Holloway

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Wayne Angevine on behalf of the Authors (06 Oct 2014)  Author's response   Manuscript 
ED: Publish subject to minor revisions (Editor review) (23 Oct 2014) by Simon Unterstrasser
AR by Wayne Angevine on behalf of the Authors (28 Oct 2014)  Author's response 
ED: Publish as is (30 Oct 2014) by Simon Unterstrasser
AR by Wayne Angevine on behalf of the Authors (30 Oct 2014)
Download
Short summary
Uncertainty in Lagrangian particle dispersion model simulations was evaluated using an ensemble of WRF meteorological model runs. Uncertainty of tracer concentrations due solely to meteorological uncertainty is 30-40%. Spatial and temporal averaging reduces the uncertainty marginally. Tracer age uncertainty due solely to meteorological uncertainty is 15-20%. These are lower bounds on the uncertainty, because a number of processes are not accounted for in the analysis.