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Key Points: 17 

Ensemble spread of tracer concentrations from a Lagrangian particle dispersion model 18 
(FLEXPART-WRF) is presented. 19 

Uncertainty of tracer concentrations at grid scale due only to meteorological uncertainty is 30-40%. 20 

Uncertainty of tracer age due only to meteorological uncertainty is 15-20%. 21 

No simple relationships are found between tracer spread and local physical parameters. 22 

23 
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Abstract 24 

Lagrangian particle dispersion models require meteorological fields as input.  Uncertainty in the 25 

driving meteorology is one of the major uncertainties in the results.  The propagation of uncertainty 26 

through the system is not simple, and has not been thoroughly explored.  Here, we take an 27 

ensemble approach.  Six different configurations of the Weather Research and Forecast (WRF) 28 

model drive otherwise identical simulations with FLEXPART-WRF for 49 days over eastern North 29 

America.  The ensemble spreads of wind speed, mixing height, and tracer concentration are 30 

presented.  Uncertainty of tracer concentrations due solely to meteorological uncertainty is 30-40%.  31 

Spatial and temporal averaging reduces the uncertainty marginally.  Tracer age uncertainty due 32 

solely to meteorological uncertainty is 15-20%.  These are lower bounds on the uncertainty, 33 

because a number of processes are not accounted for in the analysis. 34 

  35 
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1. Introduction 49 

Lagrangian particle dispersion models (LPDMs) are commonly used to simulate transport of trace 50 

gasses and aerosols for air pollution studies, greenhouse gas tracking, determination of sources of 51 

radiative releases [Stohl et al., 2012], and forecasting of volcanic impacts.  Lagrangian models are 52 

efficient, flexible, and self-adjoint.  The latter property means that simulations can be run backward 53 

in time to find the sources of species observed at a particular time and place, which can provide a 54 

very large gain in efficiency.  Backward runs are used, among other uses, to invert measurements to 55 

find source emission strengths and locations [Brioude et al., 2011; Brioude et al., 2013b; Locatelli 56 

et al., 2013] (and many others).  LPDMs are used at scales ranging from global to mesoscale. 57 

Uncertainty in LPDM results is difficult to assess.  Many sources of uncertainty exist, among the 58 

most important being uncertainty in emissions and uncertainty in the driving meteorology.  59 

Lagrangian models require meteorological fields as input.  These are usually provided by 60 

operational output or reanalysis from a numerical weather prediction model..  For global or large-61 

scale simulations, output from global operational models or associated reanalyses is commonly 62 

used.  Mesoscale simulations require more finely resolved input data (here we define mesoscale as 63 

intended to resolve features 10-100 kilometers in size).  Many groups run their own mesoscale 64 

meteorological simulations.  Assessing the uncertainties and biases in those simulations is itself 65 

difficult, since observations are sparse and themselves uncertain.  Further, the propagation of errors 66 

from the meteorological fields through the LPDM is not trivial.  Some aspects are obvious.  For 67 

example, random errors in wind direction will broaden the plume from a small source.  However, 68 

the limits of this kind of thinking become clear quite quickly when one considers a plume 69 

propagating in a spatially inhomogeneous and temporally changing atmosphere, in which the errors 70 
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also change in space and time.  This is precisely the situation for which mesoscale simulations are 71 

needed.  72 

In this paper we present LPDM (FLEXPART-WRF) [Brioude et al., 2013a] simulations driven by a 73 

six-member ensemble of meteorological model runs.  Other than the driving meteorology, the 74 

FLEXPART-WRF runs are identical.  FLEXPART-WRF is run forward in time, transporting 75 

specified tracer emissions. We postulate that the ensemble spread of wind speed and of mixing 76 

height represent the uncertainty of the meteorological simulation.  The spread of the tracer 77 

concentrations then represents the meteorological uncertainty as propagated through FLEXPART-78 

WRF.  However, such a small ensemble probably does not represent the full range of uncertainty.  79 

Biases due to errors in parts of the model common to all configurations will produce biases in the 80 

ensemble output that cannot be detected.  We therefore attempt to interpret the results with suitable 81 

modesty. Many results are presented with one significant figure, or as ranges, to avoid unwarranted 82 

precision.  We also note that the generality of the results is unknown.  The region we cover is in the 83 

middle of a continent, with only modest terrain, and we only consider six weeks of one season.  We 84 

use spatially distributed emissions; point sources might produce rather different results. 85 

Hegarty et al. [2013] showed that differences between LPDMs are much smaller than differences 86 

between meteorological models, pointing out the fact that uncertainties most likely arise from the 87 

meteorological models when Lagrangian models are used. The propagation of uncertainty from 88 

meteorological fields through an LPDM was addressed by Lin and Gerbig [2005] for horizontal 89 

wind uncertainty, and by Gerbig et al. [2008] for uncertainty in vertical mixing.  In both cases, they 90 

found that failing to account for meteorological uncertainty produced backward simulations with 91 

insufficient dispersion.  They pointed out the importance of spatial correlation in the random errors.  92 
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All errors were assumed to be random, that is, biases were not addressed.  Numerical uncertainties, 93 

especially those due to terrain, were addressed by Brioude et al. [2012].  Meteorological 94 

performance of a group of regional air quality models was evaluated by Vautard et al. [2012].  95 

Ensemble forecasts were used to evaluate ozone predictability in Texas by Zhang et al. [2007]. 96 

Locatelli et al. [2013] used several different global meteorological and transport model pairs to 97 

evaluate uncertainty in methane inversions, finding large uncertainties at regional and smaller 98 

scales.  Several recent studies [Chevallier et al., 2010; Houweling et al., 2010; Kretschmer et al., 99 

2012; Lauvaux and Davis, 2014] used small numbers of models or configurations of one model to 100 

evaluate uncertainties in carbon dioxide (CO2) simulations.  Of these, Kretschmer et al. [2012] and 101 

Lauvaux and Davis [2014] worked at mesoscale with WRF meteorology.  They explored only the 102 

differences due to parameterization of vertical mixing.   103 

The Southeast Nexus (SENEX) campaign (http://www.esrl.noaa.gov/csd/projects/senex/) was 104 

conducted in June and July 2013.  The NOAA WP3 aircraft made 19 science flights (figure 1) from 105 

its base in Smyrna, TN (near Nashville).  The aircraft carried a comprehensive package of gas-106 

phase and aerosol chemistry instruments, as well as standard meteorological instruments.   107 

After presenting the model configurations (section 2), we evaluate the ensemble and its members 108 

against specifically relevant observations (section 3).  Then we present the ensemble spreads 109 

(section 4) followed by discussion and conclusions. 110 

2. Model configurations 111 

Six WRF configurations are used, as shown in table 1.  They cover three axes of the configuration 112 

space, including two different initial and boundary condition datasets, two different planetary 113 

boundary layer parameterizations, and two different treatments of the soil variables.  All are run on 114 
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a single 12 km horizontal grid covering most of the eastern half of North America (figure 1).  The 115 

vertical grid has 60 levels with 19 below 1 km AGL and the lowest level at 16 m.  We note that the 116 

goal is to produce several reasonable solutions, not to establish a single “best” configuration.  All 117 

configurations use WRF version 3.5, RRTMG shortwave and longwave radiation, Eta 118 

microphysics, and the Noah land surface model with single-level urban canopy. The Grell 3D 119 

cumulus scheme was used, with shallow cumulus option on for runs with the MYNN PBL scheme 120 

and off for runs with the TEMF PBL.  The model was initialized at 0000 UTC each day and run for 121 

30 hours.  Except for the runs with cycled soil moisture and temperature, all initial and land 122 

boundary conditions were taken from the global analysis (GFS or ERA-Interim).  To make a 123 

continuous output dataset, the first six hours of each daily run were discarded as spinup. Sea 124 

surface temperature was provided by the U.S. Navy GODAE high-resolution SST, (see 125 

http://www.usgodae.org/ftp/outgoing/fnmoc/models/ghrsst/docs/ghrsst_doc.txt) updated every six 126 

hours and interpolated between updates.  No observed data was directly assimilated into WRF, nor 127 

were the WRF runs nudged toward any analysis.  Most of these configuration choices were the 128 

same as used for California in [Angevine et al., 2012].  References for all WRF options can be 129 

found in [Skamarock et al., 2008]. 130 

We used a version of the FLEXPART Lagrangian particle dispersion model [Stohl et al., 2005] 131 

modified to use WRF output [Brioude et al., 2013a]. FLEXPART-WRF uses the same grid spacing 132 

as in WRF. FLEXPART-WRF solves turbulent motion in a Lagrangian framework using first-order 133 

Langevin equations. The turbulent motion is stochastic and parameterized using the Hanna scheme. 134 

That scheme uses PBL height, Monin-Obukhov length, convective velocity scale, roughness length 135 

and friction velocity. The PBL height and friction velocity are read from the WRF output. The PBL 136 

height in WRF with the MYNN PBL scheme is calculated based on a TKE threshold. With the 137 



 9

TEMF PBL scheme, the PBL height is the level reached by an entraining thermal from the surface 138 

[Angevine et al., 2010].  FLEXPART-WRF prescribes a turbulent profile based on the Hanna 139 

scheme [Stohl et al., 2005], depending on convective, neutral or stable conditions. Horizontal and 140 

vertical turbulence are both calculated from the Hanna scheme.We used the WRF output with an 141 

output time interval of 30 minutes. The number of particles emitted per unit time in each grid 142 

square is proportional to the tracer emissions at that time and place in the inventory (described 143 

below).  Runs begin at 0000 UTC 4 May 2010 and run until 0000 UTC 26 June 2010.  Particles are 144 

retained until they leave the domain.  Each particle carries a fixed quantity of tracer.  The time of 145 

emission is carried with each particle.  We used time-average wind out of WRF to reduce trajectory 146 

uncertainties [Brioude et al., 2012] as time-average wind is more representative of the wind 147 

variability than instantaneous wind out of WRF. Brioude et al. [2012] have shown that this setup 148 

conserves the well mixed criterion in the PBL in FLEXPART-WRF. Above the PBL, a simple 149 

coefficient of diffusivity is used to simulate the horizontal turbulent motion in the free troposphere. 150 

Particles are not exchanged directly by turbulence between the PBL and the free troposphere but by 151 

horizontal displacement or by the resolved vertical displacement in the WRF wind. 152 

We defined the FLEXPART-WRF output grid (which is independent of the transport calculation) 153 

with a 12 km grid spacing in both horizontal dimensions and 28 vertical layers, each 100 m thick. 154 

The horizontal grid corresponds to that used for the driving WRF simulations.  Particles are 155 

grouped into six age classes on output, with maximum ages of 3, 6, 12, 24, 48, and 120 hours since 156 

emission. 157 

Approximately 1.8 million particles were emitted each day of the simulation.  No chemical 158 

transformation or deposition was simulated.  The spatial and temporal pattern of emissions is that 159 
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of carbon monoxide (CO) specified according the U.S. EPA 2011 National Emission Inventory, 160 

version 1, available as of November 8, 2013 161 

(http://www.epa.gov/ttn/chief/net/2011inventory.html#inventorydoc). Gridded (4-km resolution), 162 

hourly emissions for a July average weekday in 2011 have been derived from this inventory, and 163 

are publically available at the WRF/Chem data site: 164 

ftp://aftp.fsl.noaa.gov/divisions/taq/emissions_data_2011/. Specific details on the files and data-sets 165 

used for spatial and temporal partitioning are supplied in the readme.txt file at the data site. 166 

Because the map projection and domain used in the WRF and FLEXPART-WRF simulations is 167 

chosen to overlap with the U.S. EPA emissions grid, hourly emissions from the 4-km NEI 168 

inventory are simply combined together within the 12km grid resolution used here. Details of the 169 

emissions are not directly relevant here, since all runs use the same emissions and results are 170 

normalized. When comparing with observed CO, it must be kept in mind that there are a number of 171 

CO sources not accounted for in these simulations.  These include biomass burning, class-3 172 

commercial marine vessels, and oxidation of methane and volatile organic compounds. 173 

3. Meteorological evaluation 174 

Here we present some evaluation of the performance of each of the WRF configurations.  Our goal 175 

is to establish that each of the runs has reasonable and comparable performance and therefore that 176 

each is a suitable ensemble member.  We do not intend to comprehensively evaluate each run in 177 

this context.  Evaluation of specific processes such as vertical transport by clouds is reserved for 178 

future analyses. 179 

Table 2 presents a statistical comparison of each model run to data from all 19 flights of the NOAA 180 

WP3 aircraft during SENEX.  All data below 1000 m ASL are used, that is, data in the daytime 181 
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boundary layer and the nighttime residual layer.  All the runs produce statistics in the range usually 182 

considered in the literature to be “good agreement.”  While small differences may be statistically 183 

significant with such a large dataset, we do not consider the differences to be of practical 184 

significance. These data, and all WP3 data presented herein, are averaged to 120 s (approximately 185 

12 km) to match the model output grid.  Calculations with 10 s data (not shown) produce very 186 

similar results.   187 

Soil moisture is a key control on meteorological model performance [Chen et al., 2007; Koster et 188 

al., 2010; Kumar et al., 2006; LeMone et al., 2008] because it governs the partitioning of incoming 189 

solar radiation into sensible heat flux (heating the boundary layer) and latent heat flux (moistening 190 

the boundary layer).  The six WRF runs use three different strategies to initialize soil moisture and 191 

temperature.  The runs with GFS initial and boundary conditions (“G” runs) use the soil moisture 192 

directly from the GFS analysis at 0000 UTC each day, interpolated to the WRF grid.  Runs with 193 

ERA-Interim (“E” runs) do the same with the ERA-Interim soil moisture.  Cycled runs (“ExC”) 194 

start with the soil moisture from ERA-Interim at 0000 UTC on 28 May, and then run open loop.  195 

That is, the soil moisture for each day’s run is taken from the 24-hour forecast initialized the 196 

previous day.  This approach was shown by Angevine et al. [2014] and Di Giuseppe et al. [2011] to 197 

improve results under some conditions, although the differences in these runs are small.   198 

The Climate Reference Network (CRN) [Diamond et al., 2013] provides measurements of soil 199 

moisture at multiple levels at 28 sites within our model domain.  The time series of modeled and 200 

observed soil moisture is shown in figure 2.  The runs using GFS soil moisture directly are clearly 201 

too moist, and a strong tendency to dry down in the course of each day is visible.  Runs with ERA-202 

Interim start and stay close to the observations.  Without cycling, these runs (EM and ET) are too 203 
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moist after day 170, and a diurnal cycle is visible, but smaller than with GFS.  Run EMC stays 204 

closest to the observations through the period.  Around day 160 run ETC falls below the 205 

observations and remains there until late in the period.  In figure 3, the observations of daily 206 

maximum and minimum near-surface air temperature at the CRN sites are shown along with the 207 

simulations from each WRF run.  All runs have a larger diurnal cycle than the observations.  Some 208 

of the differences between runs can be traced to the soil moisture and shallow cloud treatment, but 209 

the details are outside the scope of this paper. 210 

Cycling soil moisture is vulnerable to errors in modeled precipitation.  Figure 4 shows the observed 211 

precipitation for the whole period from the NOAA Stage IV analysis 212 

(http://data.eol.ucar.edu/codiac/dss/id=21.093), a blend of gauge and radar measurements.  The 213 

corresponding modeled precipitation is shown in figure 5, and the totals are in table 4.  All of the 214 

WRF runs miss an area of precipitation in the north-central part of the domain (roughly 38-40N, 215 

87-89W) that occurs in late June, but otherwise the spatial patterns are similar.  All runs 216 

underestimate the total precipitation except GM, which comes quite close despite the previously 217 

mentioned missing area.  218 

4. Ensemble spreads and their relationships 219 

The ensemble spread of wind speed is shown in figure 6.  The averages are taken over all 50 days 220 

and hours 1000-1200 UTC (denoted AM) and 1800-2000 UTC (denoted PM).  Throughout the text, 221 

we discuss the “2/3” spread, that is, the difference between the fourth and second ranking values of 222 

the six models at each point.  This corresponds to the common idea of uncertainty as a standard 223 

deviation [Taylor, 1997].  The choice is discussed further in the Discussion section below.  Some 224 

tables also show the “full” spread (maximum minus minimum value).  If the spread is not explicitly 225 
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qualified as “2/3” or “full”, the 2/3 spread is intended.  In the figures, spreads are normalized by the 226 

mean value at that point from the six models, so a plotted value of 1 means that the spread is equal 227 

to the mean value.  The level of approximately 200 m AGL is chosen to be relevant to both daytime 228 

and nighttime transport.  Mean and median spreads are approximately 20%.  This includes the 229 

narrow band at the domain edges where the spread is small, but the results are only slightly reduced 230 

thereby.  Some geographic features are apparent, for example the Appalachian Mountains have 231 

larger spreads than surrounding lowlands both in the morning and especially at midday.  The 232 

largest spreads are found in northern Florida, probably due to differences in thunderstorms between 233 

the WRF runs.   234 

Mixing height is a key parameter in Lagrangian models.  The ensemble spread of mixing height 235 

(also called PBL height here) is shown in figure 7.  The mixing height as used within FLEXPART-236 

WRF is shown, which is somewhat modified from the direct WRF output.  In particular, a 237 

minimum height of 100 m is imposed upon input to FLEXPART-WRF.  The early morning PBL 238 

heights (1000-1200 UTC) have large spreads in the eastern part of the domain and even larger in 239 

the western part.  This is largely because the TEMF PBL scheme allows very low PBL heights as 240 

designed, while the MYNN PBL scheme diagnoses higher heights.  Near the western edge of the 241 

domain, the three runs with TEMF PBL differ on the location and extent of high PBLs, which are 242 

not present in the MYNN runs at all.  In the afternoon (1800-2000 UTC), PBL height spreads are 243 

moderate except over water.  Most land areas have spreads around 20%.  The large spreads over 244 

water arise from differences in the temperature and wind speed and direction.  Overwater PBLs can 245 

be stable and therefore shallow in the afternoon, but not at the exact same times and places in the 246 

different runs.  Mean PBL height spreads over the whole domain are 50% in the early morning and 247 

25% at midday. 248 
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The effects of mixing height and wind speed can be combined into a single quantity called 249 

“ventilation”, which roughly expresses the tendency of emissions to be diluted horizontally and 250 

vertically.  The ventilation is simply the product of mixing height and wind speed, in this case at 251 

200 m AGL (figure 8).  The ventilation spread maps inherit primary features from the wind speed 252 

(figure 6) and PBL height (figure 7) maps.  In the early morning, the ventilation spread is moderate 253 

in the east and large in the west.  At midday, the Appalachian Mountains stand out as areas of 254 

moderately large spread, with quite large values over the Great Lakes, Florida, and the Atlantic and 255 

Gulf Coasts.  Mean ventilation spreads for the whole domain are 60% in the early morning and 256 

35% at midday. 257 

Figure 9 shows the mean ensemble spread of tracer mixing ratio in the lowest FLEXPART-WRF 258 

level (0-100 m AGL).  Points with small mean values (<10 ppbv) are masked out.  In the afternoon 259 

(lower panel) moderate spreads (roughly 30%) are present over most of the central part of the 260 

domain.  Spreads are large near the Gulf Coast, Great Lakes, and offshore.  Mean spread for the 261 

whole domain is 35% (Table 5).  In the morning (upper panel), the area of moderate spreads is 262 

smaller but the spatial distribution of values is similar.  Mean spreads are larger, roughly 40%.  263 

Some areas with large emissions, for example Atlanta, Georgia (approximate coordinates -84, 34), 264 

have relatively small spreads.  Table 5 gives the means for several threshold values of mean mixing 265 

ratio, showing that areas with larger concentrations have slightly smaller spreads.  Note that the 266 

tracer values do not include any background CO, so areas unaffected by emissions within the 267 

domain have zero mixing ratio.  Absolute values of mean tracer concentration and spread are 268 

shown in the Supplemental Material.  These are useful for checking the reasonableness of the 269 

results, but difficult to interpret in terms of uncertainty.  270 
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The near-surface layer is perhaps the most difficult layer for the models, so in figure 10 we show 271 

the tracer spread in the 400-500 m AGL layer.  The afternoon pattern and mean values are similar 272 

to the 0-100 m layer, which makes sense because boundary layer turbulence couples these levels 273 

strongly during the day.  In the early morning, normalized spreads are larger in the upper layer than 274 

near the surface, because the upper layer is decoupled from surface emissions. 275 

The WP3 aircraft flights provide another perspective on the ensemble behavior of the CO tracer.  276 

Table 6 displays correlations between the measured CO and the tracer from each member and the 277 

ensemble mean.  Biases and standard deviations are not shown because computing them requires 278 

strong assumptions about the emissions and background.  In figure 11, a two-dimensional 279 

histogram shows the frequency of occurrence of tracer mixing ratio spread and mean age along the 280 

flight tracks for all points with CO measurements below 1000 m AGL.  The peak of the spread 281 

histogram is at about 20% and 30 hours age, and the mean spread is 30% (median 21%).  Although 282 

the diagram suggests a correlation between age and spread, its value is only 0.12 (Spearman).  283 

There are a number of points with short ages and large spreads, and a wide distribution of spread at 284 

any age.  Fresh plumes near sources explain the large spreads at short ages.  These plumes can be 285 

rather narrow and small differences in wind direction move them to slightly different locations.  At 286 

longer ages, the spread distribution narrows because the air being sampled has circulated through 287 

the domain for several days, and differences in transport and mixing in specific locations have been 288 

smoothed out.  The spread may be asymptotic to a value of 50-60% at long ages. 289 

We might have expected that spread and mixing ratio would correlate inversely, plumes measured 290 

near sources having little time to be transported differently, but the lower panel of figure 11 shows 291 

no such correlation.  Larger mixing ratios occur near sources, but different source strengths place 292 
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those occurrences at different places on the X-axis. In fact, the peak of the histogram occurs at 293 

small to moderate spread (10-20%) and small mixing ratio (~15 ppb). 294 

Tracer age is another important product from the FLEXPART-WRF simulations, and its 295 

uncertainty should also be evaluated.  Figure 12 shows two-dimensional histograms of age spread.  296 

The peak of the histogram is at moderate ages (25-35 hours) and spreads of 15-20%.  Overall mean 297 

spread is 17% and its median is 13%.  Age spread is not correlated with age or mixing ratio. 298 

5. Discussion 299 

A key question in working with an ensemble is whether it is reliable, that is, does the probability 300 

with which an event occurs in the ensemble correspond to the probability of that event in reality?  301 

For our application, we are interested in a simpler but related criterion, whether the spread of the 302 

ensemble is a good estimate of the uncertainty of the CO mixing ratio (above background) at a 303 

particular time and place.  Uncertainty is often expressed by a standard deviation.  One standard 304 

deviation each side of the mean covers 66% of a Gaussian distribution.  For those times, places, and 305 

variables for which we have observations, we can compare the error (simulation-obs) with the 306 

ensemble spread.  These relationships are tabulated in Table 7.  Of the meteorological variables, 307 

potential temperature and water vapor from the aircraft show spreads somewhat larger than the 308 

standard deviation of the errors.  Wind speed has approximately equal spread and error.  309 

Temperature at 2 m from the Climate Reference Network sites has errors twice the spread.  The CO 310 

tracer error is sensitive to the choice of mean for normalization, since the observed mean (minus its 311 

minimum) is twice as large as the simulated mean.  This is due largely to the neglect of non-312 

anthropogenic sources in the simulations.  The spread-error relationship is therefore not useful in 313 

this situation. 314 
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Rank histograms [Hamill, 2001] are a method to visualize the relationship between spread and 315 

error.  Each measurement is ranked among the values from the ensemble members and the ranks 316 

are counted.  The expectation is that an observation should fall with equal probability into each bin 317 

of a ranked ensemble if the ensemble is reliable.  Therefore the histogram should be approximately 318 

flat, although caveats apply.  In figure 13, the rank histograms for meteorological variables 319 

measured by the P3 are shown.  The potential temperature histogram is fairly flat, indicating 320 

reasonable reliability.  An excess of points in the leftmost bin indicates a small bias consistent with 321 

the values in table 2.  A more significant bias to the right is found for water vapor.  The wind speed 322 

spread may be somewhat too small as indicated by the U shape of the histogram.  Figure 14 shows 323 

the rank histogram for 2m T at the CRN sites, for which the ensemble clearly has too little spread. 324 

For our six-member ensemble, the standard deviation can be approximated as the range of the four 325 

inner members (leaving out the minimum and maximum).  This quantity is tabulated as “2/3” 326 

spread in table 7, and shown in the preceding figures.  It agrees better with the error (also defined 327 

as a standard deviation) than the full spread for potential temperature and water vapor.  This is the 328 

reason we have used the 2/3 spread above and in our conclusions below. The 2/3 spread is clearly 329 

too small for 2m T at the CRN sites, for reasons we have not explored. 330 

The ensemble spreads presented above represent, by our postulate, the uncertainty at a single point 331 

of a 12-km grid in a single realization.  For the maps in figures 9 and 10, the spreads were 332 

computed with 3-hour averaging.  The comparisons with WP3 data (table 6) include no temporal 333 

averaging. The uncertainty can be reduced by further averaging in space or time.  The effect of 334 

averaging depends on the degree of independence of the samples.  Figure 15 shows the behavior of 335 

the ensemble spread (uncertainty) with respect to spatial and temporal averaging.  Results are 336 
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shown for individual hours (1100 UTC and 1900 UTC) and for 3-h averages, each spatially 337 

averaged over 1, 3, 5, 7, 9, and 19 grid points in each direction (1, 9, 25, 49, 81, and 361 points 338 

total).  Averaging is done to each mixing ratio field before the spread is calculated.  Points are also 339 

shown on the right axis for averaging over the entire spatial domain.  Removing the three-hour 340 

averaging increases the spread by about 5%.  Averaging over 3 points in each direction reduces the 341 

spread by about 5%.  Further reductions come with increased averaging, but the gain is rather slow.  342 

Even averaging over 9 points in each direction only reduces the spread by 5-10%.  The reduction is 343 

much slower than would be expected if we naively assumed that all points in the average or all 344 

points in each direction were independent, in which case averaging would reduce uncertainty by the 345 

inverse square root of the number of samples (green and red lines respectively).  The spreads for 1-346 

h and 3-h averaging converge as spatial averaging increases.  The pattern of improvement with 347 

averaging is similar at the surface and in the 400-500 m layer. Averaging over the entire domain, a 348 

rather extreme procedure, reduces the spread to roughly 5%.  This remnant spread is due to the fact 349 

that the tracer can leave the finite domain at different rates with different wind patterns.   350 

The results we have presented (figures 6-10) show that patterns of ensemble spread of CO tracer 351 

are not simply related to patterns of wind speed, PBL height, or ventilation (their product).  This 352 

result may appear surprising at first glance.  However, we are dealing with a large area with 353 

moderately complex terrain, distributed sources, and complex meteorology.  The LPDM simulates 354 

all of the complex patterns, including medium-range transport between regions and partial 355 

recirculation or stagnation of the tracer.  There is some tendency toward larger spread of all 356 

variables in mountainous areas, at night, and over coastal waters (see for example [Ngan et al., 357 

2012]). 358 
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Previous work of Gerbig et al. [2008] and Lin and Gerbig [2005] addressed uncertainty in 359 

meteorology driving an LPDM by adding a correlated random error, effectively increasing the 360 

diffusion terms in the transport equations.  Our work shows that the uncertainty is highly variable 361 

in space and time, and it is not clear how one would account for this in an approach like theirs. 362 

Most likely, uncertainties from meteorological model runs cannot be fully addressed by correlated 363 

random errors, and an ensemble approach should be used instead. 364 

6. Conclusions 365 

We have presented ensemble spreads of tracer mixing ratio from the FLEXPART-WRF Lagrangian 366 

particle dispersion model driven by meteorological fields from six different configurations of WRF.  367 

The FLEXPART-WRF model and WRF model source codes are publicly available online. 368 

Interested parties can contact us to access the (large) amount of WRF and FLEXPART-WRF 369 

output used in this study.  370 

The spreads of a passive tracer emitted according to all inventoried CO sources are 30-40% , for 371 

transport time of 5 days or less, whether they are taken over the whole domain at the surface or in 372 

the daytime boundary layer (table 5), or sampled by the aircraft (table 7).  Excluding points with 373 

small tracer mixing ratios keeps the spreads near the smaller end of those ranges (table 7).  Spatial 374 

or temporal averaging reduces the spreads, but rather slowly (figure 15). 375 

We postulated that the tracer spread is a measure of uncertainty in the LPDM simulation due to 376 

meteorological uncertainty.  This is verified by comparing spreads to errors in meteorological 377 

variables.  Among meteorological variables compared with measurements on the aircraft, the 378 

ensemble is roughly reliable for potential temperature and water vapor, but has too little spread for 379 
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wind speed.  For near-surface temperature at the CRN sites, the ensemble has significantly too little 380 

spread.   381 

No member of a valid ensemble should be obviously bad or obviously superior.  The direct 382 

comparisons with observations in tables 2 and 3 verify this.  The best and worst performing 383 

members for one variable or platform are not the same as for others.  It is also interesting to note 384 

that the ensemble mean is not obviously better than the best member for any particular variable. 385 

We examined wind speed, boundary layer height, and ventilation looking for relationships between 386 

the spreads of these parameters and the tracer spread.  No obvious relationships were found.  387 

Spreads of meteorological variables are largest where we would expect, in complex terrain, at 388 

night, and over coastal waters.  Simple relationships among the uncertainties of meteorological 389 

parameters and the tracer uncertainty are missing because of terrain, partial recirculation, medium-390 

range (order 100 km) transport, and long tracer lifetime.  These are the reasons why an LPDM is 391 

needed in this and similar real mesoscale situations. We do not think that tracer spreads can be 392 

predicted from known error characteristics of the meteorological variables.  We recommend that an 393 

ensemble approach like this one, or even more sophisticated, be used to assess the uncertainty of 394 

Lagrangian simulations. 395 

Uncertainty in single LPDM simulations of passive tracers at mesoscale due solely to uncertainty in 396 

the meteorological forcing is 30-40% of the tracer mixing ratio.  The uncertainty is somewhat less, 397 

perhaps as little as 20%, under particularly favorable conditions (strong, broad plumes sampled in 398 

daytime at moderate distance/time downwind of their sources).  It is greater, as much as 60%, 399 

under less favorable conditions (weak or narrow plumes, undifferentiated background, or sampling 400 
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at night).  Spatial averaging can reduce the uncertainty with loss of resolution.  Uncertainty of 401 

simulated tracer age is 15-20%. 402 

  403 
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Tables 483 

Table 1:  Names and primary definitions of the six WRF configurations to be discussed. 484 

Name Initialization PBL scheme Soil 

treatment 

Cumulus 

GM GFS MYNN2 Direct Grell 3D 

with shallow 

EM ERA MYNN2 Direct Grell 3D 

with shallow 

EMC ERA MYNN2 Cycled Grell 3D 

with shallow 

GT GFS TEMF Direct Grell 3D NO 

shallow 

ET ERA TEMF Direct Grell 3D NO 

shallow 

ETC ERA TEMF Cycled Grell 3D NO 

shallow 

485 
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Table 2:  Comparison statistics for all WP3 aircraft flights below 1000 m ASL.  Model points are 486 

extracted along the flight track every 10 s, linearly interpolated in space and time, and then 487 

averaged to 120 s.  Std.Dev. is the standard deviation of the differences, and r is the Spearman rank 488 

correlation coefficient.  Units are m s-1 for wind speed, K for potential temperature, and g/kg for 489 

water vapor mixing ratio.    Sign of bias is (model – measurement). Number of points is 2026.   490 

WP3 GM EM EMC GT ET ETC Ense

mble 

mean 

Wind speed 

Mean bias  

0.26 -0.14 -0.16 0.48 0.15 0.14 0.12 

Std.Dev. 1.7 1.7 1.7 1.8 1.8 1.8 1.5 

r 0.64 0.72 0.72 0.66 0.67 0.68 0.72 

Potential 

temperature 

Mean bias  

-0.30 0.07 0.16 -0.16 0.30 0.58 0.11 

Std.Dev. 0.94 1.1 1.1 1.1 1.2 1.2 0.96 

r 0.93 0.90 0.90 0.92 0.90 0.90 0.92 

Water vapor 

mixing ratio 

Mean bias  

-0.20 -0.73 -0.88 -0.76 -1.3 -1.6 -0.91 

Std.Dev. 1.6 1.5 1.5 1.5 1.5 1.5 1.3 

r 0.74 0.79 0.79 0.76 0.78 0.78 0.82 

  491 
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Table 3:  Comparison statistics of near-surface (2 m) temperature for 28 Climate Reference 492 

Network sites.  Model results are from the nearest grid point to each site. Sign of biases is model-493 

measurement.    494 

 GM EM EMC GT ET ETC Ensemble 

mean 

Daily 

maximum 

bias 

1.4 2.2 2.4 1.8 2.8 3.6 2.4 

Daily 

maximum 

std. dev. 

2.2 1.9 2.0 2.3 2.4 2.9 2.1 

Daily 

maximum r 

0.35 0.43 0.42 0.43 0.40 0.34 0.44 

Daily 

maximum 

2/3 spread 

      1.5 

Daily 

minimum 

bias 

-1.6 -0.86 -1.4 -2.0 -1.3 -2.1 -1.5 

Daily 

minimum 

std. dev. 

2.9 2.8 3.0 2.7 2.6 3.0 2.8 

Daily 0.46 0.48 0.44 0.47 0.49 0.45 0.47 
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minimum r 

Daily 

minimum 

2/3 spread 

      1.0 

Daily 

mean bias 

-

0.13 

-0.54 -0.41 -0.13 0.48 0.47 0.27 

Daily 

mean std. 

dev. 

1.7 1.8 1.9 1.7 1.8 1.9 1.7 

Daily 

mean r 

0.54 0.46 0.44 0.52 0.43 0.39 0.48 

Daily 

mean 2/3 

spread 

      1.4 

 495 
 496 
  497 
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Table 4:  Precipitation totals in the portion of the domain shown in figures 3 and 4.   498 

Stage IV 

observed 

GM EM EMC GT ET ETC 

237 245 189 185 199 154 147 

 499 
  500 
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Table 5:  Mean normalized CO tracer spreads at two levels of the whole domain with varying 501 

mixing ratio thresholds.  Number of points is also shown.  Grid size is 216*236 so maximum 502 

possible N = 50976.  503 

Threshold 

(mean mixing ratio >) 

10 ppb 20 ppb 30 ppb 40 ppb 50 ppb 

0-100 m AGL 

AM 2/3 

0.39 0.36 0.34 0.32 0.32 

AM full 0.70 0.65 0.61 0.58 0.57 

N 38354 29169 19822 13299 8568 

PM 2/3 0.35 0.32 0.30 0.29 0.29 

PM full 0.62 0.57 0.54 0.52 0.51 

N 35856 22698 14238 7739 3487 

400-500 m AGL 

AM 2/3 

0.43 0.40 0.38 0.38 N too small 

AM full 0.78 0.71 0.69 0.68 N too small 

N 34248 18127 10383 1963 20 

PM 2/3 0.35 0.32 0.30 0.30 0.29 

PM full 0.61 0.56 0.53 0.52 0.51 

N 34525 19240 10993 4045 1069 

 504 
  505 
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Table 6:  Comparison statistics of CO and CO tracer for all WP3 aircraft flights below 1000 m 506 

ASL.  Model points are extracted along the flight track every 10 s, linearly interpolated in space 507 

and time, and then further averaged to 120 s.  r is the Spearman rank correlation coefficient.  508 

Number of samples is 1597.   509 

 510 
 GM EM EMC GT ET ETC Ensemble 

mean 

CO tracer 

mixing ratio 

r 

0.62 0.61 0.61 0.59 0.59 0.59 0.62 

 511 
  512 
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Table 7:  Spread and standard deviation statistics for all WP3 aircraft flights below 1000 m ASL 513 

and for CRN 2m temperature.  Model points are extracted along the flight track every 10 s, linearly 514 

interpolated in space and time, and then averaged over 120 s.  CRN 2m temperature statistics are 515 

for all available hourly observations (N=33569).  N=2026 for P3 meteorology, N=1597 for P3 CO.  516 

CO spreads and simulated CO standard deviation are normalized by the simulated ensemble mean.  517 

Observed CO standard deviation is normalized by the observed mean with minimum value 518 

subtracted to account for background.  For simulated-observed standard deviation of CO, two 519 

values are shown, the smaller is normalized by the observed mean with minimum subtracted (71 520 

ppb) and the larger is normalized by the simulated mean (32 ppb). 521 

 522 
 Standard 

deviation of 

difference 

(simulated-

observed) 

Ensemble 

spread (full) 

Ensemble 

spread (2/3) 

Standard 

deviation 

observed 

Standard 

deviation 

simulated 

ensemble 

mean 

Potential 

temperature (P3) 

(K) 

0.96 1.5 0.89 9.1 9.1 

Water vapor 

mixing ratio (P3) 

(g/kg) 

1.3 2.0 1.3 2.3 2.1 

Wind speed (P3) 

(m/s) 

1.5 1.9 1.3 2.2 2.3 



 32

2m T (CRN) (K) 4.7 2.4 1.5 4.5 4.9 

CO tracer mixing 

ratio (normalized) 

0.39 (0.87) 0.54 0.31 0.46 0.58 

  523 
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Figure 1:  Maps of the WRF domain with terrain height (m ASL) colored as background and 524 

showing Climate Reference Network sites (upper left) and flight tracks of the NOAA WP3 (upper 525 

right).  Lower panel shows CO tracer emissions used in the FLEXPART-WRF runs. 526 
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 527 

 528 
Figure 2: Soil moisture mean of 28 Climate Reference Network stations.  Measurement at 20 cm 529 

depth is compared to second model level (10-40 cm).  Legend refers to table 1.  Run GM is often 530 

obscured by GT. 531 

  532 
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Figure 3:  Daily maximum and minimum near-surface temperature averaged over 28 Climate 533 

Reference Network sites. 534 

   535 
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Figure 4:  Observed precipitation from the NOAA Stage IV product for 28 May – 15 July 2013 536 

(mm).  Edges of the domain are excluded for clarity. 537 

  538 
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Figure 5:  Total precipitation from each WRF run for 28 May – 15 July 2013.  Color scale same as 539 

figure 3. 540 

  541 
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Figure 6:  Wind speed spread in early morning and midday from the WRF ensemble.  Spread is 542 

normalized by mean speed (therefore unitless) and averaged over all 49 days.543 
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Figure 7:  Spread of boundary layer height (mixing height) in the early morning and midday as 544 

interpreted by FLEXPART-WRF from the WRF ensemble input.  Spread is normalized by the 545 

mean value.  546 
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Figure 8:  Spread of ventilation (PBL height * wind speed) in the early morning and midday.  547 

Spread is normalized by the mean value.  548 
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Figure 9:  Mean ensemble spread of tracer mixing ratio at level 1 (0-100 m AGL).  The averages 549 

are taken over all 49 days and hours 0400-0600 LST (AM, top) and 1300-1500 LST (PM, bottom).  550 

The spread is normalized by the mean mixing ratio at each point.  Points with small mean values 551 

(<10 ppbv) are masked out.   552 
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Figure 10:  Mean ensemble spread of tracer mixing ratio at level 5 (400-500 m AGL).  The 553 

averages are taken over all 49 days and hours 0400-0600 LST (AM, top) and 1300-1500 LST (PM, 554 

bottom).  The spread is normalized by the mean mixing ratio at each point.  Points with small mean 555 

values (<10 ppbv) are masked out.   556 
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Figure 11:  Frequency of occurrence of CO tracer spread along the P3 flight tracks vs. simulated 557 

mean tracer age (top) and simulated mixing ratio (bottom) for all points with valid CO 558 

measurements below 1000 m AGL.559 
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Figure 12:  Frequency of occurrence of CO tracer age spread along the P3 flight tracks vs. 560 

simulated mean tracer age (top) and simulated mixing ratio (bottom) for all points with valid CO 561 

measurements below 1000 m AGL.  562 
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Figure 13:  Rank histograms for all P3 flight data below 1000 m AGL for potential temperature, 563 

water vapor mixing ratio, and wind speed (as labeled). 564 

  565 
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Figure 14:  Rank histogram for all hourly near-surface temperature observations at 28 Climate 566 

Reference Network sites. 567 

  568 
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Figure 15:  CO tracer spread as a function of averaging for surface (top) and 400-500 m AGL 569 

(bottom).  The points (+ and x) for AM and PM 3h averaging without spatial averaging are the 570 

means shown in the figures and in the second column of table 5.  Points on the right axis are for 571 

averages over the entire domain (216x236 points). 572 


