Articles | Volume 7, issue 6
https://doi.org/10.5194/gmd-7-2683-2014
https://doi.org/10.5194/gmd-7-2683-2014
Development and technical paper
 | 
13 Nov 2014
Development and technical paper |  | 13 Nov 2014

Response of microbial decomposition to spin-up explains CMIP5 soil carbon range until 2100

J.-F. Exbrayat, A. J. Pitman, and G. Abramowitz

Related authors

Reduction of predictive uncertainty in estimating irrigation water requirement through multi-model ensembles and ensemble averaging
S. Multsch, J.-F. Exbrayat, M. Kirby, N. R. Viney, H.-G. Frede, and L. Breuer
Geosci. Model Dev., 8, 1233–1244, https://doi.org/10.5194/gmd-8-1233-2015,https://doi.org/10.5194/gmd-8-1233-2015, 2015
Short summary
Disentangling residence time and temperature sensitivity of microbial decomposition in a global soil carbon model
J.-F. Exbrayat, A. J. Pitman, and G. Abramowitz
Biogeosciences, 11, 6999–7008, https://doi.org/10.5194/bg-11-6999-2014,https://doi.org/10.5194/bg-11-6999-2014, 2014
Short summary

Related subject area

Climate and Earth system modeling
A sub-grid parameterization scheme for topographic vertical motion in CAM5-SE
Yaqi Wang, Lanning Wang, Juan Feng, Zhenya Song, Qizhong Wu, and Huaqiong Cheng
Geosci. Model Dev., 16, 6857–6873, https://doi.org/10.5194/gmd-16-6857-2023,https://doi.org/10.5194/gmd-16-6857-2023, 2023
Short summary
Technology to aid the analysis of large-volume multi-institute climate model output at a central analysis facility (PRIMAVERA Data Management Tool V2.10)
Jon Seddon, Ag Stephens, Matthew S. Mizielinski, Pier Luigi Vidale, and Malcolm J. Roberts
Geosci. Model Dev., 16, 6689–6700, https://doi.org/10.5194/gmd-16-6689-2023,https://doi.org/10.5194/gmd-16-6689-2023, 2023
Short summary
A diffusion-based kernel density estimator (diffKDE, version 1) with optimal bandwidth approximation for the analysis of data in geoscience and ecological research
Maria-Theresia Pelz, Markus Schartau, Christopher J. Somes, Vanessa Lampe, and Thomas Slawig
Geosci. Model Dev., 16, 6609–6634, https://doi.org/10.5194/gmd-16-6609-2023,https://doi.org/10.5194/gmd-16-6609-2023, 2023
Short summary
Monte Carlo drift correction – quantifying the drift uncertainty of global climate models
Benjamin S. Grandey, Zhi Yang Koh, Dhrubajyoti Samanta, Benjamin P. Horton, Justin Dauwels, and Lock Yue Chew
Geosci. Model Dev., 16, 6593–6608, https://doi.org/10.5194/gmd-16-6593-2023,https://doi.org/10.5194/gmd-16-6593-2023, 2023
Short summary
Improvements in the Canadian Earth System Model (CanESM) through systematic model analysis: CanESM5.0 and CanESM5.1
Michael Sigmond, James Anstey, Vivek Arora, Ruth Digby, Nathan Gillett, Viatcheslav Kharin, William Merryfield, Catherine Reader, John Scinocca, Neil Swart, John Virgin, Carsten Abraham, Jason Cole, Nicolas Lambert, Woo-Sung Lee, Yongxiao Liang, Elizaveta Malinina, Landon Rieger, Knut von Salzen, Christian Seiler, Clint Seinen, Andrew Shao, Reinel Sospedra-Alfonso, Libo Wang, and Duo Yang
Geosci. Model Dev., 16, 6553–6591, https://doi.org/10.5194/gmd-16-6553-2023,https://doi.org/10.5194/gmd-16-6553-2023, 2023
Short summary

Cited articles

Ahlström, A., Smith, B., Lindström, J., Rummukainen, M., and Uvo, C. B.: GCM characteristics explain the majority of uncertainty in projected 21st century terrestrial ecosystem carbon balance, Biogeosciences, 10, 1517–1528, https://doi.org/10.5194/bg-10-1517-2013, 2013.
Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-carbon response to warming dependent on microbial physiology, Nat. Geosci., 3, 336–340, https://doi.org/10.1038/ngeo846, 2010.
Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P., Jones, C., Jung, M., Myneni, R., and Zhu, Z.: Evaluating the Land and Ocean Components of the Global Carbon Cycle in the CMIP5 Earth System Models, J. Clim., 26, 6801–6843, https://doi.org/10.1175/JCLI-D-12-00417.1, 2013.
Arora, V. K. and Boer, G. J.: Uncertainties in the 20th century carbon budget associated with land use change, Glob. Chang. Biol., 16, 3327–3348, https://doi.org/10.1111/j.1365-2486.2010.02202.x, 2010.
Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev., 6, 687–720, https://doi.org/10.5194/gmd-6-687-2013, 2013.
Download
Short summary
Pre-industrial soil organic carbon (SOC) stocks vary 6-fold in models used in the 5th IPCC Assessment Report. This paper shows that this range is largely determined by model-specific responses of microbal decomposition during the equilibration procedure. As SOC stocks are maintained through the present and to 2100 almost unchanged, we propose that current SOC observations could be used to constrain this equilibration procedure and thereby reduce the uncertainty in climate change projections.