Articles | Volume 7, issue 1
https://doi.org/10.5194/gmd-7-225-2014
https://doi.org/10.5194/gmd-7-225-2014
Methods for assessment of models
 | 
29 Jan 2014
Methods for assessment of models |  | 29 Jan 2014

divand-1.0: n-dimensional variational data analysis for ocean observations

A. Barth, J.-M. Beckers, C. Troupin, A. Alvera-Azcárate, and L. Vandenbulcke

Related authors

Generation of super-resolution gap-free ocean colour satellite products using data-interpolating empirical orthogonal functions (DINEOF)
Aida Alvera-Azcárate, Dimitry Van der Zande, Alexander Barth, Antoine Dille, Joppe Massant, and Jean-Marie Beckers
Ocean Sci., 21, 787–805, https://doi.org/10.5194/os-21-787-2025,https://doi.org/10.5194/os-21-787-2025, 2025
Short summary
Amplified Warming and Marine Heatwaves in the North Sea Under a Warming Climate
Bayoumy Mohamed, Alexander Barth, Dimitry Van der Zande, and Aida Alvera-Azcárate
EGUsphere, https://doi.org/10.5194/egusphere-2025-1578,https://doi.org/10.5194/egusphere-2025-1578, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Overcoming Challenges in Coastal Marine Heatwave Detection: Integrating In Situ and Satellite Data in Complex Coastal Environment
Cécile Pujol, Alexander Barth, Iván Pérez-Santos, Pamela Muñoz-Linford, and Aida Alvera-Azcárate
EGUsphere, https://doi.org/10.5194/egusphere-2025-1421,https://doi.org/10.5194/egusphere-2025-1421, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Assessment of gap-filling techniques applied to satellite phytoplankton composition products for the Atlantic Ocean
Ehsan Mehdipour, Hongyan Xi, Alexander Barth, Aida Alvera-Azcárate, Adalbert Wilhelm, and Astrid Bracher
EGUsphere, https://doi.org/10.5194/egusphere-2025-112,https://doi.org/10.5194/egusphere-2025-112, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
CRITER 1.0: A coarse reconstruction with iterative refinement network for sparse spatio-temporal satellite data
Matjaž Zupančič Muc, Vitjan Zavrtanik, Alexander Barth, Aida Alvera-Azcarate, Matjaž Ličer, and Matej Kristan
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-208,https://doi.org/10.5194/gmd-2024-208, 2025
Preprint under review for GMD
Short summary

Related subject area

Oceanography
GREAT v1.0: Global Real-time Early Assessment of Tsunamis
Usama Kadri, Ali Abdolali, and Maxim Filimonov
Geosci. Model Dev., 18, 3487–3507, https://doi.org/10.5194/gmd-18-3487-2025,https://doi.org/10.5194/gmd-18-3487-2025, 2025
Short summary
Using automatic calibration to improve the physics behind complex numerical models: an example from a 3D lake model using Delft3D (v6.02.10) and DYNO-PODS (v1.0)
Marina Amadori, Abolfazl Irani Rahaghi, Damien Bouffard, and Marco Toffolon
Geosci. Model Dev., 18, 3473–3486, https://doi.org/10.5194/gmd-18-3473-2025,https://doi.org/10.5194/gmd-18-3473-2025, 2025
Short summary
Improvements to the Met Office's global ocean–sea ice forecasting system including model and data assimilation changes
Davi Mignac, Jennifer Waters, Daniel J. Lea, Matthew J. Martin, James While, Anthony T. Weaver, Arthur Vidard, Catherine Guiavarc'h, Dave Storkey, David Ford, Edward W. Blockley, Jonathan Baker, Keith Haines, Martin R. Price, Michael J. Bell, and Richard Renshaw
Geosci. Model Dev., 18, 3405–3425, https://doi.org/10.5194/gmd-18-3405-2025,https://doi.org/10.5194/gmd-18-3405-2025, 2025
Short summary
Resolution dependence of interlinked Southern Ocean biases in global coupled HadGEM3 models
David Storkey, Pierre Mathiot, Michael J. Bell, Dan Copsey, Catherine Guiavarc'h, Helene T. Hewitt, Jeff Ridley, and Malcolm J. Roberts
Geosci. Model Dev., 18, 2725–2745, https://doi.org/10.5194/gmd-18-2725-2025,https://doi.org/10.5194/gmd-18-2725-2025, 2025
Short summary
A new global high-resolution wave model for the tropical ocean using WAVEWATCH III version 7.14
Axelle Gaffet, Xavier Bertin, Damien Sous, Héloïse Michaud, Aron Roland, and Emmanuel Cordier
Geosci. Model Dev., 18, 1929–1946, https://doi.org/10.5194/gmd-18-1929-2025,https://doi.org/10.5194/gmd-18-1929-2025, 2025
Short summary

Cited articles

Arfken, G.: Mathematical Methods for Physicists, Academic Press, Orlando, FL, 3rd Edn., 795 pp., 1985.
Bannister, R. N.: A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error covariance statistics, Q. J. R. Meteorol. Soc., 134, 1971–1996, https://doi.org/10.1002/qj.340, 2008.
Barth, A., Alvera-Azcárate, A., Troupin, C., Ouberdous, M., and Beckers, J.-M.: A web interface for griding arbitrarily distributed in situ data based on Data-Interpolating Variational Analysis (DIVA), Adv. Geosci., 28, 29–37, https://doi.org/10.5194/adgeo-28-29-2010, 2010.
Beckers, J.-M., Barth, A., and Alvera-Azcárate, A.: DINEOF reconstruction of clouded images including error maps – application to the Sea-Surface Temperature around Corsican Island, Ocean Sci., 2, 183–199, https://doi.org/10.5194/os-2-183-2006, 2006.
Bennett, A. F., Chua, B. S., and Leslie, L. M.: Generalized inversion of a global numerical weather prediction model, Meteor. Atmos. Phys., 60, 165–178, 1996.
Download
Share