Articles | Volume 7, issue 1
https://doi.org/10.5194/gmd-7-225-2014
https://doi.org/10.5194/gmd-7-225-2014
Methods for assessment of models
 | 
29 Jan 2014
Methods for assessment of models |  | 29 Jan 2014

divand-1.0: n-dimensional variational data analysis for ocean observations

A. Barth, J.-M. Beckers, C. Troupin, A. Alvera-Azcárate, and L. Vandenbulcke

Related authors

CRITER 1.0: A coarse reconstruction with iterative refinement network for sparse spatio-temporal satellite data
Matjaž Zupančič Muc, Vitjan Zavrtanik, Alexander Barth, Aida Alvera-Azcarate, Matjaž Ličer, and Matej Kristan
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-208,https://doi.org/10.5194/gmd-2024-208, 2025
Preprint under review for GMD
Short summary
Ensemble reconstruction of missing satellite data using a denoising diffusion model: application to chlorophyll a concentration in the Black Sea
Alexander Barth, Julien Brajard, Aida Alvera-Azcárate, Bayoumy Mohamed, Charles Troupin, and Jean-Marie Beckers
Ocean Sci., 20, 1567–1584, https://doi.org/10.5194/os-20-1567-2024,https://doi.org/10.5194/os-20-1567-2024, 2024
Short summary
Generation of super-resolution gap-free ocean colour satellite products using DINEOF
Aida Alvera-Azcárate, Dimitry Van der Zande, Alexander Barth, Antoine Dille, Joppe Massant, and Jean-Marie Beckers
EGUsphere, https://doi.org/10.5194/egusphere-2024-1268,https://doi.org/10.5194/egusphere-2024-1268, 2024
Short summary
Sea surface height anomaly and geostrophic current velocity from altimetry measurements over the Arctic Ocean (2011–2020)
Francesca Doglioni, Robert Ricker, Benjamin Rabe, Alexander Barth, Charles Troupin, and Torsten Kanzow
Earth Syst. Sci. Data, 15, 225–263, https://doi.org/10.5194/essd-15-225-2023,https://doi.org/10.5194/essd-15-225-2023, 2023
Short summary
DINCAE 2.0: multivariate convolutional neural network with error estimates to reconstruct sea surface temperature satellite and altimetry observations
Alexander Barth, Aida Alvera-Azcárate, Charles Troupin, and Jean-Marie Beckers
Geosci. Model Dev., 15, 2183–2196, https://doi.org/10.5194/gmd-15-2183-2022,https://doi.org/10.5194/gmd-15-2183-2022, 2022
Short summary

Related subject area

Oceanography
HIDRA3: a deep-learning model for multipoint ensemble sea level forecasting in the presence of tide gauge sensor failures
Marko Rus, Hrvoje Mihanović, Matjaž Ličer, and Matej Kristan
Geosci. Model Dev., 18, 605–620, https://doi.org/10.5194/gmd-18-605-2025,https://doi.org/10.5194/gmd-18-605-2025, 2025
Short summary
A wave-resolving two-dimensional vertical Lagrangian approach to model microplastic transport in nearshore waters based on TrackMPD 3.0
Isabel Jalón-Rojas, Damien Sous, and Vincent Marieu
Geosci. Model Dev., 18, 319–336, https://doi.org/10.5194/gmd-18-319-2025,https://doi.org/10.5194/gmd-18-319-2025, 2025
Short summary
HOTSSea v1: a NEMO-based physical Hindcast of the Salish Sea (1980–2018) supporting ecosystem model development
Greig Oldford, Tereza Jarníková, Villy Christensen, and Michael Dunphy
Geosci. Model Dev., 18, 211–237, https://doi.org/10.5194/gmd-18-211-2025,https://doi.org/10.5194/gmd-18-211-2025, 2025
Short summary
DalROMS-NWA12 v1.0, a coupled circulation–ice–biogeochemistry modelling system for the northwest Atlantic Ocean: development and validation
Kyoko Ohashi, Arnaud Laurent, Christoph Renkl, Jinyu Sheng, Katja Fennel, and Eric Oliver
Geosci. Model Dev., 17, 8697–8733, https://doi.org/10.5194/gmd-17-8697-2024,https://doi.org/10.5194/gmd-17-8697-2024, 2024
Short summary
A revised ocean mixed layer model for better simulating the diurnal variation in ocean skin temperature
Eui-Jong Kang, Byung-Ju Sohn, Sang-Woo Kim, Wonho Kim, Young-Cheol Kwon, Seung-Bum Kim, Hyoung-Wook Chun, and Chao Liu
Geosci. Model Dev., 17, 8553–8568, https://doi.org/10.5194/gmd-17-8553-2024,https://doi.org/10.5194/gmd-17-8553-2024, 2024
Short summary

Cited articles

Arfken, G.: Mathematical Methods for Physicists, Academic Press, Orlando, FL, 3rd Edn., 795 pp., 1985.
Bannister, R. N.: A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error covariance statistics, Q. J. R. Meteorol. Soc., 134, 1971–1996, https://doi.org/10.1002/qj.340, 2008.
Barth, A., Alvera-Azcárate, A., Troupin, C., Ouberdous, M., and Beckers, J.-M.: A web interface for griding arbitrarily distributed in situ data based on Data-Interpolating Variational Analysis (DIVA), Adv. Geosci., 28, 29–37, https://doi.org/10.5194/adgeo-28-29-2010, 2010.
Beckers, J.-M., Barth, A., and Alvera-Azcárate, A.: DINEOF reconstruction of clouded images including error maps – application to the Sea-Surface Temperature around Corsican Island, Ocean Sci., 2, 183–199, https://doi.org/10.5194/os-2-183-2006, 2006.
Bennett, A. F., Chua, B. S., and Leslie, L. M.: Generalized inversion of a global numerical weather prediction model, Meteor. Atmos. Phys., 60, 165–178, 1996.
Download
Share