Articles | Volume 7, issue 5
https://doi.org/10.5194/gmd-7-2223-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gmd-7-2223-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
FLEXINVERT: an atmospheric Bayesian inversion framework for determining surface fluxes of trace species using an optimized grid
R. L. Thompson
Norwegian Institute for Air Research, Kjeller, Norway
A. Stohl
Norwegian Institute for Air Research, Kjeller, Norway
Related authors
Xuekun Fang, Min Shao, Andreas Stohl, Qiang Zhang, Junyu Zheng, Hai Guo, Chen Wang, Ming Wang, Jiamin Ou, Rona L. Thompson, and Ronald G. Prinn
Atmos. Chem. Phys., 16, 3369–3382, https://doi.org/10.5194/acp-16-3369-2016, https://doi.org/10.5194/acp-16-3369-2016, 2016
Short summary
Short summary
This is the first study reporting top-down estimates of benzene and toluene emissions in southern China using atmospheric measurement data from a rural site in the area, an atmospheric transport model and an inverse modeling method. This study shows in detail the temporal and spatial differences between the inversion estimate and four different bottom-up emission inventories (RCP, REAS, MEIC; Yin et al., 2015). We propose that more observations are urgently needed in future.
R. L. Thompson, K. Ishijima, E. Saikawa, M. Corazza, U. Karstens, P. K. Patra, P. Bergamaschi, F. Chevallier, E. Dlugokencky, R. G. Prinn, R. F. Weiss, S. O'Doherty, P. J. Fraser, L. P. Steele, P. B. Krummel, A. Vermeulen, Y. Tohjima, A. Jordan, L. Haszpra, M. Steinbacher, S. Van der Laan, T. Aalto, F. Meinhardt, M. E. Popa, J. Moncrieff, and P. Bousquet
Atmos. Chem. Phys., 14, 6177–6194, https://doi.org/10.5194/acp-14-6177-2014, https://doi.org/10.5194/acp-14-6177-2014, 2014
R. L. Thompson, P. K. Patra, K. Ishijima, E. Saikawa, M. Corazza, U. Karstens, C. Wilson, P. Bergamaschi, E. Dlugokencky, C. Sweeney, R. G. Prinn, R. F. Weiss, S. O'Doherty, P. J. Fraser, L. P. Steele, P. B. Krummel, M. Saunois, M. Chipperfield, and P. Bousquet
Atmos. Chem. Phys., 14, 4349–4368, https://doi.org/10.5194/acp-14-4349-2014, https://doi.org/10.5194/acp-14-4349-2014, 2014
G. Broquet, F. Chevallier, F.-M. Bréon, N. Kadygrov, M. Alemanno, F. Apadula, S. Hammer, L. Haszpra, F. Meinhardt, J. A. Morguí, J. Necki, S. Piacentino, M. Ramonet, M. Schmidt, R. L. Thompson, A. T. Vermeulen, C. Yver, and P. Ciais
Atmos. Chem. Phys., 13, 9039–9056, https://doi.org/10.5194/acp-13-9039-2013, https://doi.org/10.5194/acp-13-9039-2013, 2013
N. Evangeliou, Y. Balkanski, W. M. Hao, A. Petkov, R. P. Silverstein, R. Corley, B. L. Nordgren, S. P. Urbanski, S. Eckhardt, A. Stohl, P. Tunved, S. Crepinsek, A. Jefferson, S. Sharma, J. K. Nøjgaard, and H. Skov
Atmos. Chem. Phys., 16, 7587–7604, https://doi.org/10.5194/acp-16-7587-2016, https://doi.org/10.5194/acp-16-7587-2016, 2016
Short summary
Short summary
In this study, we focused on how vegetation fires that occurred in northern Eurasia during the period 2002–2013 influenced the budget of BC in the Arctic. An average area of 250 000 km2 yr−1 was burned in northern Eurasia and the global emissions of BC ranged between 8.0 and 9.5 Tg yr−1, while 102 ± 29 kt yr−1 BC from biomass burning was deposited on the Arctic. About 46 % of the Arctic BC from vegetation fires originated from Siberia, 6 % from Kazakhstan, 5 % from Europe, and about 1 % from Mon
Quentin Coopman, Timothy J. Garrett, Jérôme Riedi, Sabine Eckhardt, and Andreas Stohl
Atmos. Chem. Phys., 16, 4661–4674, https://doi.org/10.5194/acp-16-4661-2016, https://doi.org/10.5194/acp-16-4661-2016, 2016
Short summary
Short summary
We analyze interactions of Arctic clouds with pollution plumes that have been transported long distances from midlatitudes. Constraining for meteorological state, we find that pollution decreases cloud-droplet effective radius and increases cloud optical depth. The impact is highest when the atmosphere is particularly humid and/or stable suggesting that aerosol–cloud interactions depend on the Arctic's climate.
Xuekun Fang, Min Shao, Andreas Stohl, Qiang Zhang, Junyu Zheng, Hai Guo, Chen Wang, Ming Wang, Jiamin Ou, Rona L. Thompson, and Ronald G. Prinn
Atmos. Chem. Phys., 16, 3369–3382, https://doi.org/10.5194/acp-16-3369-2016, https://doi.org/10.5194/acp-16-3369-2016, 2016
Short summary
Short summary
This is the first study reporting top-down estimates of benzene and toluene emissions in southern China using atmospheric measurement data from a rural site in the area, an atmospheric transport model and an inverse modeling method. This study shows in detail the temporal and spatial differences between the inversion estimate and four different bottom-up emission inventories (RCP, REAS, MEIC; Yin et al., 2015). We propose that more observations are urgently needed in future.
A. Kylling, N. Kristiansen, A. Stohl, R. Buras-Schnell, C. Emde, and J. Gasteiger
Atmos. Meas. Tech., 8, 1935–1949, https://doi.org/10.5194/amt-8-1935-2015, https://doi.org/10.5194/amt-8-1935-2015, 2015
Short summary
Short summary
Water and ice clouds affect detection and retrieval of volcanic ash clouds by satellite instruments. Synthetic infrared satellite images were generated for the Eyjafjallajokull 2010 and Grimsvotn 2011 eruptions by combining weather forecast, ash transport and radiative transfer modelling. Clouds decreased the number of pixels identified as ash and generally increased the retrieved ash-mass loading compared to the cloudless case; however, large differences were seen between scenes.
H. S. Gadhavi, K. Renuka, V. Ravi Kiran, A. Jayaraman, A. Stohl, Z. Klimont, and G. Beig
Atmos. Chem. Phys., 15, 1447–1461, https://doi.org/10.5194/acp-15-1447-2015, https://doi.org/10.5194/acp-15-1447-2015, 2015
Short summary
Short summary
Emission inventories are a key component of simulating past, present and future climate. In this article we have evaluated three black carbon emission inventories for emissions of India using observations made from a strategic location. Annual average simulated black carbon concentration is found to be 35% to 60% lower than observed concentration because of underestimation of emissions of southern India in the inventories.
R. L. Thompson, K. Ishijima, E. Saikawa, M. Corazza, U. Karstens, P. K. Patra, P. Bergamaschi, F. Chevallier, E. Dlugokencky, R. G. Prinn, R. F. Weiss, S. O'Doherty, P. J. Fraser, L. P. Steele, P. B. Krummel, A. Vermeulen, Y. Tohjima, A. Jordan, L. Haszpra, M. Steinbacher, S. Van der Laan, T. Aalto, F. Meinhardt, M. E. Popa, J. Moncrieff, and P. Bousquet
Atmos. Chem. Phys., 14, 6177–6194, https://doi.org/10.5194/acp-14-6177-2014, https://doi.org/10.5194/acp-14-6177-2014, 2014
X. Fang, R. L. Thompson, T. Saito, Y. Yokouchi, J. Kim, S. Li, K. R. Kim, S. Park, F. Graziosi, and A. Stohl
Atmos. Chem. Phys., 14, 4779–4791, https://doi.org/10.5194/acp-14-4779-2014, https://doi.org/10.5194/acp-14-4779-2014, 2014
R. L. Thompson, P. K. Patra, K. Ishijima, E. Saikawa, M. Corazza, U. Karstens, C. Wilson, P. Bergamaschi, E. Dlugokencky, C. Sweeney, R. G. Prinn, R. F. Weiss, S. O'Doherty, P. J. Fraser, L. P. Steele, P. B. Krummel, M. Saunois, M. Chipperfield, and P. Bousquet
Atmos. Chem. Phys., 14, 4349–4368, https://doi.org/10.5194/acp-14-4349-2014, https://doi.org/10.5194/acp-14-4349-2014, 2014
M. Fiebig, D. Hirdman, C. R. Lunder, J. A. Ogren, S. Solberg, A. Stohl, and R. L. Thompson
Atmos. Chem. Phys., 14, 3083–3093, https://doi.org/10.5194/acp-14-3083-2014, https://doi.org/10.5194/acp-14-3083-2014, 2014
P. Kokkalis, A. Papayannis, V. Amiridis, R. E. Mamouri, I. Veselovskii, A. Kolgotin, G. Tsaknakis, N. I. Kristiansen, A. Stohl, and L. Mona
Atmos. Chem. Phys., 13, 9303–9320, https://doi.org/10.5194/acp-13-9303-2013, https://doi.org/10.5194/acp-13-9303-2013, 2013
G. Broquet, F. Chevallier, F.-M. Bréon, N. Kadygrov, M. Alemanno, F. Apadula, S. Hammer, L. Haszpra, F. Meinhardt, J. A. Morguí, J. Necki, S. Piacentino, M. Ramonet, M. Schmidt, R. L. Thompson, A. T. Vermeulen, C. Yver, and P. Ciais
Atmos. Chem. Phys., 13, 9039–9056, https://doi.org/10.5194/acp-13-9039-2013, https://doi.org/10.5194/acp-13-9039-2013, 2013
R. Kallenborn, K. Breivik, S. Eckhardt, C. R. Lunder, S. Manø, M. Schlabach, and A. Stohl
Atmos. Chem. Phys., 13, 6983–6992, https://doi.org/10.5194/acp-13-6983-2013, https://doi.org/10.5194/acp-13-6983-2013, 2013
A. Kylling, R. Buras, S. Eckhardt, C. Emde, B. Mayer, and A. Stohl
Atmos. Meas. Tech., 6, 649–660, https://doi.org/10.5194/amt-6-649-2013, https://doi.org/10.5194/amt-6-649-2013, 2013
Related subject area
Atmospheric sciences
On the use of Infrared Atmospheric Sounding Interferometer (IASI) spectrally resolved radiances to test the EC-Earth climate model (v3.3.3) in clear-sky conditions
Incorporation of aerosol into the COSPv2 satellite lidar simulator for climate model evaluation
The impact of altering emission data precision on compression efficiency and accuracy of simulations of the community multiscale air quality model
AerSett v1.0: a simple and straightforward model for the settling speed of big spherical atmospheric aerosols
Optimization of weather forecasting for cloud cover over the European domain using the meteorological component of the Ensemble for Stochastic Integration of Atmospheric Simulations version 1.0
Bayesian transdimensional inverse reconstruction of the Fukushima Daiichi caesium 137 release
Implementation of HONO into the chemistry–climate model CHASER (V4.0): roles in tropospheric chemistry
Isoprene and monoterpene simulations using the chemistry–climate model EMAC (v2.55) with interactive vegetation from LPJ-GUESS (v4.0)
A modern-day Mars climate in the Met Office Unified Model: dry simulations
The AirGAM 2022r1 air quality trend and prediction model
Evaluation of a cloudy cold-air pool in the Columbia River basin in different versions of the High-Resolution Rapid Refresh (HRRR) model
Comparing Sentinel-5P TROPOMI NO2 column observations with the CAMS regional air quality ensemble
Cross-evaluating WRF-Chem v4.1.2, TROPOMI, APEX, and in situ NO2 measurements over Antwerp, Belgium
Adapting a deep convolutional RNN model with imbalanced regression loss for improved spatio-temporal forecasting of extreme wind speed events in the short to medium range
ICLASS 1.1, a variational Inverse modelling framework for the Chemistry Land-surface Atmosphere Soil Slab model: description, validation, and application
Towards an improved representation of carbonaceous aerosols over the Indian monsoon region in a regional climate model: RegCM
The E3SM Diagnostics Package (E3SM Diags v2.7): a Python-based diagnostics package for Earth system model evaluation
A method for transporting cloud-resolving model variance in a multiscale modeling framework
The Mission Support System (MSS v7.0.4) and its use in planning for the SouthTRAC aircraft campaign
GENerator of reduced Organic Aerosol mechanism (GENOA v1.0): an automatic generation tool of semi-explicit mechanisms
Representing chemical history in ozone time-series predictions – a model experiment study building on the MLAir (v1.5) deep learning framework
Evaluation of high-resolution predictions of fine particulate matter and its composition in an urban area using PMCAMx-v2.0
A local data assimilation method (Local DA v1.0) and its application in a simulated typhoon case
Improved advection, resolution, performance, and community access in the new generation (version 13) of the high-performance GEOS-Chem global atmospheric chemistry model (GCHP)
Lightning assimilation in the WRF model (Version 4.1.1): technique updates and assessment of the applications from regional to hemispheric scales
Optimization of snow-related parameters in the Noah land surface model (v3.4.1) using a micro-genetic algorithm (v1.7a)
Development of an LSTM broadcasting deep-learning framework for regional air pollution forecast improvement
A local particle filter and its Gaussian mixture extension implemented with minor modifications to the LETKF
A comprehensive evaluation of the use of Lagrangian particle dispersion models for inverse modeling of greenhouse gas emissions
Importance of different parameterization changes for the updated dust cycle modeling in the Community Atmosphere Model (version 6.1)
An Improved Parameterization of Sea Spray-Mediated Heat Flux Using Gaussian Quadrature: Case Studies with a Coupled CFSv2.0-WW3 System
Evaluation of the NAQFC driven by the NOAA Global Forecast System (version 16): comparison with the WRF-CMAQ during the summer 2019 FIREX-AQ campaign
An inconsistency in aviation emissions between CMIP5 and CMIP6 and the implications for short-lived species and their radiative forcing
Data assimilation for the Model for Prediction Across Scales – Atmosphere with the Joint Effort for Data assimilation Integration (JEDI-MPAS 1.0.0): EnVar implementation and evaluation
Development of a regional feature selection-based machine learning system (RFSML v1.0) for air pollution forecasting over China
A lumped species approach for the simulation of secondary organic aerosol production from intermediate-volatility organic compounds (IVOCs): application to road transport in PMCAMx-iv (v1.0)
TrackMatcher – a tool for finding intercepts in tracks of geographical positions
Recovery of sparse urban greenhouse gas emissions
Tropospheric transport and unresolved convection: numerical experiments with CLaMS 2.0/MESSy
AMORE-Isoprene v1.0: A new reduced mechanism for gas-phase isoprene oxidation
MUNICH v2.0: a street-network model coupled with SSH-aerosol (v1.2) for multi-pollutant modelling
A preliminary evaluation of FY-4A visible radiance data assimilation by the WRF (ARW v4.1.1)/DART (Manhattan release v9.8.0)-RTTOV (v12.3) system for a tropical storm case
Repeatable high-resolution statistical downscaling through deep learning
The second Met Office Unified Model/JULES Regional Atmosphere and Land configuration, RAL2
Atmospherically Relevant Chemistry and Aerosol box model – ARCA box (version 1.2)
MultilayerPy (v1.0): a Python-based framework for building, running and optimising kinetic multi-layer models of aerosols and films
Introduction of the DISAMAR radiative transfer model: determining instrument specifications and analysing methods for atmospheric retrieval (version 4.1.5)
Assessment of the data assimilation framework for the Rapid Refresh Forecast System v0.1 and impacts on forecasts of a convective storm case study
Improving the representation of shallow cumulus convection with the Simplified Higher-Order Closure Mass-Flux (SHOC+MF v1.0) approach
Downscaling atmospheric chemistry simulations with physically consistent deep learning
Stefano Della Fera, Federico Fabiano, Piera Raspollini, Marco Ridolfi, Ugo Cortesi, Flavio Barbara, and Jost von Hardenberg
Geosci. Model Dev., 16, 1379–1394, https://doi.org/10.5194/gmd-16-1379-2023, https://doi.org/10.5194/gmd-16-1379-2023, 2023
Short summary
Short summary
The long-term comparison between observed and simulated outgoing longwave radiances represents a strict test to evaluate climate model performance. In this work, 9 years of synthetic spectrally resolved radiances, simulated online on the basis of the atmospheric fields predicted by the EC-Earth global climate model (v3.3.3) in clear-sky conditions, are compared to IASI spectral radiance climatology in order to detect model biases in temperature and humidity at different atmospheric levels.
Marine Bonazzola, Hélène Chepfer, Po-Lun Ma, Johannes Quaas, David M. Winker, Artem Feofilov, and Nick Schutgens
Geosci. Model Dev., 16, 1359–1377, https://doi.org/10.5194/gmd-16-1359-2023, https://doi.org/10.5194/gmd-16-1359-2023, 2023
Short summary
Short summary
Aerosol has a large impact on climate. Using a lidar aerosol simulator ensures consistent comparisons between modeled and observed aerosol. We present a lidar aerosol simulator that applies a cloud masking and an aerosol detection threshold. We estimate the lidar signals that would be observed at 532 nm by the Cloud-Aerosol Lidar with Orthogonal Polarization overflying the atmosphere predicted by a climate model. Our comparison at the seasonal timescale shows a discrepancy in the Southern Ocean.
Michael S. Walters and David C. Wong
Geosci. Model Dev., 16, 1179–1190, https://doi.org/10.5194/gmd-16-1179-2023, https://doi.org/10.5194/gmd-16-1179-2023, 2023
Short summary
Short summary
A typical numerical simulation that associates with a large amount of input and output data, applying popular compression software, gzip or bzip2, on data is one good way to mitigate data storage burden. This article proposes a simple technique to alter input, output, or input and output by keeping a specific number of significant digits in data and demonstrates an enhancement in compression efficiency on the altered data but maintains similar statistical performance of the numerical simulation.
Sylvain Mailler, Laurent Menut, Arineh Cholakian, and Romain Pennel
Geosci. Model Dev., 16, 1119–1127, https://doi.org/10.5194/gmd-16-1119-2023, https://doi.org/10.5194/gmd-16-1119-2023, 2023
Short summary
Short summary
Large or even
giantparticles of mineral dust exist in the atmosphere but, so far, solving an non-linear equation was needed to calculate the speed at which they fall in the atmosphere. The model we present, AerSett v1.0 (AERosol SETTling version 1.0), provides a new and simple way of calculating their free-fall velocity in the atmosphere, which will be useful to anyone trying to understand and represent adequately the transport of giant dust particles by the wind.
Yen-Sen Lu, Garrett H. Good, and Hendrik Elbern
Geosci. Model Dev., 16, 1083–1104, https://doi.org/10.5194/gmd-16-1083-2023, https://doi.org/10.5194/gmd-16-1083-2023, 2023
Short summary
Short summary
The Weather Forecasting and Research (WRF) model consists of many parameters and options that can be adapted to different conditions. This expansive sensitivity study uses a large-scale simulation system to determine the most suitable options for predicting cloud cover in Europe for deterministic and probabilistic weather predictions for day-ahead forecasting simulations.
Joffrey Dumont Le Brazidec, Marc Bocquet, Olivier Saunier, and Yelva Roustan
Geosci. Model Dev., 16, 1039–1052, https://doi.org/10.5194/gmd-16-1039-2023, https://doi.org/10.5194/gmd-16-1039-2023, 2023
Short summary
Short summary
When radionuclides are released into the atmosphere, the assessment of the consequences depends on the evaluation of the magnitude and temporal evolution of the release, which can be highly variable as in the case of Fukushima Daiichi.
Here, we propose Bayesian inverse modelling methods and the reversible-jump Markov chain Monte Carlo technique, which allows one to evaluate the temporal variability of the release and to integrate different types of information in the source reconstruction.
Phuc Thi Minh Ha, Yugo Kanaya, Fumikazu Taketani, Maria Dolores Andrés Hernández, Benjamin Schreiner, Klaus Pfeilsticker, and Kengo Sudo
Geosci. Model Dev., 16, 927–960, https://doi.org/10.5194/gmd-16-927-2023, https://doi.org/10.5194/gmd-16-927-2023, 2023
Short summary
Short summary
HONO affects tropospheric oxidizing capacity; thus, it is implemented into the chemistry–climate model CHASER. The model substantially underpredicts daytime HONO, while nitrate photolysis on surfaces can supplement the daytime HONO budget. Current HONO chemistry predicts reductions of 20.4 % for global tropospheric NOx, 40–67 % for OH, and 30–45 % for O3 in the summer North Pacific. In contrast, OH and O3 winter levels in China are greatly enhanced.
Ryan Vella, Matthew Forrest, Jos Lelieveld, and Holger Tost
Geosci. Model Dev., 16, 885–906, https://doi.org/10.5194/gmd-16-885-2023, https://doi.org/10.5194/gmd-16-885-2023, 2023
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) are released by vegetation and have a major impact on atmospheric chemistry and aerosol formation. Non-interacting vegetation constrains the majority of numerical models used to estimate global BVOC emissions, and thus, the effects of changing vegetation on emissions are not addressed. In this work, we replace the offline vegetation with dynamic vegetation states by linking a chemistry–climate model with a global dynamic vegetation model.
Danny McCulloch, Denis E. Sergeev, Nathan Mayne, Matthew Bate, James Manners, Ian Boutle, Benjamin Drummond, and Kristzian Kohary
Geosci. Model Dev., 16, 621–657, https://doi.org/10.5194/gmd-16-621-2023, https://doi.org/10.5194/gmd-16-621-2023, 2023
Short summary
Short summary
We present results from the Met Office Unified Model (UM) to study the dry Martian climate. We describe our model set-up conditions and run two scenarios, with radiatively active/inactive dust. We compare both scenarios to results from an existing Mars climate model, the planetary climate model. We find good agreement in winds and air temperatures, but dust amounts differ between models. This study highlights the importance of using the UM for future Mars research.
Sam-Erik Walker, Sverre Solberg, Philipp Schneider, and Cristina Guerreiro
Geosci. Model Dev., 16, 573–595, https://doi.org/10.5194/gmd-16-573-2023, https://doi.org/10.5194/gmd-16-573-2023, 2023
Short summary
Short summary
We have developed a statistical model for estimating trends in the daily air quality observations of NO2, O3, PM10 and PM2.5, adjusting for trends and short-term variations in meteorology. The model is general and may also be used for prediction purposes, including forecasting. It has been applied in a recent comprehensive study in Europe. Significant declines are shown for the pollutants from 2005 to 2019, mainly due to reductions in emissions not attributable to changes in meteorology.
Bianca Adler, James M. Wilczak, Jaymes Kenyon, Laura Bianco, Irina V. Djalalova, Joseph B. Olson, and David D. Turner
Geosci. Model Dev., 16, 597–619, https://doi.org/10.5194/gmd-16-597-2023, https://doi.org/10.5194/gmd-16-597-2023, 2023
Short summary
Short summary
Rapid changes in wind speed make the integration of wind energy produced during persistent orographic cold-air pools difficult to integrate into the electrical grid. By evaluating three versions of NOAA’s High-Resolution Rapid Refresh model, we demonstrate how model developments targeted during the second Wind Forecast Improvement Project improve the forecast of a persistent cold-air pool event.
John Douros, Henk Eskes, Jos van Geffen, K. Folkert Boersma, Steven Compernolle, Gaia Pinardi, Anne-Marlene Blechschmidt, Vincent-Henri Peuch, Augustin Colette, and Pepijn Veefkind
Geosci. Model Dev., 16, 509–534, https://doi.org/10.5194/gmd-16-509-2023, https://doi.org/10.5194/gmd-16-509-2023, 2023
Short summary
Short summary
We focus on the challenges associated with comparing atmospheric composition models with satellite products such as tropospheric NO2 columns. The aim is to highlight the methodological difficulties and propose sound ways of doing such comparisons. Building on the comparisons, a new satellite product is proposed and made available, which takes advantage of higher-resolution, regional atmospheric modelling to improve estimates of troposheric NO2 columns over Europe.
Catalina Poraicu, Jean-François Müller, Trissevgeni Stavrakou, Dominique Fonteyn, Frederik Tack, Felix Deutsch, Quentin Laffineur, Roeland Van Malderen, and Nele Veldeman
Geosci. Model Dev., 16, 479–508, https://doi.org/10.5194/gmd-16-479-2023, https://doi.org/10.5194/gmd-16-479-2023, 2023
Short summary
Short summary
High-resolution WRF-Chem simulations are conducted over Antwerp, Belgium, in June 2019 and evaluated using meteorological data and in situ, airborne, and spaceborne NO2 measurements. An intercomparison of model, aircraft, and TROPOMI NO2 columns is conducted to characterize biases in versions 1.3.1 and 2.3.1 of the satellite product. A mass balance method is implemented to provide improved emissions for simulating NO2 distribution over the study area.
Daan R. Scheepens, Irene Schicker, Kateřina Hlaváčková-Schindler, and Claudia Plant
Geosci. Model Dev., 16, 251–270, https://doi.org/10.5194/gmd-16-251-2023, https://doi.org/10.5194/gmd-16-251-2023, 2023
Short summary
Short summary
The production of wind energy is increasing rapidly and relies heavily on atmospheric conditions. To ensure power grid stability, accurate predictions of wind speed are needed, especially in the short range and for extreme wind speed ranges. In this work, we demonstrate the forecasting skills of a data-driven deep learning model with model adaptations to suit higher wind speed ranges. The resulting model can be applied to other data and parameters, too, to improve nowcasting predictions.
Peter J. M. Bosman and Maarten C. Krol
Geosci. Model Dev., 16, 47–74, https://doi.org/10.5194/gmd-16-47-2023, https://doi.org/10.5194/gmd-16-47-2023, 2023
Short summary
Short summary
We describe an inverse modelling framework constructed around a simple model for the atmospheric boundary layer. This framework can be fed with various observation types to study the boundary layer and land–atmosphere exchange. With this framework, it is possible to estimate model parameters and the associated uncertainties. Some of these parameters are difficult to obtain directly by observations. An example application for a grassland in the Netherlands is included.
Sudipta Ghosh, Sagnik Dey, Sushant Das, Nicole Riemer, Graziano Giuliani, Dilip Ganguly, Chandra Venkataraman, Filippo Giorgi, Sachchida Nand Tripathi, Srikanthan Ramachandran, Thazhathakal Ayyappen Rajesh, Harish Gadhavi, and Atul Kumar Srivastava
Geosci. Model Dev., 16, 1–15, https://doi.org/10.5194/gmd-16-1-2023, https://doi.org/10.5194/gmd-16-1-2023, 2023
Short summary
Short summary
Accurate representation of aerosols in climate models is critical for minimizing the uncertainty in climate projections. Here, we implement region-specific emission fluxes and a more accurate scheme for carbonaceous aerosol ageing processes in a regional climate model (RegCM4) and show that it improves model performance significantly against in situ, reanalysis, and satellite data over the Indian subcontinent. We recommend improving the model performance before using them for climate studies.
Chengzhu Zhang, Jean-Christophe Golaz, Ryan Forsyth, Tom Vo, Shaocheng Xie, Zeshawn Shaheen, Gerald L. Potter, Xylar S. Asay-Davis, Charles S. Zender, Wuyin Lin, Chih-Chieh Chen, Chris R. Terai, Salil Mahajan, Tian Zhou, Karthik Balaguru, Qi Tang, Cheng Tao, Yuying Zhang, Todd Emmenegger, Susannah Burrows, and Paul A. Ullrich
Geosci. Model Dev., 15, 9031–9056, https://doi.org/10.5194/gmd-15-9031-2022, https://doi.org/10.5194/gmd-15-9031-2022, 2022
Short summary
Short summary
Earth system model (ESM) developers run automated analysis tools on data from candidate models to inform model development. This paper introduces a new Python package, E3SM Diags, that has been developed to support ESM development and use routinely in the development of DOE's Energy Exascale Earth System Model. This tool covers a set of essential diagnostics to evaluate the mean physical climate from simulations, as well as several process-oriented and phenomenon-based evaluation diagnostics.
Walter Hannah and Kyle Pressel
Geosci. Model Dev., 15, 8999–9013, https://doi.org/10.5194/gmd-15-8999-2022, https://doi.org/10.5194/gmd-15-8999-2022, 2022
Short summary
Short summary
A multiscale modeling framework couples two models of the atmosphere that each cover different scale ranges. Traditionally, fluctuations in the small-scale model are not transported by the flow on the large-scale model grid, but this is hypothesized to be responsible for a persistent, unphysical checkerboard pattern. A method is presented to facilitate the transport of these small-scale fluctuations, analogous to how small-scale clouds and turbulence are transported in the real atmosphere.
Reimar Bauer, Jens-Uwe Grooß, Jörn Ungermann, May Bär, Markus Geldenhuys, and Lars Hoffmann
Geosci. Model Dev., 15, 8983–8997, https://doi.org/10.5194/gmd-15-8983-2022, https://doi.org/10.5194/gmd-15-8983-2022, 2022
Short summary
Short summary
The Mission Support System (MSS) is an open source software package that has been used for planning flight tracks of scientific aircraft in multiple measurement campaigns during the last decade. Here, we describe the MSS software and its use during the SouthTRAC measurement campaign in 2019. As an example for how the MSS software is used in conjunction with many datasets, we describe the planning of a single flight probing orographic gravity waves propagating up into the lower mesosphere.
Zhizhao Wang, Florian Couvidat, and Karine Sartelet
Geosci. Model Dev., 15, 8957–8982, https://doi.org/10.5194/gmd-15-8957-2022, https://doi.org/10.5194/gmd-15-8957-2022, 2022
Short summary
Short summary
Air quality models need to reliably predict secondary organic aerosols (SOAs) at a reasonable computational cost. Thus, we developed GENOA v1.0, a mechanism reduction algorithm that preserves the accuracy of detailed gas-phase chemical mechanisms for SOA formation, thereby improving the practical use of actual chemistry in SOA models. With GENOA, a near-explicit chemical scheme was reduced to 2 % of its original size and computational time, with an average error of less than 3 %.
Felix Kleinert, Lukas H. Leufen, Aurelia Lupascu, Tim Butler, and Martin G. Schultz
Geosci. Model Dev., 15, 8913–8930, https://doi.org/10.5194/gmd-15-8913-2022, https://doi.org/10.5194/gmd-15-8913-2022, 2022
Short summary
Short summary
We examine the effects of spatially aggregated upstream information as input for a deep learning model forecasting near-surface ozone levels. Using aggregated data from one upstream sector (45°) improves the forecast by ~ 10 % for 4 prediction days. Three upstream sectors improve the forecasts by ~ 14 % on the first 2 d only. Our results serve as an orientation for other researchers or environmental agencies focusing on pointwise time-series predictions, for example, due to regulatory purposes.
Brian T. Dinkelacker, Pablo Garcia Rivera, Ioannis Kioutsioukis, Peter J. Adams, and Spyros N. Pandis
Geosci. Model Dev., 15, 8899–8912, https://doi.org/10.5194/gmd-15-8899-2022, https://doi.org/10.5194/gmd-15-8899-2022, 2022
Short summary
Short summary
The performance of a chemical transport model in reproducing PM2.5 concentrations and composition was evaluated at the finest scale using measurements from regulatory sites as well as a network of low-cost monitors. Total PM2.5 mass is reproduced well by the model during the winter when compared to regulatory measurements, but in the summer PM2.5 is underpredicted, mainly due to difficulties in reproducing regional secondary organic aerosol levels.
Shizhang Wang and Xiaoshi Qiao
Geosci. Model Dev., 15, 8869–8897, https://doi.org/10.5194/gmd-15-8869-2022, https://doi.org/10.5194/gmd-15-8869-2022, 2022
Short summary
Short summary
A local data assimilation scheme (Local DA v1.0) was proposed to leverage the advantage of hybrid covariance, multiscale localization, and parallel computation. The Local DA can perform covariance localization in model space, observation space, or both spaces. The Local DA that used the hybrid covariance and double-space localization produced the lowest analysis and forecast errors among all observing system simulation experiments.
Randall V. Martin, Sebastian D. Eastham, Liam Bindle, Elizabeth W. Lundgren, Thomas L. Clune, Christoph A. Keller, William Downs, Dandan Zhang, Robert A. Lucchesi, Melissa P. Sulprizio, Robert M. Yantosca, Yanshun Li, Lucas Estrada, William M. Putman, Benjamin M. Auer, Atanas L. Trayanov, Steven Pawson, and Daniel J. Jacob
Geosci. Model Dev., 15, 8731–8748, https://doi.org/10.5194/gmd-15-8731-2022, https://doi.org/10.5194/gmd-15-8731-2022, 2022
Short summary
Short summary
Atmospheric chemistry models must be able to operate both online as components of Earth system models and offline as standalone models. The widely used GEOS-Chem model operates both online and offline, but the classic offline version is not suitable for massively parallel simulations. We describe a new generation of the offline high-performance GEOS-Chem (GCHP) that enables high-resolution simulations on thousands of cores, including on the cloud, with improved access, performance, and accuracy.
Daiwen Kang, Nicholas K. Heath, Robert C. Gilliam, Tanya L. Spero, and Jonathan E. Pleim
Geosci. Model Dev., 15, 8561–8579, https://doi.org/10.5194/gmd-15-8561-2022, https://doi.org/10.5194/gmd-15-8561-2022, 2022
Short summary
Short summary
A lightning assimilation (LTA) technique implemented in the WRF model's Kain–Fritsch (KF) convective scheme is updated and applied to simulations from regional to hemispheric scales using observed lightning flashes from ground-based lightning detection networks. Different user-toggled options associated with the KF scheme on simulations with and without LTA are assessed. The model's performance is improved significantly by LTA, but it is sensitive to various factors.
Sujeong Lim, Hyeon-Ju Gim, Ebony Lee, Seungyeon Lee, Won Young Lee, Yong Hee Lee, Claudio Cassardo, and Seon Ki Park
Geosci. Model Dev., 15, 8541–8559, https://doi.org/10.5194/gmd-15-8541-2022, https://doi.org/10.5194/gmd-15-8541-2022, 2022
Short summary
Short summary
The land surface model (LSM) contains various uncertain parameters, which are obtained by the empirical relations reflecting the specific local region and can be a source of uncertainty. To seek the optimal parameter values in the snow-related processes of the Noah LSM over South Korea, we have implemented an optimization algorithm, a micro-genetic algorithm using the observations. As a result, the optimized snow parameters improve snowfall prediction.
Haochen Sun, Jimmy C. H. Fung, Yiang Chen, Zhenning Li, Dehao Yuan, Wanying Chen, and Xingcheng Lu
Geosci. Model Dev., 15, 8439–8452, https://doi.org/10.5194/gmd-15-8439-2022, https://doi.org/10.5194/gmd-15-8439-2022, 2022
Short summary
Short summary
This study developed a novel deep-learning layer, the broadcasting layer, to build an end-to-end LSTM-based deep-learning model for regional air pollution forecast. By combining the ground observation, WRF-CMAQ simulation, and the broadcasting LSTM deep-learning model, forecast accuracy has been significantly improved when compared to other methods. The broadcasting layer and its variants can also be applied in other research areas to supersede the traditional numerical interpolation methods.
Shunji Kotsuki, Takemasa Miyoshi, Keiichi Kondo, and Roland Potthast
Geosci. Model Dev., 15, 8325–8348, https://doi.org/10.5194/gmd-15-8325-2022, https://doi.org/10.5194/gmd-15-8325-2022, 2022
Short summary
Short summary
Data assimilation plays an important part in numerical weather prediction (NWP) in terms of combining forecasted states and observations. While data assimilation methods in NWP usually assume the Gaussian error distribution, some variables in the atmosphere, such as precipitation, are known to have non-Gaussian error statistics. This study extended a widely used ensemble data assimilation algorithm to enable the assimilation of more non-Gaussian observations.
Martin Vojta, Andreas Plach, Rona L. Thompson, and Andreas Stohl
Geosci. Model Dev., 15, 8295–8323, https://doi.org/10.5194/gmd-15-8295-2022, https://doi.org/10.5194/gmd-15-8295-2022, 2022
Short summary
Short summary
In light of recent global warming, we aim to improve methods for modeling greenhouse gas emissions in order to support the successful implementation of the Paris Agreement. In this study, we investigate certain aspects of a Bayesian inversion method that uses computer simulations and atmospheric observations to improve estimates of greenhouse gas emissions. We explore method limitations, discuss problems, and suggest improvements.
Longlei Li, Natalie M. Mahowald, Jasper F. Kok, Xiaohong Liu, Mingxuan Wu, Danny M. Leung, Douglas S. Hamilton, Louisa K. Emmons, Yue Huang, Neil Sexton, Jun Meng, and Jessica Wan
Geosci. Model Dev., 15, 8181–8219, https://doi.org/10.5194/gmd-15-8181-2022, https://doi.org/10.5194/gmd-15-8181-2022, 2022
Short summary
Short summary
This study advances mineral dust parameterizations in the Community Atmospheric Model (CAM; version 6.1). Efforts include 1) incorporating a more physically based dust emission scheme; 2) updating the dry deposition scheme; and 3) revising the gravitational settling velocity to account for dust asphericity. Substantial improvements achieved with these updates can help accurately quantify dust–climate interactions using CAM, such as the dust-radiation and dust–cloud interactions.
Ruizi Shi and Fanghua Xu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-233, https://doi.org/10.5194/gmd-2022-233, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
Based on Gaussian Quadrature method, a fast parameterization scheme of sea spray-mediated heat flux is developed. Compared with the widely-used single-radius scheme, the new scheme shows a better agreement with the full spectrum integral of spray-flux. The new scheme is evaluated in a coupled modeling system, and the simulations of sea surface temperature, wind speed and wave height are improved. Thereby, the new scheme has a great potential to be used in coupled modeling systems.
Youhua Tang, Patrick C. Campbell, Pius Lee, Rick Saylor, Fanglin Yang, Barry Baker, Daniel Tong, Ariel Stein, Jianping Huang, Ho-Chun Huang, Li Pan, Jeff McQueen, Ivanka Stajner, Jose Tirado-Delgado, Youngsun Jung, Melissa Yang, Ilann Bourgeois, Jeff Peischl, Tom Ryerson, Donald Blake, Joshua Schwarz, Jose-Luis Jimenez, James Crawford, Glenn Diskin, Richard Moore, Johnathan Hair, Greg Huey, Andrew Rollins, Jack Dibb, and Xiaoyang Zhang
Geosci. Model Dev., 15, 7977–7999, https://doi.org/10.5194/gmd-15-7977-2022, https://doi.org/10.5194/gmd-15-7977-2022, 2022
Short summary
Short summary
This paper compares two meteorological datasets for driving a regional air quality model: a regional meteorological model using WRF (WRF-CMAQ) and direct interpolation from an operational global model (GFS-CMAQ). In the comparison with surface measurements and aircraft data in summer 2019, these two methods show mixed performance depending on the corresponding meteorological settings. Direct interpolation is found to be a viable method to drive air quality models.
Robin N. Thor, Mariano Mertens, Sigrun Matthes, Mattia Righi, Johannes Hendricks, Sabine Brinkop, Phoebe Graf, Volker Grewe, Patrick Jöckel, and Steven Smith
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-250, https://doi.org/10.5194/gmd-2022-250, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
We report on an inconsistency in the latitudinal distribution of aviation emissions between two versions of a data product which is widely used by researchers. From the available documentation, we do not expect such an inconsistency. We run a chemistry-climate model to compute the effect of the inconsistency in emissions on atmospheric chemistry and radiation and find that the radiative forcing associated for aviation ozone is 7.6 % higher when using the less recent version of the data.
Zhiquan Liu, Chris Snyder, Jonathan J. Guerrette, Byoung-Joo Jung, Junmei Ban, Steven Vahl, Yali Wu, Yannick Trémolet, Thomas Auligné, Benjamin Ménétrier, Anna Shlyaeva, Stephen Herbener, Emily Liu, Daniel Holdaway, and Benjamin T. Johnson
Geosci. Model Dev., 15, 7859–7878, https://doi.org/10.5194/gmd-15-7859-2022, https://doi.org/10.5194/gmd-15-7859-2022, 2022
Short summary
Short summary
JEDI-MPAS 1.0.0, a new data assimilation (DA) system for the MPAS model, was publicly released for community use. This article describes JEDI-MPAS's implementation of the ensemble–variational DA technique and demonstrates its robustness and credible performance by incrementally adding three types of microwave radiances (clear-sky AMSU-A, all-sky AMSU-A, clear-sky MHS) to a non-radiance DA experiment. We intend to periodically release new and improved versions of JEDI-MPAS in upcoming years.
Li Fang, Jianbing Jin, Arjo Segers, Hai Xiang Lin, Mijie Pang, Cong Xiao, Tuo Deng, and Hong Liao
Geosci. Model Dev., 15, 7791–7807, https://doi.org/10.5194/gmd-15-7791-2022, https://doi.org/10.5194/gmd-15-7791-2022, 2022
Short summary
Short summary
This study proposes a regional feature selection-based machine learning system to predict short-term air quality in China. The system has a tool that can figure out the importance of input data for better prediction. It provides large-scale air quality prediction that exhibits improved interpretability, fewer training costs, and higher accuracy compared with a standard machine learning system. It can act as an early warning for citizens and reduce exposure to PM2.5 and other air pollutants.
Stella E. I. Manavi and Spyros N. Pandis
Geosci. Model Dev., 15, 7731–7749, https://doi.org/10.5194/gmd-15-7731-2022, https://doi.org/10.5194/gmd-15-7731-2022, 2022
Short summary
Short summary
The paper describes the first step towards the development of a simulation framework for the chemistry and secondary organic aerosol production of intermediate-volatility organic compounds (IVOCs). These compounds can be a significant source of organic particulate matter. Our approach treats IVOCs as lumped compounds that retain their chemical characteristics. Estimated IVOC emissions from road transport were a factor of 8 higher than emissions used in previous applications.
Peter Bräuer and Matthias Tesche
Geosci. Model Dev., 15, 7557–7572, https://doi.org/10.5194/gmd-15-7557-2022, https://doi.org/10.5194/gmd-15-7557-2022, 2022
Short summary
Short summary
This paper presents a tool for (i) finding temporally and spatially resolved intersections between two- or three-dimensional geographical tracks (trajectories) and (ii) extracting of data in the vicinity of intersections to achieve the optimal combination of various data sets.
Benjamin Zanger, Jia Chen, Man Sun, and Florian Dietrich
Geosci. Model Dev., 15, 7533–7556, https://doi.org/10.5194/gmd-15-7533-2022, https://doi.org/10.5194/gmd-15-7533-2022, 2022
Short summary
Short summary
Gaussian priors (GPs) used in least squares inversion do not reflect the true distributions of greenhouse gas emissions well. A method that does not rely on GPs is sparse reconstruction (SR). We show that necessary conditions for SR are satisfied for cities and that the application of a wavelet transform can further enhance sparsity. We apply the theory of compressed sensing to SR. Our results show that SR needs fewer measurements and is superior for assessing unknown emitters compared to GPs.
Paul Konopka, Mengchu Tao, Marc von Hobe, Lars Hoffmann, Corinna Kloss, Fabrizio Ravegnani, C. Michael Volk, Valentin Lauther, Andreas Zahn, Peter Hoor, and Felix Ploeger
Geosci. Model Dev., 15, 7471–7487, https://doi.org/10.5194/gmd-15-7471-2022, https://doi.org/10.5194/gmd-15-7471-2022, 2022
Short summary
Short summary
Pure trajectory-based transport models driven by meteorology derived from reanalysis products (ERA5) take into account only the resolved, advective part of transport. That means neither mixing processes nor unresolved subgrid-scale advective processes like convection are included. The Chemical Lagrangian Model of the Stratosphere (CLaMS) includes these processes. We show that isentropic mixing dominates unresolved transport. The second most important transport process is unresolved convection.
Forwood Wiser, Bryan Place, Siddhartha Sen, Havala O. T. Pye, Benjamin Yang, Daniel M. Westervelt, Daven K. Henze, Arlene M. Fiore, and V. Faye McNeill
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-240, https://doi.org/10.5194/gmd-2022-240, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
We developed an automated method, AMORE, to simplify complex chemical mechanisms. We applied AMORE to the oxidation mechanism for isoprene, an abundant biogenic volatile organic compound. Using AMORE with minimal manual adjustments to the output, we created the AMORE-isoprene mechanism, with improved accuracy and similar size to other reduced isoprene mechanisms. AMORE-Isoprene improved the accuracy of EPA’s CMAQ model compared to observations.
Youngseob Kim, Lya Lugon, Alice Maison, Thibaud Sarica, Yelva Roustan, Myrto Valari, Yang Zhang, Michel André, and Karine Sartelet
Geosci. Model Dev., 15, 7371–7396, https://doi.org/10.5194/gmd-15-7371-2022, https://doi.org/10.5194/gmd-15-7371-2022, 2022
Short summary
Short summary
This paper presents the latest version of the street-network model MUNICH, v2.0. The description of MUNICH v1.0, which models gas-phase pollutants in a street network, was published in GMD in 2018. Since then, major modifications have been made to MUNICH. The comprehensive aerosol model SSH-aerosol is now coupled to MUNICH to simulate primary and secondary aerosol concentrations. New parameterisations have also been introduced. Test cases are defined to illustrate the new model functionalities.
Yongbo Zhou, Yubao Liu, Zhaoyang Huo, and Yang Li
Geosci. Model Dev., 15, 7397–7420, https://doi.org/10.5194/gmd-15-7397-2022, https://doi.org/10.5194/gmd-15-7397-2022, 2022
Short summary
Short summary
The study evaluates the performance of the Data Assimilation Research Testbed (DART), equipped with the recently added forward operator Radiative Transfer for TOVS (RTTOV), in assimilating FY-4A visible images into the Weather Research and Forecasting (WRF) model. The ability of the WRF-DART/RTTOV system to improve the forecasting skills for a tropical storm over East Asia and the Western Pacific is demonstrated in an Observing System Simulation Experiment framework.
Dánnell Quesada-Chacón, Klemens Barfus, and Christian Bernhofer
Geosci. Model Dev., 15, 7353–7370, https://doi.org/10.5194/gmd-15-7353-2022, https://doi.org/10.5194/gmd-15-7353-2022, 2022
Short summary
Short summary
We improved the performance of past perfect prognosis statistical downscaling methods while achieving full model repeatability with GPU-calculated deep learning models using the TensorFlow, climate4R, and VALUE frameworks. We employed the ERA5 reanalysis as predictors and ReKIS (eastern Ore Mountains, Germany, 1 km resolution) as precipitation predictand, while incorporating modern deep learning architectures. The achieved repeatability is key to accomplish further milestones with deep learning.
Mike Bush, Ian Boutle, John Edwards, Anke Finnenkoetter, Charmaine Franklin, Kirsty Hanley, Aravindakshan Jayakumar, Huw Lewis, Adrian Lock, Marion Mittermaier, Saji Mohandas, Rachel North, Aurore Porson, Belinda Roux, Stuart Webster, and Mark Weeks
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-209, https://doi.org/10.5194/gmd-2022-209, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
Building on the baseline of RAL1, the RAL2 science configuration is used for regional modelling around the UM Partnership and in operations at the Met Office. RAL2 has been tested in different parts of the world including Australia, India and the U.K. RAL2 increases medium and low cloud amounts in the mid-latitudes compared to RAL1, leading to improved cloud forecasts and a reduced diurnal cycle of screen temperature. There is also a reduction in the frequency of heavier precipitation rates.
Petri Clusius, Carlton Xavier, Lukas Pichelstorfer, Putian Zhou, Tinja Olenius, Pontus Roldin, and Michael Boy
Geosci. Model Dev., 15, 7257–7286, https://doi.org/10.5194/gmd-15-7257-2022, https://doi.org/10.5194/gmd-15-7257-2022, 2022
Short summary
Short summary
Atmospheric chemistry and aerosol processes form a dynamic and sensitively balanced system, and solving problems regarding air quality or climate requires detailed modelling and coupling of the processes. The models involved are often very complex to use. We have addressed this problem with the new ARCA box model. It puts much of the current knowledge of the nano- and microscale aerosol dynamics and chemistry into usable software and has the potential to become a valuable tool in the community.
Adam Milsom, Amy Lees, Adam M. Squires, and Christian Pfrang
Geosci. Model Dev., 15, 7139–7151, https://doi.org/10.5194/gmd-15-7139-2022, https://doi.org/10.5194/gmd-15-7139-2022, 2022
Short summary
Short summary
MultilayerPy is a Python-based framework facilitating the creation, running and optimisation of state-of-the-art kinetic multi-layer models of aerosol and film processes. Models can be fit to data with local and global optimisation algorithms along with a statistical sampling algorithm, which quantifies the uncertainty in optimised model parameters. This “modelling study in a box” enables more reproducible and reliable results, with model code and outputs produced in a human-readable way.
Johan F. de Haan, Ping Wang, Maarten Sneep, J. Pepijn Veefkind, and Piet Stammes
Geosci. Model Dev., 15, 7031–7050, https://doi.org/10.5194/gmd-15-7031-2022, https://doi.org/10.5194/gmd-15-7031-2022, 2022
Short summary
Short summary
We present an overview of the DISAMAR radiative transfer code, highlighting the novel semi-analytical derivatives for the doubling–adding formulae and the new DISMAS technique for weak absorbers. DISAMAR includes forward simulations and retrievals for satellite spectral measurements from 270 to 2400 nm to determine instrument specifications for passive remote sensing. It has been used in various Sentinel-4/5P/5 projects and in the TROPOMI aerosol layer height and ozone profile products.
Ivette H. Banos, Will D. Mayfield, Guoqing Ge, Luiz F. Sapucci, Jacob R. Carley, and Louisa Nance
Geosci. Model Dev., 15, 6891–6917, https://doi.org/10.5194/gmd-15-6891-2022, https://doi.org/10.5194/gmd-15-6891-2022, 2022
Short summary
Short summary
A prototype data assimilation system for NOAA’s next-generation rapidly updated, convection-allowing forecast system, or Rapid Refresh Forecast System (RRFS) v0.1, is tested and evaluated. The impact of using data assimilation with a convective storm case study is examined. Although the convection in RRFS tends to be overestimated in intensity and underestimated in extent, the use of data assimilation proves to be crucial to improve short-term forecasts of storms and precipitation.
Maria J. Chinita, Mikael Witte, Marcin J. Kurowski, Joao Teixeira, Kay Suselj, Georgios Matheou, and Peter Bogenschutz
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-162, https://doi.org/10.5194/gmd-2022-162, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
Low clouds are one of the largest sources of uncertainty in climate prediction. In this paper, we introduce the first version of the unified turbulence and shallow convection parameterization named SHOC+MF developed to improve the representation of shallow cumulus clouds in the Simple Cloud-Resolving E3SM Atmosphere Model (SCREAM). Here, we also show promising preliminary results in a single-column model framework for two benchmark cases of shallow cumulus convection.
Andrew Geiss, Sam J. Silva, and Joseph C. Hardin
Geosci. Model Dev., 15, 6677–6694, https://doi.org/10.5194/gmd-15-6677-2022, https://doi.org/10.5194/gmd-15-6677-2022, 2022
Short summary
Short summary
This work demonstrates the use of modern machine learning techniques to enhance the resolution of atmospheric chemistry simulations. We evaluate the schemes for an 8 x 10 increase in resolution and find that they perform substantially better than conventional methods. Methods are introduced to target machine learning methods towards this type of problem, most notably by ensuring they do not break known physical constraints.
Cited articles
Belward, A. S., Estes, J. E., and Kline, K. D.: The IGBP-DIS global 1-km land-cover data set DISCover: A project overview, Photogram. Eng. Remote Sens., 65, 1013–1020, 1999.
Bergamaschi, P., Krol, M., Dentener, F., Vermeulen, A., Meinhardt, F., Graul, R., Ramonet, M., Peters, W., and Dlugokencky, E. J.: Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5, Atmos. Chem. Phys., 5, 2431–2460, https://doi.org/10.5194/acp-5-2431-2005, 2005.
Bergamaschi, P., Krol, M., Meirink, J. F., Dentener, F., Segers, A., van Aardenne, J., Monni, S., Vermeulen, A. T., Schmidt, M., Ramonet, M., Yver, C., Meinhardt, F., Nisbet, E. G., Fisher, R. E., O'Doherty, S., and Dlugokencky, E. J.: Inverse modeling of European CH4 emissions 2001-2006, J. Geophys. Res., 115, D22309, https://doi.org/10.1029/2010jd014180, 2010.
Bergamaschi, P., Corazza, M., Karstens, U., Athanassiadou, M., Thompson, R. L., Pison, I., Manning, A. J., Bousquet, P., Segers, A., Vermeulen, A. T., Janssens-Maenhout, G., Schmidt, M., Ramonet, M., Meinhardt, F., Aalto, T., Haszpra, L., Moncrieff, J., Popa, M. E., Lowry, D., Steinbacher, M., Jordan, A., O'Doherty, S., Piacentino, S., and Dlugokencky, E.: Top-down estimates of European CH4 and N2O emissions based on four different inverse models, Atmos. Chem. Phys. Discuss., 14, 15683–15734, https://doi.org/10.5194/acpd-14-15683-2014, 2014.
Brunner, D., Henne, S., Keller, C. A., Reimann, S., Vollmer, M. K., O'Doherty, S., and Maione, M.: An extended Kalman-filter for regional scale inverse emission estimation, Atmos. Chem. Phys., 12, 3455–3478, https://doi.org/10.5194/acp-12-3455-2012, 2012.
Chevallier, F., Fisher, M., Peylin, P., Serrar, S., Bousquet, P., Bréon, F. M., Chédin, A., and Ciais, P.: Inferring CO2 sources and sinks from satellite observations: Method and application to TOVS data, J. Geophys. Res., 110, D24309, https://doi.org/10.1029/2005jd006390, 2005.
Denman, K. L., Brasseur, G. P., Chidthaisong, A., Ciais, P., Cox, P. M., Dickinson, R. E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., da Silva Dias, P. L., Wofsy, S. C., and Zhang, X.: Couplings Between Changes in the Climate System and Biogeochemistry, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S. D., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., 499–587, Cambridge University Press, Cambridge, 2007.
Enting, I. G.: Inverse Problems in Atmospheric Constituent Transport, Cambridge University Press, Cambridge, New York, 2002.
Etiope, G., Lassey, K. R., Klusman, R. W., and Boschi, E.: Reappraisal of the fossil methane budget and related emission from geologic sources, Geophys. Res. Lett., 35, L09307, https://doi.org/10.1029/2008gl033623, 2008.
Flesch, T. K., Wilson, J. D., and Yee, E.: Backward-time Lagrangian stochastic dispersion models and their application to estimate gaseous emissions, J. App. Meteor., 34, 1320–1332, 1995.
Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele, L. P., and Fraser, P. J.: Three-dimensional model synthesis of the global methane cycle, J. Geophys. Res., 96, 13033–13065, https://doi.org/10.1029/91JD01247, 1991.
Gerbig, C., Lin, J. C., Wofsy, S. C., Daube, B. C., Andrews, A. E., Stephens, B. B., Bakwin, P. S., and Grainger, C. A.: Toward constraining regional-scale fluxes of CO2 with atmospheric observations over a continent: 2. Analysis of COBRA data using a receptor-oriented framework, J. Geophys. Res., 108, 4757, https://doi.org/10.1029/2003jd003770, 2003.
Giostra, U., Furlani, F., Arduini, J., Cava, D., Manning, J., O'Doherty, J., Reimann, S., and Maione, M.: The determination of a "regional" atmospheric background mixing ratio for anthropogenic greenhouse gases: A comparison of two independent methods, Atmos. Environ., 45, 7396–7405, https://doi.org/10.1016/j.atmosenv.2011.06.076, 2011.
Houweling, S., Kaminski, T., Dentener, F., Lelieveld, J., and Heimann, M.: Inverse modeling of methane sources and sinks using the adjoint of a global transport model, J. Geophys. Res., 104, 26137–26160, https://doi.org/10.1029/1999jd900428, 1999.
Kaminski, T., Heimann, M. and Giering, R.: A coarse grid three-dimensional global inverse model of the atmospheric transport: 2. Inversion of the transport of CO2 in the 1980s, J. Geophys. Res., 104, 18555–18581, https://doi.org/10.1029/1999JD900146, 1999.
Kaminski, T., Rayner, P. J., Heimann, M., and Enting, I. G.: On aggregation errors in atmospheric transport inversions, J. Geophys. Res, 106, 4703–4715, https://doi.org/10.1029/2000JD900581, 2001.
Keller, C. A., Hill, M., Vollmer, M. K., Henne, S., Brunner, D., Reimann, S., O'Doherty, S., Arduini, J., Maione, M., Ferenczi, Z., Haszpra, L., Manning, A. J., and Peter, T.: European emissions of halogenated greenhouse gases inferred from atmospheric measurements, Environ. Sci. Technol., 46, 217–225, https://doi.org/10.1021/es202453j, 2012.
Koyama, Y., Maksyutov, S., Mukai, H., Thoning, K., and Tans, P.: Simulation of variability in atmospheric carbon dioxide using a global coupled Eulerian – Lagrangian transport model, Geosci. Model Dev., 4, 317–324, https://doi.org/10.5194/gmd-4-317-2011, 2011.
Lambert, G. and Schmidt, S.: Reevaluation of the oceanic flux of methane: Uncertainties and long term variations, Chemosphere, 26, 579–589, https://doi.org/10.1016/0045-6535(93)90443-9, 1993.
Lauvaux, T., Gioli, B., Sarrat, C., Rayner, P. J., Ciais, P., Chevallier, F., Noilhan, J., Miglietta, F., Brunet, Y., Ceschia, E., Dolman, H., Elbers, J. A., Gerbig, C., Hutjes, R., Jarosz, N., Legain, D., and Uliasz, M.: Bridging the gap between atmospheric concentrations and local ecosystem measurements, Geophys. Res. Lett., 36, L19809, https://doi.org/10.1029/2009gl039574, 2009.
Manning, A. J., Ryall, D. B., and Derwent, R. G.: Estimating European emissions of ozone-depleting and greenhouse gases using observations and a modeling back-attribution technique, J. Geophys. Res., 108, 4405, https://doi.org/10.1029/2002JD002312, 2003.
Manning, A. J., O'Doherty, S., Jones, A. R., Simmonds, P. G., and Derwent, R. G.: Estimating UK methane and nitrous oxide emissions from 1990 to 2007 using an inversion modeling approach, J. Geophys. Res., 116, D02305, https://doi.org/10.1029/2010jd014763, 2011.
Rayner, P. J., Enting, I. G., Francey, R. J., and Langenfelds, R.: Reconstructing the recent carbon cycle from atmospheric CO2, $\delta ^13$C and O2/N2 observations, Tellus B, 51, 213–232, https://doi.org/10.1034/j.1600-0889.1999.t01-1-00008.x, 1999.
Ridgwell, A. J., Marshall, S. J., and Gregson, K.: Consumption of atmospheric methane by soils: A process-based model, Global Biogeochem. Cy., 13, 59–70, https://doi.org/10.1029/1998gb900004, 1999.
Rigby, M., Manning, A. J., and Prinn, R. G.: Inversion of long-lived trace gas emissions using combined Eulerian and Lagrangian chemical transport models, Atmos. Chem. Phys., 11, 9887–9898, https://doi.org/10.5194/acp-11-9887-2011, 2011.
Rödenbeck, C., Gerbig, C., Trusilova, K., and Heimann, M.: A two-step scheme for high-resolution regional atmospheric trace gas inversions based on independent models, Atmos. Chem. Phys., 9, 5331–5342, https://doi.org/10.5194/acp-9-5331-2009, 2009.
Ruckstuhl, A. F., Jacobson, M. P., Field, R. W., and Dodd, J. A.: Baseline subtraction using robust local regression estimation, J. Quant. Spectr. Radiat. Transf., 68, 179–193, https://doi.org/10.1016/S0022-4073(00)00021-2, 2001.
Sanderson, M. G.: Biomass of termites and their emissions of methane and carbon dioxide: A global database, Global Biogeochem. Cy., 10, 543–557, https://doi.org/10.1029/96gb01893, 1996.
Seibert, P. and Frank, A.: Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode, Atmos. Chem. Phys., 4, 51–63, https://doi.org/10.5194/acp-4-51-2004, 2004.
Stohl, A., Hittenberger, M., and Wotawa, G.: Validation of the Lagrangian particle dispersion model FLEXPART against large-scale tracer experiment data, Atmos. Environ., 32, 4245–4264, 1998.
Stohl, A., Forster, C., Eckhardt, S., Spichtinger, N., Huntrieser, H., Heland, J., Schlager, H., Wilhelm, S., Arnold, F., and Cooper, O.: A backward modeling study of intercontinental pollution transport using aircraft measurements, J. Geophys. Res.-Atmos., 108, 4370, https://doi.org/10.1029/2002JD002862, 2003.
Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005, 2005.
Stohl, A., Seibert, P., Arduini, J., Eckhardt, S., Fraser, P., Greally, B. R., Lunder, C., Maione, M., Mühle, J., O'Doherty, S., Prinn, R. G., Reimann, S., Saito, T., Schmidbauer, N., Simmonds, P. G., Vollmer, M. K., Weiss, R. F., and Yokouchi, Y.: An analytical inversion method for determining regional and global emissions of greenhouse gases: Sensitivity studies and application to halocarbons, Atmos. Chem. Phys., 9, 1597–1620, https://doi.org/10.5194/acp-9-1597-2009, 2009.
Stohl, A., Kim, J., Li, S., O'Doherty, S., Mühle, J., Salameh, P. K., Saito, T., Vollmer, M. K., Wan, D., Weiss, R. F., Yao, B., Yokouchi, Y., and Zhou, L. X.: Hydrochlorofluorocarbon and hydrofluorocarbon emissions in East Asia determined by inverse modeling, Atmos. Chem. Phys., 10, 3545–3560, https://doi.org/10.5194/acp-10-3545-2010, 2010.
Tans, P. P., Fung, I. Y., and Takahashi, T.: Observational constraints on the global atmospheric CO2 budget, Science, 247, 1431–1438, 1990.
Tarantola, A.: Inverse problem theory and methods for model parameter estimation, Society for Industrial and Applied Mathematics, Philadelphia, 358 pp., 2005.
Thacker, W. C.: Data assimilation with inequality constraints, Ocean Model., 16, 264–276, https://doi.org/10.1016/j.ocemod.2006.11.001, 2007.
Thompson, R. L., Gerbig, C., and Rödenbeck, C.: A Bayesian inversion estimate of N2O emissions for western and central Europe and the assessment of aggregation errors, Atmos. Chem. Phys., 11, 3443–3458, https://doi.org/10.5194/acp-11-3443-2011, 2011.
Trampert, J. and Snieder, R.: Model estimations biased by truncated expansions: possible artefacts in seismic tomography, Science, 271, 1257–1260, 1996.
Wu, L., Bocquet, M., Lauvaux, T., Chevallier, F., Rayner, P., and Davis, K.: Optimal representation of source-sink fluxes for mesoscale carbon dioxide inversion with synthetic data, J. Geophys. Res.-Atmos., 116, D21304, https://doi.org/10.1029/2011jd016198, 2011.