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Abstract. We present a new modular Bayesian inversion Atmospheric inversions use this information formally in a
framework, called FLEXINVERT, for estimating the surface statistical optimization to find spatio-temporal distributions
fluxes of atmospheric trace species. FLEXINVERT can beof trace gas (or aerosol mass) fluxes (e.g. Tans et al., 1990).
applied to determine the spatio-temporal flux distribution of This can be done provided that there is a model of atmo-
any species for which the atmospheric loss (if any) can bespheric transport relating changes in fluxes to changes in
described as a linear process and can be used on continentaixing ratios (or concentrations) — that is, the so-called
to regional and even local scales with little or no modifica- source-receptor relationships (SRRs). Basically, two types
tion. The relationship between changes in atmospheric mixof models are used: Eulerian models, in which atmospheric
ing ratios and fluxes (the so-called source—receptor relationtransport and chemistry are calculated relative to a fixed coor-
ship) is described by a Lagrangian Particle Dispersion Modeldinate, or Lagrangian Particle Dispersion Models (LPDMs),
(LPDM) run in a backwards-in-time mode. In this study, we in which diffusion and chemistry are calculated from the per-
use FLEXPART but any LPDM could be used. The frame- spective of air parcels transported by ambient winds.
work determines the fluxes on a nested grid of variable res- Eulerian models have been used extensively in atmo-
olution, which is optimized based on the source—receptor respheric inversions but have a disadvantage in that SRRs can-
lationships for the given observation network. Backgroundnot be calculated directly from the model. Instead, the SRRs
mixing ratios are determined by coupling FLEXPART to the can be found from multiple runs of the transport model to
output of a global Eulerian model (or alternatively, from the determine the sensitivity of all receptors to changes in the
observations themselves) and are also optionally optimizedluxes in a discrete number of regions (e.g. Fung et al., 1991,
in the inversion. Spatial and temporal error correlations inEnting, 2002; Rayner et al., 1999). This approach is simple to
the fluxes are taken into account using a simple model of eximplement but the computational cost of running the model
ponential decay with space and time and, additionally, thefor each flux region limits the number of regions and thus
aggregation error from the variable grid is accounted for. Tothe resolution that can be used. More recently, adjoints of
demonstrate the use of FLEXINVERT, we present one casdculerian transport models have been developed and can be
study in which methane fluxes are estimated in Europe inused as an alternative to calculating SRRs. Adjoints calcu-
2011 and compare the results to those of an independent iate the partial derivative of the change in flux in a given grid
version ensemble. cell to the change in mixing ratio at a given point and time,
which can be used to find the optimal fluxes based on a set
of observations (e.g. Kaminski et al., 1999; Chevallier et al.,
2005). This approach has the advantage that the fluxes can
1 Introduction be solved at higher resolution (i.e. the resolution of the trans-
port model). However, deriving adjoint models represents a
Observations of atmospheric mixing ratios (or concentra-significant technical challenge, thus adjoints are not available
tions) of trace species (gases or aerosols) contain informatiofor all transport models and there is a significant lag between
about their fluxes between land/ocean and the atmosphere.
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forward model developments and these being implementedriteria) to identify observations representative of the back-
in the adjoint. A further disadvantage is that these systemground, i.e. air not (or only minimally) influenced by fluxes
are computationally demanding, as they require forward andluring the time of the backwards calculations (e.g. Stohl et
adjoint model runs for every iteration until convergence. al., 2009; Manning et al., 2011). However, the background
LPDMs are self-adjoint, i.e. they can track the dispersionis strongly influenced by meteorology — e.g. air transported
of virtual particles representing e.g. an atmospheric gas forfrom higher latitudes or altitudes may have significantly dif-
ward in time from its sources/sinks to receptors (i.e. mea-ferent mixing ratios compared to air transported from lower
surement sites) or backwards in time from receptors to itdatitudes or altitudes even if in both cases no emissions oc-
sources/sinks using the identical model formulation (Stohl etcur during the backward calculation. This makes the determi-
al., 2003; Seibert and Frank, 2004; Flesch et al., 1995). Thaation of an observation-based background difficult. Model-
forward and backward calculations are equivalent but oneébased approaches involve coupling the back-trajectories at
direction can be much more computationally efficient thantheir point of termination to the mixing ratios determined
the other. For instance, if there are few receptors but manyrom a global model.
sources/sinks, the backwards mode is more efficient. This is One approach is to run the LPDM on a regional domain
the case, for instance, when particles are tracked backwardsnd couple this to a global model at the domain boundary.
from a relatively small number of available atmospheric ob- This approach was adopted by Rédenbeck et al. (2009), who
servation sites (i.e. receptors), as in our demonstration caseise a two-step method to first solve for the fluxes on a coarse
This feature makes LPDMs very efficient for the purpose of grid using an Eulerian model and to calculate the background
atmospheric inversion and they have been previously used imixing ratios at the receptors, and second to perform the
numerous studies (e.g. Gerbig et al., 2003; Lauvaux et al.inversion at regional scale on a finer grid using an LPDM.
2009; Stohl et al., 2010; Thompson et al., 2011; Keller et al.,A similar approach was developed by Rigby et al. (2011)
2012; Brunner et al., 2012). Lagrangian models may be usethut using a one-step method. A drawback of both these ap-
on a global scale (e.g. Stohl et al., 2010), sub-continentaproaches, however, is that only the coarse-resolution Eule-
scale (e.g. Gerbig et al., 2003) or on a regional scale of the orrian model is used to calculate the background mixing ratios
der of a few hundred square kilometres (e.g. Lauvaux et al.at the receptors and, thus, is more susceptible to transport er-
2009). Owing to their favourable treatment of atmosphericrors. We use a different approach and couple the LPDM, run
turbulence in the boundary layer, LPDMs can even be usean a global scale, to an Eulerian model at the time boundary,
down to scales of a few hundreds of metres (Flesch et al.such as done by Koyama et al. (2011). This approach uti-
1995) and have been used for inferring source strengths folizes the more accurate transport of the LPDM to calculate
local sources (e.g. farmsteads and oil spills). A further ad-the background at the receptors.
vantage of LPDMs is that they can be run backward ex- In this paper, we present a new framework, called FLEX-
actly from a measurement site, unlike Eulerian models, inINVERT, for optimizing fluxes by employing an LPDM that
which site measurements are represented by the averageadn be coupled to mixing ratio fields from a global (Eule-
value of the corresponding grid cell. By focusing on local or rian) model. This method may be used from large continental
regional scales, fine resolution may be used without runningscales down to local scales and can be used for sparse as well
into problems of too large a number of unknown variables (inas dense observation networks. In this method, the LPDM is
this case the fluxes). Fine resolution is desirable as it reducessed to transport air masses and, thus, the influence of fluxes,
the model representation error, also known as aggregation ete each receptor. The fluxes inside the domain are optimized
ror (Kaminski et al., 2001; Trampert and Snieder, 1996) but iton a grid of variable resolution, where finer resolution is used
must be traded-off with the total number of flux variables to in areas with a strong observation constraint, i.e. close to re-
be determined, which is subject to computational constraintsceptors, and coarser resolution is used elsewhere. FLEXIN-
Using LPDMs to solve the inverse problem, however, alsoVERT, as it is presented here, requires that the LPDM is run
has disadvantages. In LPDMs, virtual particles are typicallyon a global domain, or at least that the domain is large enough
followed backward in time only for the order of days to a so that trajectories do not exit the domain. In summary, the
few weeks, thus the influence of the atmospheric chemistryfeatures of this method are:
and transport and surface fluxes further back in time (the so-
called background mixing ratio) must be taken into account — atmospheric transport (SRR) is calculated using a single
separately. Although forward 3-D simulations in LPDMs are model, i.e. the LPDM;
possible, in order to reproduce background signals, such as
seasonal variability, simulations of months to years would
be necessary and, therefore, computationally too expensive
(Stohl et al., 2009). Alternatively, the background mixing ra-
tio can be accounted for using either observation- or model-
based approaches. Observation-based approaches use some
filtering method (either statistical or based on meteorological

— the LPDM needs only to be run once for each species
and receptor to find the SRRs, as the output can be ap-
plied to optimize the fluxes for any domain and resolu-
tion (as long as the resolution is no finer than that of the
LPDM run);
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— the variable resolution grid means that fine resolution . Hmest
close to receptors minimizes model representation er  "\®
rors; \ "

b - . . . \ N e

— background mixing ratios can be provided either by \ \‘th N
coupling to mixing ratio output from a global model or  Jout \ \
alternatively by using an observation-based method,; | “. N

]

— the background mixing ratios are optionally included in / L_ ——t — el ]

the optimization; /// ""-' out :ﬁ ‘\l
) [

— the influence of fluxes from outside the domain on the | # ," ,," ) .
mixing ratios at the receptors is accounted for without xout . 4"_ gl . Hes
having to solve for them explicitly, thereby reducing the fLbmm= -~ H
dimensionality of the problem. ;i;;"

Variable grid resolution has been used in atmospheric in-_ ) ) . .
versions previously such as in the studies of Manning etFigure 1. Schematic showing how the forward model is defined.
al. (2003), Stohl et al. (2010) and Wu et al. (2011). OurThe black dots represent receptors, the so!id boxe_s _repres_ent grid-
method for defining the variable grid is based on that ofded fluxes and the dotted box represents gridded mixing ratios from

. global model output. The arrows indicate transport to a receptor

Stohl _et .aI. ,(2010)' However, we h_ave also |mplemented a(which may be either inside or outside the nested domain): solid ar-
re—opt|m|zat|on of the f'l%xes at variable resolution back to 1\ys show transport from fluxes within the nested domain, dashed
the finest model resolution based on the method of Wu etyrrows indicate transport from fluxes outside the nested domain,
al. (2011). and the dotted arrows indicate transport of the mixing ratio at the

This paper is structured as follows: first we describe thepoint of back-trajectory termination. Each arrow can be thought of
inversion framework and the variable grid formulation and, as an element (i.e. a partial derivative) in the transport madft&St
second, we present an example using real observations ¢f°, andHP9, respectively.
methane (CH)) dry-air mole fractions to optimize CHemis-

sions in Europe. : . . . .
the time and location when the back-trajectories terminate,

i.e. the initial mixing ratiosH®9 (see Fig. 1). Similarlyyx is

2 Bayesian framework for linear inverse problems constructed from the fluxes inside the domafif®s! fluxes
outside the domainf°!t (there are no common variables
2.1 Forward model between festand f°Ut so there is no double counting of

_ ) fluxes), and initial mixing ratios taken from the output of a
For cases where the atmospheric transport and chemistry atgopal model,yP9. (Note that here we refer to the contribu-
linear, the change in mixing ratio of a given atmospheric o 1 the observed mixing ratio from where the trajectories
species can be related to its fluxes by a matrix operator. FUrierminate as thmitial mixing ratio and the contribution from
thermore, the absolute mixing ratio can be related to its fluxesne initial mixing ratio plus from the fluxes outside the do-

plus the background mixing ratio, which together fodrm the main as thebackground mixing ratio- this is explained in
so-called state vector. This is shown in Eq. (1) whelfe% 1) sect. 2.1.2). Equation (1) can thus be expanded to

is a vector of the modelled mixing ratio &f points in time

and spaceyx vx1) is a vector of theN state variables dis-  y™od = pnestenest, jout cout | bg,,bg 2)
cretized in time and space, ahl]y « v is the transport op-

erator: 2.1.1 The source—receptor relationships (SRRs)

yMod— Hy. (1)  The matricedH"*'andH°" are Jacobians in which each el-

ement is a partial derivative of the change in mixing ratio at

For simplicity, we describe the case where the state vari-a given receptor with respect to the change in mass flux in
ables are optimized for only one time step, although thea given grid cell and are built from the SRRs. In this study,
framework is able to optimize many time steps simultane-we use the LPDM, FLEXPART (Stohl et al., 2005, 1998) to
ously (for an overview of the variables and their dimensionsderive the SRRs, although any other LPDM capable of run-
see Tables 1 and 2). We construct the malttifrom three  ning in backwards mode could also be used to construct these
components of the atmospheric transport to each receptomatrices.
(1) transport of fluxes within a nested domain (i.e. within In an LPDM, ensembles of particles are released from
the global domain)H"®st (2) transport of fluxes outside the each receptor point and their displacement is calculated back-
nested domairki°4, and (3) contribution of mixing ratios at wards in time based on wind fields from meteorological
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Table 1. Overview of the variables used in this manuscript

Variable Dimension Description

ymod Mx1 modelled atmospheric mixing ratios

x Nx1 state vector

H M x N complete atmospheric transport operator

fhest K x1 fluxes inside the nested domain

Hnest M x K atmospheric transport operator for inside the nested domain

fout Px1 fluxes outside the nested domain

Hout M x P atmospheric transport operator for outside the nested domain

ybg Px1 mixing ratios from the global model interpolated to the fine grid globally

HbP9 M x P sensitivity to initial mixing ratios from the global model

r W x K prolongation operator from the fine to the variable grid in the nested domain
e Wx1 fluxes inside the nested domain on the variable grid

H{)gst M x W atmospheric transport operator for fluxes on the variable grid

Mcg M x R total background mixing ratios

Teg Rx P prolongation operator from fine to coarse grid

[hg RxM prolongation operator for observation-based background mixing ratios

acg Rx1 background mixing ratio scalars

Xp Nx1 prior state vector of fluxes and background mixing ratio scalars

o Wx1 prior flux error vector

B N xN prior error covariance matrix on the variable grid

BI,'EX W x W prior error covariance matrix for the fluxes on the variable grid

Bfiux K x K prior error covariance matrix for fluxes on the fine grid

R MxM observation error covariance matrix

C WxWwW spatial and temporal correlation matrix

Cs W x W spatial correlation matrix

Ct 1x1 temporal correlation matrix (trivial case when only one time step is used)

A N xN posterior error covariance matrix

Aflux W x W posterior error covariance matrix for fluxes on the variable grid

fnesk Kx1 posterior fluxes optimized on the fine grid

Alfluxs NxN posterior error covariance matrix for fluxes on the fine grid

P 0 xK operator to select variables that violate the inequality constraint

c 0 a vector of inequality constraints

analysis data. Backwards and forwards calculations are pradecay, can be considered by including a transmission func-
tically equivalent because the transport is time reversibletion in the right-hand side of Eq. (3), which quantifies the
(Seibert and Frank, 2004). For a tracer, which undergoes nedess. The SRRs for all receptors and fluxes inside the nested
ligible loss in the atmosphere on the timescale of the LPDMdomain constitute the elements l8feStwhile the SRRs for
calculations, the SRR can be expressed for a receptor anall receptors and fluxes outside the domain constitute the el-
a flux in a given spatio-temporal grid cell ), as propor-  ements oH°!,

tional to the average residence timeJjoback-trajectories in

the grid cell under consideration: 2.1.2 Initial mixing ratios
dy 1A The initial mixing ratio is the contribution from the mixing
P o (3)  ratios where the LPDM back-trajectories terminate. We in-
o j=1 Pin clude two alternatives for the calculation of the initial mix-

ing ratio. The first alternative uses the sensitivity to the mix-

residence time of trajectoryin the spatio-temporal grid cell ing ratio at the points in space and time where the LPDM
. § . back-trajectories terminate (calculated in FLEXPART) and
(i, n) (see Seibert and Frank, 2004). In Eqg. (3), the SRR is J ( )

. . . : : " “the mixing ratio at those points taken from the output of a
in units of residence timg volume per unit mass, which is

. . ) global model. The sensitivity to mixing ratio in a grid cell at
integrated over the height of the surface layer in FLEXPART given time {) is calculated as the number of particle trajec-

to be comparable with the surface flux, which is given perth

wherep; , is the air density in the grid cell antl] . is the

ories that terminate in the grid cel;( divided by the total
umber of particle trajectories released:(

unit area. Atmospheric loss processes, such as reaction wi
the hydroxyl radical, dry and wet deposition, or radioactive
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Table 2. Overview of the dimension notation and their values in the case study (test S1).

Dimension  Description Value
M total number of observations 1602
N total number of state variables (12 time steps) 13896
K number of fine resolution grid cells in one time step 2400
w number of variable resolution grid cells in one time step 1158
P number of grid cells in global domain in one time step 2700
R number of coarse grid cells for the background mixing ratio 144

2.2 Variable resolution grid
h o (4)  To reduce the number of variables in the inversion prob-
Wi J lem we aggregate grid cells where there is little constraint

Again, loss processes can be considered by including from the atmospheric observations. In this way, we define a
new vector of the fluxes to be optimized!st and trans-

transmission function in the right-hand side of Eq. (4). The nest i i vg >
sensitivity to the mixing ratio in all> grid cells (over the ~ Port matrix,Hys®, which are on a grid of variable resolution
global domain) and for ali/ observations is represented by (vg=Vvariable grid). The aggregation algorithm is based on
the matrixH?fle) and the mixing ratios from the global tlmg—averaged SR'RS opthna}lly convolved Wlth the prior flux
bg _ _ estimate. The variable grid is set up starting with a coarse
model by the vectoy ), which has been interpolated t©0 yig, which is refined in a specified number of steps following
the resolution of the.LF;DI\éI output. Thus, the initial Mixing  the method of Stohl et al. (2009). For example, starting with
ratio at all receptors isi>9y™. _acoarse resolution of4« 4° the grid may be refined in two
~ The second alternative approximates the background mixgieps to resolutions 0P 2° and F x 1°. The refinement is
ing ratios from the observations themselves. In this casemage so that the flux sensitivity (optionally multiplied by the
the background mixing ratio is calculated in one step, i-e.prior flux) in each grid cell at its final resolution (e.g. & 1°,
there is no separate calculation of the initial mixing ratio o, 20 and £ x 4°) is above a given threshold. It is also op-
and contribution from outside the nested domain. We havgional whether or not to make the grid refinement over water
implemented a simple method involving selecting the lower g gies and ice so that grid cells with a water/ice area of 99 %
quartile of the observations in a moving time window (€.9. or more are not refined further, reflecting cases where the wa-
30 days) over the whole time series. This method was chogyjice surface fluxes are either smaller, more homogeneous
sen as it is robust to the number of observations (i.e. it canyng/or more certain than the land surface fluxes. For deter-
be used for in situ as well as discrete measurements) alyining which grid cells are land/waterfice we use the In-

though other more sophisticated background selection algogernational Geosphere Biosphere Programme land-cover data
rithms exist and could be used instead (e.g. Ruckstuhl et al gt (IGBP-DIS) (Belward et al., 1999).

2012; Giostra et al., 2011). The selected observations are 14 convert from the fine to the variable grid, we define a

th.e approximation for the contribution to the mixing re}tio projection operatof k) whereX is the number of grid
without any influence from fluxes in the nested domain —ce|is in the nested domain at the original resolution Bhib
thus, the corretspon|ng elements of the prior modelled Mixthe number at variable resolution. Each rowaforresponds

; ; nestenes is i : : ; ; i

ing ratio, H™>f"%, should be zero. However, this is not 4 g cell in the variable grid, and is a summation vector on

always the case, therefore, we also subtract the prior simgea fine grid. The row vectors; of I" are orthogonal, thus
ulated mixing ratio from the selected observations so that, ;T _q for; £ j (since each fine grid cell can only belong
J

there is zero contri_bption frpm quxes_inside the: dor_nain in to one variable grid cell). The flux vectgi"®Stand the matrix
the b.ack.ground mixing ratio. To ".’WO'd overestimating thg H"eston the variable grid can be found according to
contribution from inside the domain and, hence, underesti-
mating the background mixing ratio, we also select the lower
quartile of the prior simulated mixing ratios in a moving time f
window. Lastly, we calculate a running average of the back-
ground mixing ratios using a time window of 90 days, which Where “T” indicates the matrix transpose. The fluxeg T

is then linearly interpolated to the timestamp of the observa-are weighted by the ratio of the area of fine grid to the vari-
tions. This is done for each receptor. Similar methods for theable grid into which it is aggregated. The forward model on
background calculation have been used previously for casethe variable resolution grid can thus be written as

where no reliable global model estimate of the mixing ratio

was available (e.g. Stohl et al., 2010). ymod= Hpestnesty pout pout y (b ybg  cagg (6)

CSStZ anest and HCSStz HnestrT’ (5)

www.geosci-model-dev.net/7/2223/2014/ Geosci. Model Dev., 7, 222312 2014
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wheree(aﬂgf’Xl is the model representation error from hav-
ing reduced)

for the forward model see Fig. 1). It is also known as the

R. L. Thompson and A. Stohl: FLEXINVERT

We then define a new transport operathji; 5y by con-

the resolution of the model (for a schematiccatenating the matricéﬂCSStanndg. Similarly, we define

nest

the state vectar v x1) by concatenatin(fvg(WXl)

(the flux

aggregation error and has been described by Trampert angariables inside the nested domain) angrx1) (scalars of

Snieder (1996), Kaminski et al. (2001) and Thompson etthe mixing ratios in the columns oA
al. (2011). We describe the calculation of the aggregation er-

ror in Sect. 2.5.

2.3 Aggregation of the background mixing ratios

cg):
[HCSSMCQ] and x=[ fcgsacg]. 9)

The prior value oficg(i) (i = 1 to R) is 1. After inversion,
the optimized values oy determine the posterior back-

H=

The contribution of fluxes outside the domain to the changeground mixing ratios.

in mixing ratios at the receptor points (ild° £°U can be
added to the initial mixing ratioH”9y9). The contribution
to the modelled mixing ratio (i.ey™°%), which is not ac-

counted for by the SRRs and fluxes inside the domain (i.e
the background mixing ratio), is then defined by a new ma-

trix, Mcgarx gy, ON @ coarse grid (cg), which has rows cor-
responding ta\ observations and columns corresponding to
R grid cells or latitudinal bands. When the initial mixing ra-
tio is calculated using the sensitivity matrb?9 and mixing
ratio fields,yP9 from a global Eulerian transport model, then
Mg is defined as

FT

Meg = (HOUto Fout 4 Hb9, ng> e

(7)

whereo indicates the Hadamard matrix produé?,‘ﬁjX P has

M rows of (foUYT, and Y?/?MP) has M rows of (y?9)T.
The matrixI'cqrx p) iS @ projection operator from the Eu-
lerian model resolution to a coarse resolutiorrRodrid cells

(noteT'¢q #I'). Noteworthy, is that the matrix multiplication

HOoUFOUtis made using the original resolution of the LPDM

and fluxes and that the conversion to the coarse grid is per-
formed only on the mixing ratios, thus avoiding an aggrega-

2.4 Optimization of the fluxes and background
mixing ratios

The uncertainty in the initial mixing ratios and in the con-
tribution to the mixing ratio from fluxes outside the domain
can be considerable. Therefore, we include this component
in the optimization problem. The prior state vector for op-
timization, xp, thus contains variables for the surface fluxes
(on the variable-resolution grid) and variables for the opti-
mization of the mixing ratios (on the coarse-resolution grid
defined byl'cg).

Based on Bayes’ theorem, the most probable solution for
x is the one that minimizes the difference between the ob-
served and modelled mixing ratios while also depending on
the prior state variables;,, and their uncertainties (for de-
tails on Bayes’ theorem see e.g. Tarantola, 2005). Assum-
ing that the uncertainties have a Gaussian probability density
function (pdf) this can be described by the cost function

J (x) =% (x —xp) B (x —xp)
1 T
+5 (Hx =) R (Hx — ™), (10)

tion error in this component. When the background is calcu-

lated using the observations themselves, tieg is defined
as
Mg = diag(y*9) Iy, ®)

wherelhgrx m) IS an operator to map the background mix-

whereBy ) is the prior flux error covariance matrix (see
Sect. 2.5)Rux ) is the observation error covariance ma-
trix (see Sect. 2.6), angPPSis a vector of the observed mix-
ing ratios. There exist a number of methods to findatter
which Eg. (10) is at a minimum; we use the approach of find-
ing the first derivative of Eq. (10) and solving this for By

ing ratios to a matrix where the background for each mea+earrangemenk can be found according to Eq. (11). Equa-

surement is allocated to one Bflatitudinal bands. Note that
the contribution from grid cells outside the domain is not
explicitly included as it is assumed that this contribution is
incorporated into the definition of° when it is calculated
from the observations (see Sect. 2.1.2).

For both methods, the columns kg correspond to the
mixing ratios in each of th& coarse-grid cells (or latitudi-

tion (11) has a number of alternative formulations and the
one we use is the most efficient when the number of obser-
vations is smaller than the number of unknowns, since the
size of the matrix to invertBH T+R) has dimensions of

M x M:

x =xp+BHT (HBHT+R) " (3"~ Hx). (11)

nal bands when using the observation-based method) such The inverse of IBHT+ R) is found by Cholesky factor-

that the sum of each row gives the total background mixingj; ation (using the DPOTRF and DPOTRI routines from the
ratio for each measurement (note that for the observation; ppack library). The corresponding posterior error covari-

based method there is only one non-zero entry in each row)ance matrix

The spatial distribution of the contribution to the background
mixing ratio (dimensionR) is maintained as it is these con-
tributions that are optimized in the inversion.

Geosci. Model Dev., 7, 22232242 2014

Awxny, is the inverse of the second derivative
of the cost function/:

A=(J") " =B—BHT(HBHT +R) "

HB. (12)
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2.5 Prior error covariance matrix wherel"_ is the projection of the loss of information in the
variable grid compared to the fine grid. The mafrfixcan be

Errors in the prior flux estimates are correlated in space ang¢alculated simply from the row vectoks of the projection

time owing to correlations in the biogeochemistry model, up- operator”, which are weighted by the square root of the row

scaling model, or anthropogenic emission inventory that wassum so as to have unit length:

used to produce these estimates. Most often, there is little

known about the true temporal and spatial error correlation | W T 1
patterns. Here we define the spatial error correlation for thd - =1- Z)‘i)‘i ’ (15)
fluxes as an exponential decay over distance, such that each i=1
element in the spatial correlation mat(@ is wherel is the identity matrix. Ask;A] is a matrix of size
& P x P, whereP can be on the order of 10000 to 100 000, it
s j) = exp(—%) , (13) is not calculated directly but rather vitl" _ as follows:
‘ S

w
whered;; is the distance between grid cellandj inagiven ~ HI'_ =H - Ha;Al. (16)
time step andks is the spatial correlation scale length on i=1

land or ocean (we assume that fluxes on land and ocean L. Sphservation error covariance matrix
not correlated with one another). The temporal error corre-—

lation matrixCy is described similarly using the time differ-
ence between grid cells in different time steps. The full tem-
poral and spatial correlation matr is given by the Kro-
necker productCy® Cs. The error covariance matrix for the

The errors in the observation space incorporate measurement
as well as model transport and representation errors. For the
measurement errors, we use values of the measurement re-
flux ‘ . ' peatability as given by the data providers. The measurement
fluxes, Byg(y .. w). is the matrix product of correlation pat-  grrors can be given as a single value or for each observation,
tern, C, and the error covariance of the prior fluxesr™,  in which case it is read from the observation files. Transport
whereo is a vector of the flux errors. We calculate the error errors are extremely difficult to quantify and depend not only
on the flux in each grid cell (on the fine grid) as a fraction on the model but also on the input data, resolution and loca-
of the maximum value out of that grid cell and the eight sur- tion. Therefore, we do not quantify the full transport error,
rounding ones. Finally, thBJsX matrix is scaled so that the but only the part of it that can be estimated from the model
square root of its sum is consistent with a total error valueFLEXPART, i.e. the stochastic uncertainty, which arises by
assigned for the whole domain. This error estimate may behe representation of transport with a limited number of par-
from e.g. comparisons of independent biogeochemistry moditicles (see Stohl et al., 2005). The stochastic error, however,
elled fluxes or flux inventories. The correlation matrix could s likely to be much smaller than the full transport error. It
be calculated for the fine grid and converted to the variablés possible, however, to include an additional estimate of the
grid using the prolongation operator B8™*I'T. However,  transport error into Eq. (17), if this information were avail-
we calculateBfy* directly for the variable grid (dimensions able. The error in the modelled mixing ratio is calculated us-
W x W) as the multiplication steB™*I'T is very slow if  ing the stochastic uncertainty in the same way that the mix-
K is large and/or if there are many time steps. In addition,ing ratios themselves are calculated. We consider two types
BE',%XxK) is calculated for the fine grid for a single time step of representation error: observation representation error and
only, as it is needed in the calculation of the aggregation ermodel aggregation error (discussed above). The observation
ror (see Sect. 2.6) and for the optimization of the posteriorrepresentation error is calculated from the standard deviation
fluxes back to the fine grid (Sect. 2.8). We assume that thef all measurements available in a user-specified measure-
errors for the scalars of the background mixing ratios (i.e.ment averaging time interval, based on the idea that if the
acg) are uncorrelated and have a fixed prior value (e.g. 1 %)measurements are fluctuating strongly within that interval
The error variance for these scalars is appendﬂjgé to  then their mean value is associated with higher uncertainty

give Bvxn)- than if the measurements are steady (e.g. Bergamaschi et al.,
2010). If only one measurement is available during this inter-
2.6 Aggregation error val, then a user-defined minimum error is used instead. The

measurement and transport errors are assumed to be uncor-
The aggregation incurred by reducing the spatial resolutiornyelated. Although this is a common assumption, correlations
of the model can be calculated by projecting the loss of infor-jikely exist between e.g. hourly observations owing to errors
mation in the state space into the observation space (Kamirn the modelled boundary layer height and wind fields, which
ski etal., 2001). The full aggregation error covariance matrixcould lead to temporal correlations. However, in the current

Ehxu) IS given by version of FLEXINVERT, we do not account for these cor-
relations. Hence, we define a diagonal matrix with elements
E299=Hr_ B THT, (14)  equal to the quadratic sum of the measurement, transport
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model and measurement representation errors:
65N>
o’ = ar%eas"' Ut%ans"" Urzepr' 17) 60N
Another assumption that is made is that the observed- 55N+
modelled mixing ratio residuals have a Gaussian distribu- son-|
tion (Eq. 10 is based on this assumption). Therefore, in case ,
where the distribution is highly skewed, observations corre-
sponding to the tail of the distribution will have a strong in- 4N
fluence on the result of the inversion. FLEXINVERT does ssn-
not include any component to deal with skewed distributions; SN | ‘ :
however, the influence of observations in the tail of the dis- 15w 5W 5E 15€ 25E 35E
tribution may be reduced by increasing their uncertainty. For,,,

£
o

5N

w
o

M E

w
o

more details about dealing with skewed distributions we refer EARERaEREm: \i\\ .
the reader to Stohl et al. (2009). 65N | nE ‘M; ‘V,,?; L ;\b
The observation error covariance mati¥us <), is the  eon - ~' 4 oL =S
sum of this diagonal matrix plus the aggregation error co- R S A
variance matrixg299. SN g o Eiaaisssauss
son Hhe FH 1]

2.8 Optimization of the fluxes to fine resolution . B Eaasee 4 t_‘ Hl
The optimal solution of the fluxesf}s*, is found for the  4on | } - R }sf--. H —
variable grid according to Eqg. (11) and the corresponding e % S

. . N . 35N paSsS=annRRRiNN I i" <§‘1’ ﬁ
posterior error covariance matriR, is found according to 3 mnegy s # é
Eq. (12). However, it is not possible to directly apply the in- son { 2222 NP2 S <t a
verse of the projection operator to retrieve the optimal emis- 15w 5W 5E 15E 25E 35E 45E

sions at fine resolution since the operation from the variable_ . I : .
) S . . . . . Figure 2. Total emission sensitivity for 2011 in units of
to the fine resolution is ambiguous; there is insufficient in-

. ) , : S 3kg~1) calculated using FLEXPART and used to deter-
formation to redefine the fluxes at fine resolution. To find og(sm kg ") calculated using and used fo deter

. A ; : anest mine the variable grid (note that for this no weighting is applied
the optimal emissions at fine resolutiofi;), We USe an  ¢or the number of observations available from each ipand the

adaptation of the method of Wu et al. (2011). This method in-yariable-resolution grid used in the inversigs). The points indi-
volves a second Bayesian optimization step, which uses theate the positions of the observation sites.
prior information about the distribution of the fluxes within
each grid cell on the variable resolution grid:
covariance matrbAf* - also for the fine-resolution fluxes

(K xK)
fnest =f2e5t+ Bﬂgxwrl—nit (FBﬂuxFT +Af|ux>_1 according to
-1
(ﬂ)gsk _ Ff2e5t> ’ (18)  aflues — (Bﬂg)v(\;l n FJnitAﬂux_lruniO _ (19)

(see Appendix A for the derivation of Egs. 18 and 19). Since  The inverse of the matriceBﬂg’v‘v, Al and Bﬂ%&“r

we only optimize the fluxes, i.gt"®*, the matrice®™*and T _afluclp o are also found by SVD, which can also be

AT represent only the parts of the error covariance matriceg;seq for matrices that are non-positive definite. This opti-
corresponding to flux errors. We have introduced a new eryjzation to the fine grid should be carefully evaluated if used.
ror covariance matrixBfa, which is the non-area-weighted Alternatively, we also include a simple mapping back to the
(naw) version ofB"™%, i.e. calculated using the flux errors  fine grid by distributing the flux in a coarse grid to the corre-

not weighted t?y the ratio of the grid cell areas on thg ﬁnesponding fine grid cells based on the prior relative flux dis-
and coarse grid. Also, we have introducEghit, which is  rinution at fine resolution.

equivalent tol" but with each row vector normalized by the

row sum so that they have unit length. Our method depart®.9 Inequality constraints

from that of Wu et al. (2011) in that for the error in posterior

state vector on the variable grid we use the error covarianc&or some atmospheric species, there are physical restrictions
of the posterior solution on the variable gAd rather thana on the values of the fluxes. For example, for anthropogenic
Dirac distribution. The inverse of 8"*I'T+ AUX) is found  species, such as halocarbons ang, &fe fluxes can only be

by singular value decomposition (SVD) using the DGESDD positive over land, while there are no appreciable fluxes (pos-
routine from the LAPACK library. We find the posterior error itive or negative) over ocean. Using an inequality constraint
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Table 3. Atmospheric observation sites for GHhole fraction used in the case study. The altitude is given in metres above sea level.

Site ID  Organization Latitude Longitude Altitude (m) Type Description

PAL FMI 68.0° N 24T E 572 CM  Pallas, Finland

ICE NOAA 63.3 N 20,3 W 127 FM Heimay, Vestmannaeyjar, Iceland
BAL NOAA 55.4° N 17.2E 28 FM Baltic Sea, Poland

MHD  AGAGE 53.3¥ N 9.9°W 40 CM  Mace Head, Ireland

OXK NOAA 50.0°N 11.8E 1185 FM Ochsenkopf, Germany

SSL UBA 47.9 N 79E 1213 CM  Schauinsland, Germany

HPB NOAA 47.8 N 11.CE 990 FM Hohenpeissenberg, Germany
HUN NOAA 47.0° N 16.7 E 344 FM Hegyhatsal, Hungary

JFJ EMPA 46.86N 8.0°E 3590 CM  Jungfraujoch, Switzerland
PUY*  NOAA 458N 3.0°E 1475 FM Puy de D6me, France

BSC NOAA 442 N 28.7PE 3 FM Black Sea, Constant, Romania
CMN ISAC 44.2 N 10.PE 2165 CM Monte Cimone, Italy

ciB NOAA 41.8N 4.9 W 845 FM CIBA, Spain

LMP NOAA 35.5°N 126 E 50 FM Lampedusa, Italy

* Only used for independent validation.

in the cost function Eq. (10) would mean that the first deriva-the surface to the atmosphere) although small negative fluxes
tive would be undefined. Therefore, we adopt a “truncatedof CH,4 by oxidation in soils are also possible (Ridgwell et
Gaussian” approach following Thacker (2007), in which in- al., 1999). Europe was chosen as it is reasonably well cov-
equality constraints are applied by treating these as errorered by observations, both discrete air sampling and in situ
free observations. The inequality constraints are applied taneasurements. The important sources of,@HEurope are
the posterior fluxes derived previously (i.e. with no inequal- mostly anthropogenic — namely agriculture, landfills, and oil
ity constraint). This is described by the following equation, and gas exploitation (including fugitive emissions as well as
which is analogous to Eq. (11): those from incomplete combustion). Natural sources of CH
are less important in Europe and principally wetlands and
mostly in the higher latitudes. In this case study, we estimate
-1 the total fluxes of Clin the nested domain from 30 to 7N
+ATXPT (PAﬂUXPT> (c h aneS&) ’ (20) and 15 W to 45° E at monthly resolution for the year 2011.

fnes&* :fnesnc

whereP (g k) is @ matrix operator to select th@ variables 3.1 Inversion set-up

that violate the inequality constraint ands a vector of the

inequality constraints of lengtfd. The inequality constraint 3.1.1 FLEXPART runs

does not only affect the grid cells with negative values but

there is also some adjustment to other cells according to thELEXPART (version 8.1) (Stohl et al., 1998, 2005) was
correlations described by the posterior error covariance matsed to generate the SRRs by running 10-day backwards
trix, AflUX_ The posterior error covariance matrix, however, is mode simulations from each of the receptors (i.e. the ob-
unchanged as the observation error covariance matrix in thi§ervation sites). FLEXPART was run at 191.0° resolu-
case is zero. To apply the inequality constraint requires runtion with meteorological analyses from the European Cen-
ning a second code, which uses the output of FLEXINVERT.tre for Medium-Range Weather Forecasts (ECMWF). Back-

A brief description of the software, its inputs and outputs, wards (‘retro-plume”) simulations were made by releasing
is provided in Appendix B. 20000 virtual particles in 3-hourly intervals and the SRRs (or

equivalently emission sensitivities) were saved as 24 h aver-

ages. Particles were released from the sampling inlet height
3 Case study: estimation of CH fluxes in Europe at each observation site (see Table 3). The loss of BH

reaction with the OH radical was also included in the back-
We provide a case study using FLEXINVERT for the estima- yards simulations even though the loss is very small over a
tion of methane (Ch fluxes in Europe. Methane was cho- 10-day period. Figure 2a shows the combined total emission
sen, as itis an important greenhouse gas with an atmospherigansitivity for all observation sites in 2011. The total emis-
lifetime of approximately 10 years (Denman et al., 2007) andsjon sensitivity was used to determine the variable-resolution

since its loss in the troposphere is principally by reactiongrig (Fig. 2b) with grid cells ranging in size from 2.& 1.0°
with the OH radical, which can be approximated as a lin-tg 4.¢> x 4.0°.

ear process. The fluxes of Gldre mostly positive (i.e. from
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Table 4. Methane flux estimates used in the prior in the case study.

Source Data set Total
(TgCHyyear )

Anthropogenic

— Agriculture® EDGAR-4.2 FT2018 152.8
— Industrial processés EDGAR-4.2 FT2010 0.3

— Residential and transpBrt EDGAR-4.2 FT2010 13.4
— Wasté& EDGAR-4.2 FT2010 61.5

— Oil, coal and gds EDGAR-4.2 FT2010 129.7
Natural

— Wetlands LPJ DGVM 175.0

— Biomass burning GFED-311 19.3

— Geological seeps Etiope et al. (2008) 55.3
— Soils Ridgwell et al. (1999) -37.9
— Wild animals Houweling et al. (1999) 5.0

— Termites Sanderson et al. (1996) 19.3
—Ocean Lambert and Schmidt (1993) 17.0
Total 610.0

a Emission Database for Global Atmospheric Reseahntipy/edgar.jrc.ec.europa)efl IPCC categories:
4A, 4B, 4C,C IPCC category: 2 IPCC categories: 1A3, 1A%,IPCC categories: 6A, 6B, 6¢|PCC
categories: 1A1, 1A2, 1B1, 1B2, 7A,Lund—Potsdam—Jena Dynamic Global Vegetation Model (LPJ
DGVM), N Global Fire Emissions Databadettp://www.falw.vu/~gwerf/GFED.html

3.1.2 Observations data, the representation error was defined as the standard de-
viation of the afternoon observations.
We used measurements of gHom approximately weekly
samples in the National Oceanic and Atmospheric Adminis-3.1.3 Prior fluxes and initial mixing ratios
tration Global Monitoring Division (NOAA GMD) Carbon
Cycle and Greenhouse Gases (CCGG) network. These medhe prior flux was composed from estimates of anthro-
surements are made using Gas Chromatographs fitted withogenic and natural emissions from a number of different
Flame lonization Detectors (GC-FID). In addition, we used models and inventories (see Table 4 for details) and the to-
data from a number of in situ measurement sites. These intal global source amounted to 610 Tg £y¢ar 1. Methane
cluded in situ GC-FID instruments operated by the Umwelt- fluxes were resolved monthly in the wetland, ocean, termite,
bundesamt (UBA), the Institute for Atmospheric Scienceswild animal, soil and biomass burning estimates, while the
and Climate (ISAC) and the Advanced Global Gases Ex-anthropogenic and geological flux estimates were only re-
periment (AGAGE) as well as in situ Cavity Ring Down solved annually. For the anthropogenic and biomass burning
Spectrometers (CRDS) operated by EMPA and the Finnistsources, the 2010 estimates were used, as no estimates were
Meteorological Institute (FMI). All measurements were re- available for 2011. For the remaining natural sources, cli-
ported as dry-air mole fractions in parts-per-billion (abbre- matological estimates were used. All fluxes were used at a
viated as ppb) on the NOAA2004 calibration scale, exceptspatial resolution of 10x 1.0°.
AGAGE data, which were reported on the Tohoku Univer-  Prior flux error covariance matrixBX, was calculated
sity scale but were converted to the NOAA2004 scale usingas described in Sect. 2.5 using a spatial correlation length
a conversion factor of 1.0003 (see Table 3). of 500 km, ks =500, and a temporal correlation length of
In situ measurements were assimilated as averages of tH@0 days.kt = 90. For the calculation of the flux errors we
afternoon observations (12:00 to 18:00LT) at low altitude used a fraction of 0.5 of the maximum flux out of the cell of
sites and as averages of night-time observations at mountaimterest and the eight surrounding ones.
sites (00:00 to 06:00 LT) and the corresponding FLEXPART The background mixing ratios may be estimated either
SRRs were selected and averaged in the same way. Discreteom the observations themselves or by coupling FLEX-
measurements were assimilated as available and matchd?ART to a global model (see Sects. 2.1.2 and 2.3). For the
with the closest available 3-hourly SRR to the sampling time.latter method, FLEXPART calculates the sensitivity to the
The measurement error was defined as 5 ppb based on the maixing ratio at the termination point of the virtual parti-
peatability of the measurements and, in the case of the in sitgles. These sensitivities were coupled to daily 3-D fields of

Geosci. Model Dev., 7, 2223242 2014 www.geosci-model-dev.net/7/2223/2014/


http://edgar.jrc.ec.europa.eu
http://www.falw.vu/~gwerf/GFED.html

R. L. Thompson and A. Stohl: FLEXINVERT

CH4 mixing ratios from the atmospheric chemistry transport
model, TM5, in order to calculate the initial mixing ratios.
The TM5 model was run at 6206« 4.0° horizontal resolu-
tion with 25 eta pressure levels using pre-optimized fields =
of CHg4 fluxes (Bergamaschi et al., 2010). Atmospheric loss v
of CHy by reaction with OH radicals is calculated in TM5
using monthly fields of OH concentration (Bergamaschi et
al., 2005) resulting in mean atmospheric lifetime of b1

[ppb]

o)
Q

10.1 years, which is close to the IPCC recommended value 02 zzz o LM M ’\ \
9.7 (20 %) years (Denman et al., 2007). The initial mixing = LA [ 2 M o) y WP
ratios were added to the change in mixing ratios from fluxesu JZZZW LWV\\\/ P MALM* v\"
outside the domain, together forming the background mix- . | MHD

ing ratio matrix,Mcgx r). The background was optimized
at a resolution of 30x 15° (longitude by latitude) over the
global domain (i.eR = 144). The uncertainty in the scalars
of the background mixing ratio was set to 0.2 % equivalent
to approximately 4 ppb.

CH, [ppb]

3.2 Sensitivity tests

CH, [ppb]

We performed six inversions to test the sensitivity of the
posterior fluxes and error reduction to the spatial correlation
scale length (S1to S3), to the optimization of the backgrounc
(S4), to the filtering and averaging of the observations (S5), —.
as well as to the background estimation method (S6). The &
tests are summarized in Table 5. ~

CH,

3.3 Results

The inversions were run on a Linux Ubuntu machine with
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62 GB memory. The maximum and mean memory usage wa§igure 3. CHy mole fractions (ppb) as observed (black) and simu-
18 and 6.4 GB, respectively, and each inversion took approx.ated from the prior (blue) and posterior models (red). Also shown

imately 1.8 days to complete.

Figure 3 shows the observed ¢khixing ratios at in situ
measurement sites compared with those simulated with the
TM5 model and FLEXPART using the prior and posterior

is the background Climole fraction (green) and CfHcalculated
by the TM5 Eulerian model (light blue).

fluxes from test S1. At high-altitude sites, namely CMN, JFIJmean difference between the two backgrounds being be-
and SSL, the global model tends to underestimate the synopgween—7 and 4 ppb for the different sites. At MHD, however,
tic variability largely due to the coarse resolution. This can beobservation-based background is considerably lower than the
guantified by the normalized standard deviation (NSD) (i.e.model-based one (a difference-e11 ppb). This departure is
the SD of the model normalized by the SD of the observa-caused by an overestimation of the prior contribution to the
tions), which for TM5 was 0.46, 0.81 and 0.71, comparedmixing ratio from fluxes inside the nested domain, and since
with 0.81, 0.75 and 1.07 for FLEXPART, for the three sites this is subtracted from the observations that have been iden-
respectively. On the other hand, TM5 overestimated the varitified as being representative of the background, this leads
ability at MHD, a coastal site, with a NSD of 2.53 compared to an overall too low background estimate at this site (see
with 0.97 in FLEXPART. Again, this is likely to be due to Sect. 2.1.2 for details).

the coarse resolution in TM5, which cannot accurately re-

The model performance at the measurement sites for test

solve the location of MHD and overestimates the influencesS1, a priori and a posteriori, is summarized in Table 6, which

of land fluxes at this site.

compares the correlation coefficiem)( root mean square

To examine the differences between the two methods ofrror (RMSE) and NSD of the simulated mixing ratios ver-

estimating the background mixing ratios, we compare thesus the observations. As expected, the mixing ratios a posteri-
background determined in test S1 (model-based method) andri agree better with observations. To assess the assumptions
test S6 (observation-based method). The results are showmade about the uncertainties and error correlation scales used
in Fig. 4 at the in situ measurement sites. The two meth-in B andR, we look aty?, which has the value of the cost
ods compare reasonably well with one another with thefunction at the optimum (equivalently the weighted sum of
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Table 5. Overview of the sensitivity tests.

TestID Spatial correlation  Observations Backgrdund

S1 500 km afternoon/night orﬂy model-based, not optimized

S2 300 km afternoon/night only =~ model-based, not optimized

S3 200 km afternoon/night only ~ model-based, not optimized

S4 500 km afternoon/night only ~ model-based, optimized

S5 500 km aft model-based, not optimized

S6 500 km afternoon/night only  observation-based, not optimized

@ The method of calculation and whether or not the background mixing ratios were optimized in the infersion.
Low-altitude sites averaged afternoon data, high-altitude sites averaged niglitAateaged all data over 24 h.

Table 6. Statistics of the simulated versus observed,Chixing

20501 CMIN -
= 2000] ratios from test S1.
% 19504
= Site ID  Prior Posterior
:Ef 1900 [ d
U 18501 . )AMAMM NSD R RMSE NSD R RMSE
18007 PAL 0.99 0.69 16.2 1.04 0.82 11.9
20501 JF)J ICE 1.01 0.26 9.4 0.90 0.24 9.2
T 20001 BAL 114 066  16.6 096 072 137
8 19501 MHD 118 0.57 9.2 0.97 063 7.8
< 19001 OXK* - - 423 - - 734
O s SSL 121 052 282 107 071 193
18001 HPB 061 049 443 067 073 337
»oso] HUN 054 069 475 096 0.88 271
B MHD JFJ 1.04 030 214 0.75 033 203
g 2009 BSC 110 024 511 091 039 352
& 19509 CMN  1.00 056 264 0.81 0.68 216
L 190 ‘ CIB 0.89 050 209 091 0.68 15.6
U 18 - = LMP 202 034 350 1.68 045 240
180
20504 PAL * Insufficient observations for calculatifgand NSD.
o 200
8 19 ;A
T % Mm corresponds to fewer degrees of freedom. Using all observa-
= :ZZ tions, as in test S5, resulted ink& of 2.05, the lowest value,
2050] SS[ as this also resulted in larger SDs over the averaging inter-
— 00 val (1 day) and, hence, larger uncertainties in the observation
e 5 space.
= 100 The posterior fluxes and the flux increments (posterior mi-
O s nus prior fluxes) for the six sensitivity tests are shown in
180 Fig. 5. The posterior fluxes and flux increments from tests S1

to S5 are quite similar. However, on close inspection there
01/2011 03/2011 05/2011 07/2011 09/2011 11/2011

are a few notable differences. Decreasing the spatial correla-
Figure 4. Comparison of the background GHole fraction, cal-  tion scale length from 500 to 200 km (tests S1 to S3) resulted
culated using the observation-based (purple) and the model-baseéd a more heterogeneous pattern of flux increments as the
methods (green), with the observed mixing ratio (black). greater degrees of freedom allowed smaller spatial scales to

be modified in the inversion — although, overall, the patterns

of flux increments from all tests were consistent with lower
squares divided by the number of observations). Ideafly, emissions, relative to the prior, over France, Italy and the
would be equal to 1 indicating that the posterior solution is UK, and higher emissions over Austria, Hungary, and east-
within the limits of the prescribed uncertainties. In actual ern Europe. When the background mixing ratios are also op-
fact, the x2 values are larger than %.2 increased with in-  timized (test S4) there is only a small change with respect
creasing spatial correlation scale length with values of 2.24fo test S1; namely, in S4 the emissions are slightly lower
2.56 and 2.97 wittks of 200, 300 and 500 km, respectively, over the United Kingdom, France and the Iberian Peninsu-
which is as expected since a longer correlation scale lengtlar. Lower emissions are found as the background mixing

01/2012
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e - S ol 7 _ o positive in these regions as well. T.h.is diffgrence is a direct
EN EIRER S tﬂ:i: oy LS, oo result of the lower background mixing ratios estimated at
o zﬁgﬁ ‘ oo o] sﬁ’g} ‘ o0 a number of sites with the observation-based method and
s ] o050 oy | 020 highlights the challenge of obtaining robust background esti-
= Ot Coons on] - 8 > oo mates.
I IR SAG Z | vt IV S VGl 7| Figure 6 shows the error reduction for the six sensitiv-
e e ity tests. The largest error reductions are found ugige:
BTS2 e s tg-;; =T . ef 25 |lem  500km, i.e. in tests S1, S4, S5 and S6, for which the error
5& 2 8 glrem ] ga =S | reduction is almost identical. The error reductions in tests
o : o o] oo S2 and S3 are smaller and more limited to central Europe as
aon] RS e (0% aon] A oo compared to S1. Again, this is because increasing the cor-
stk bl 74 meedlian P oo relation scale length results in fewer degrees of freedom for
W w % e me s W w s e me we the inversion and effectively spreads the atmospheric infor-
=783 Z 0% 00 o k! 0%0 mation over a larger area.
son] 5’5 WS v ] ég S 3 o0 Lr?lst_ly, we compare the simulated mixing ratl(_)s using the
- oors 0N o000 a priori and a posteriori fluxes (from test S1) with observa-
- 3 oos - 7 eoo tions at an independent site, i.e. one that was not included in
osn 2 N o0 o e o0 the inversion, Puy de Déme, France (PUY). Figure 7 shows
e A U the observed, prior, posterior and background mixing ratios

o100 at the timestamp of the observations at PUY. Both the prior
and posterior mixing ratios overestimate the observed vari-
0020 ability with NSD of 2.24 and 2.04, respectively. This is most
0020 probably owing to both the topography (the station is located
060 on a volcanic cone, which represents a very abrupt change
20100 in topography) as well as the fact that there are significant
emissions in the prior around the station. A likely explana-
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R s e spectively, highlight the challenge of robustly identifying the

background and the influence that this has on the optimized
Figure 5. A posteriori fluxes of CH (left) and the flux increments ~ fluxes (see Fig. 5). There are different problems associated
(i.e. a posteriori — a priori fluxes) (right) for each of the sensitivity with each method which warrant further discussion here.
tests (in units of g Cm=2day1). First, using an optimized global model (in our case study,

the chemistry-transport model, TM5) to derive the prior

background may lead to problems of circularity, i.e. if the
ratios have been increased (by approximately 0.2 %) to minbackground is included in the optimization and the same ob-
imize the observation—model error and, hence, smaller increservations used to constrain the global model are also used
ments were needed in the emissions. Furthermore, using alh the Lagrangian inversion. If different sets of observations
observations (test S5), compared to only afternoon ones are used then this is not a problem. However, if there is
low-altitude sites and only night-time ones at high-altitude overlap then the prior information (about the background)
sites, made almost no difference to the posterior fluxes. Tesand the observations are no longer completely independent.
S6, which used the observation-based approach for the back-he degree of overlap should, however, be small since the
ground estimation, differed the most from the other tests. No-background calculated for the Lagrangian model is an ex-
tably, higher emissions, compared to the other inversionsiremely smoothed version of the global modelled mixing ra-
were found in France, Germany, the Czech Republic andio fields, as the sensitivity to the background even for a sin-
the UK and, correspondingly, the flux increments were moregle measurement is distributed over large parts of at least
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Figure 6. Error reduction for the Chifluxes for each of the sensi-

tivity tests.
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Figure 7. Comparison of the prior (blue), posterior (red) and back-
ground (green) simulated GHmixing ratios (ppb) with observa-
tions (black) at the independent site, PUY. Results are shown for
test S1.

one hemisphere. Furthermore, in the global model, the back-
ground is constrained mainly by measurements from out-
side the region of interest. The degree of circularity is min-
imized even further if new observations are included in the
Lagrangian inversion, which may also encompass assimilat-
ing observations from the same sites but at higher temporal
resolution in the Lagrangian model if observations from no
additional sites are available. In any case, the model-based
background should be from a pre-optimized model or op-
timized in the Lagrangian inversion, as biases in the back-
ground will be propagated into biases in the optimized fluxes.

Second, using a filtering of the observations to derive the
background will also lead to circularity, i.e. if the same ob-
servations are also used to optimize the background in the
inversion, and this case should be avoided. When the obser-
vations are used to derive the background, biases only arise
in the detection of the background signal. The background
mixing ratio may fluctuate depending on the altitude and lat-
itude of the air masses’ origin. In addition, if the site is in an
area of strong local fluxes, a background signal may not be
detectable. Analysing the modelled back-trajectories in such
cases may help determine whether candidate observations for
the background calculation are likely to have been influenced
by fluxes in the domain or not. Furthermore, the observation-
based method for determining the background is not appro-
priate for species such as @Qvhich have a strong diurnal
cycle and thus no definable background.

We compare our posterior GHlux estimates with those
derived from independent inverse models — specifically, with
the results of a recent inverse model ensemble fos fiiktes
over Europe from the NitroEurope project (Bergamaschi et
al., 2014). This ensemble consisted of four independent mod-
els, including two Eulerian and two Lagrangian ones. Al-
though the time period covered by the ensemble (2006 to
2007) differs from our study (2011), the fluxes of gkh
Europe are thought to have been fairly stable between both
periods and, hence, the differences are likely to represent dif-
ferences in the model set-ups rather than only changes in the
fluxes. Table 6 compares the prior and posterior emission to-
tals from this study with those of Bergamaschi et al. (2014).
Overall, the posterior fluxes from this study are within the

www.geosci-model-dev.net/7/2223/2014/
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Table 7. Comparison of Clj emissions (Tg Chlyear-1) from this study with the range of values from an inversion ensemble for 2006

and 2007 (Bergamaschi et al., 2014). The prior and posterior emissions are shown from test S1 and inclu®Dtipeidr and posterior
uncertainties. NW Europe includes the UK, Ireland, BENELUX, France and Germany, and E Europe includes Hungary, Poland, the Czech
Republic and Slovakia, according to the definitions in Bergamaschi et al. (2014).

Prior Posterior Bergamaschi et al. (2014)
UK + Ireland 2.66-0.84 2.41+0.33 2.32-4.57
BENELUX* 1.18+0.80 1.09+0.26 1.44-2.29
France 4,33 1.37 3.14+-0.42 2.02-4.94
Germany 2221.16 2.48+0.33 2.35-3.51
NW Europe 10.3%+4.17 9.12+1.34 8.13-14.44
Hungary 0.3A40.62 0.50+0.17 0.34-0.73
Poland 2.8H1.05 2.62£0.38 1.84-2.87
Czech Republie+ Slovakia  1.180.94  1.274+0.27 1.12-1.63
E Europe 4.36-2.61 4.39%0.82 3.59-4.90
NW + E Europe 14.7%4.17 1351 2.16 11.71-19.34

* BENELUX = Belgium, The Netherlands and Luxembourg.

range from the ensemble, despite differences in the time peit is calculated from the observations themselves). The back-
riod and the atmospheric observations used. There is onlground mixing ratios are also included in the optimization
one exception, i.e. BENELUX, where our estimate is 24 % problem.

lower than the lowest limit of the ensemble range. This may We demonstrated the performance of FLEXINVERT in a
be due, at least in part, to real changes in emissions. Howease study estimating GHluxes over Europe in 2011. The
ever, it may also be due to differing distributions of the pos- posterior fluxes were found to compare well to the results
terior emissions close to the boundaries of BENELUX with from an independent inversion ensemble consisting of four
France and Germany, which considering the small area oflifferent transport models and inversion frameworks. Al-
BENELUX, may become important in the calculation of the though we have only presented an example fop FHLEX-

total emission. Another contributing factor may also be thatINVERT can be applied to any species for which atmospheric
in the inversions in the Bergmaschi et al. (2014) study, theloss (if any) can be described as a linear process such as ra-
station, Cabauw (52°(N, 4.9 E), in the Netherlands, was in-  dioactive decay, dry and wet deposition, and oxidative chem-
cluded (whereas it was not included in our inversion), whichistry. Furthermore, the framework can be used on continental,
likely also has a strong influence on the posterior fluxes inregional and even local scales with little or no modification.
BENELUX.

4 Summary and conclusions

We have presented a new Bayesian inversion framework,
FLEXINVERT, for the estimation of surface to atmosphere
fluxes of atmospheric species. The framework is based on
source—receptor relationships, which describe the relation-
ship between changes in mixing ratio at a receptor “point”
and changes in fluxes, calculated by the Lagrangian Particle
Dispersion Model, FLEXPART. Fluxes may be optimized at
any given temporal resolution and on a nested grid of variable
spatial resolution. The variable grid is determined using the
information of the integrated SRRs and has finer resolution
where there is a strong observational constraint and coarser
resolution where there is a weak constraint. In this frame-
work, the background mixing ratio, i.e. the contribution to the
mixing ratio at the receptors not accounted for by transport
and fluxes inside the nested domain, is calculated by coupling
FLEXPART to the output of a global Eulerian model (or al-
ternatively, in the case that no such model output is available,
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Appendix A: Optimization of the posterior fluxes to the and has been tested with the gfortran compiler and the Linux

fine-grid resolution Ubuntu operating system and a makefile for gfortran is in-
o _ _ cluded. To run FLEXINVERT, the LAPACK and NetCDF
To optimize the posterior fluxegJs> on the variable- |ipraries for Fortran must be installed. The current version of

resolution grid to the fine-resolution grid by applying Bayes’ FLEXINVERT can be run directly with output from FLEX-
theorem (note that to simplify the notation we have usedpaRT 9.2.

F=F0E, fo=f" and f* = f"°* i.e. the optimized

fluxes on the fine grid), B2 Input data
o (F7f) = e (FLF) o (fF) (A1)  FLEXINVERT uses two definition files, the first speci-
o (f) ' fies the paths, filenames, and other file-related information

wherep(f*|f) is the posterior pdf thaf™* lies in the inter- (flles_.def), and the second specn_‘les the settings for eac_h in-
o s N . . . version run, such as the domain, dates, and uncertainties
val (f*, f*+df*) when f (the “observation”) has a given (control.def)

value. Assuming a Gaussian pdf and taking the natural loga-

rithm we can express(f|f*) as — FLEXPART files
—2Inp (f1f*)=(f— Ff*)TAﬂUX-l (f-Tf%), (A2) FLEXINVERT looks for FLEXPART output files for
each receptor in directories with the following naming
(whereA™ is the posterior error covariance matrix ands convention:/STATION/YYYYMM/ where STATION
the projection operator) and we can expreég*) as is the name of the receptor and must be the same as
that given in the station list file and in the prefix of
—2Inp (f*) = (f*— f») B (f* = f£3), (A3) the observation files. The FLEXPART files required are:
header , grid_time  (and grid_initial when
(whereBf™X is the prior error covariance matrix, on the fine computing the background using global model out-
grid) and by substituting Egs. (2) and (3) into Eq. (1) we put). It is important to note that if the full 3D SRR
derive the expression for(f*| f): fields are saved in thgrid_time files, the reading
. . T o fluxel [ ex of these files becomes considerably slower. Therefore,
—2Inp(f |f) = (f _fb) B (f - fb) it is recommended to save only the surface layer of
+(f - Ff*)TAﬂUX-l (f=Tf%). (A4) the SRR fields in the grid_time files. However, if the
grid_initial files are used, these need all layers.
The cost function can be thus be defined as (An option for thisgrid_time  andgrid_initial
1 . was added into FLEXPART 9.2). Also, note that FLEX-
J(f*) =3 (f* = fp) BT f*—f}) INVERT expects the stochastic errors to be written to
1 the grid_time  files. If these are not written then a
+5 (f =T f*) Al (p_ %) (A5) minor modification is required ireadgrid.f90

and the first derivative as — Station list file

This file specifies the receptors (where there are obser-

J'(f7) =gt (f* = fo) vations) to include in the inversion. The default file has
—rTAflux-1 (f=Tf%). (AB) the following format: receptor name, latitude, longitude,
altitude, observation type (either CM for continuous or
Thus we can derive the expression fdrat the minimum: FM for flask measurement) and a character string of up
. to 55 characters describing the receptor. However, only
f = . the receptor name and type are actually used in the in-
+ ng)v(vra-nit (FBquxFT JrAﬂux) (f=Tfp). (A7) version:

ID LAT LON ALT TYP STATIONNAME

Appendix B: Description of the software STATION XX.XX XXX.XX XXXX XX Station

B1 General description Name, Country

The code corresponding to the inversion framework de- ~ Observations

scribed in this paper is called FLEXINVERT and is available The sub-routineeadobs.f90  reads the observations
from the websitehttp://flexinvert.nilu.naunder a GNU Gen- from a separate ASCII file for each receptor. Again,
eral Public License. FLEXINVERT is coded in Fortran90 FLEXINVERT looks for the file prefix STATION.

Geosci. Model Dev., 7, 2223242 2014 www.geosci-model-dev.net/7/2223/2014/
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— obsread.txt

R. L. Thompson and A. Stohl: FLEXINVERT

The files contain six columns: year, month, day, hour,
minute, mixing ratio — and optionally the measurement
error estimate.

Prior fluxes

The sub-routinereademissions.fo0 reads the
prior fluxes (or equivalently prior emissions) from a
NetCDF file containing a 3-D floating variable for the
fluxes with dimensions time, latitude and longitude, and
the corresponding dimension variables. The name of the
floating point variable is specified ffiles.def by

the variableemisname .

Landcover file

FLEXINVERT uses high-resolution landcover data to
specify areas of water when determining the variable
resolution grid. By default, FLEXINVERT uses the
IGBP data, which is included in the tar archive.

Land—-sea mask file

A land—sea mask file is used in FLEXINVERT to de-
termine which grid cells are on land/ocean when calcu-
lating the covariance matrix. The default land—sea mask
is at 0.128 x 0.125 resolution and is converted to the
needed resolution automatically.

3-D concentration fields

For the calculation of the initial mixing ratios from a
global model, its 3-D concentration fields are needed.
FLEXINVERT includes routines for reading the output
of the models LMDZ4 and TM5 in NetCDF format,
which can be used as templates for reading data from
other models.

B3 Output data

At the end of an inversion run, FLEXINVERT writes the out-
put into the following files:

2239

NetCDF file containing floating point variables for the
prior and posterior mixing ratioypri  andypos , re-
spectively) as well as the prior and posterior background
mixing ratios pgpri andbgpos , respectively). These
mixing ratios are computed using the fluxes at the finest
resolution and at the timestamp of the FLEXPART tra-
jectories. The variables have dimension of time and re-
ceptor.

— analysis.nc

NetCDF file containing floating point variables for
the prior and posterior fluxeseiis_prior and
emis_post , respectively) as well as the prior and pos-
terior flux errors érror_prior anderror_post
respectively). The variables are in dimensions of longi-
tude, latitude and time and have units of kgfs 1.

covb.nc

NetCDF file containing a floating point variable of
the prior error covariance matrixcgvb ) and units
(kg m—3s71)2, Note that the errors are scaled by the nu-
merical scaling factor defined mod_var.f90

cova.nc

As for covb.nc but containing the posterior error covari-
ance matrix ¢ova ).

— covr.nc

NetCDF file containing a floating point variable of the
observation error covariance matrizofr ) with units
of mixing ratio squared (e.g. pph

nbox_xy.nc

NetCDF file containing a floating point variable of the
mapping of the fine to the variable resolution grid with
dimensions of the number of longitudinal by latitudinal
grid cells.

For testing purposes, the following files are also written but

ASCII file containing the observed, prior, posterior and

in most cases will not be required:

background mixing ratios at the same timestamp as the — gain.nc

observations. Note that if the background is not op-
timized, then the observed, prior and posterior mix-
ing ratios are the difference from the background and
the values in the columBGND_POSTre zero. The
obsread.txt file has the following format:

ID DATE OBS PRIOR POST BGND_PRIOR
BGND_POST ERROR

STATION YYYYMMDDHH F11.3 F11.3 F11.3
F9.3 F9.3 F9.3

— modout.nc

www.geosci-model-dev.net/7/2223/2014/

NetCDF file containing the Gain matriBHT (HBH " +
R)™(y — Huxp).

— covbfin.nc

NetCDF file of the prior error covariance matrix on the
fine grid covbfin ) with units (kgn3s-1)2. Note
that the errors are scaled by the numerical scaling factor.
covbfinaw.nc

As for covbfin.nc but containing the area-weighted er-
rors (covbfinaw ).

Geosci. Model Dev., 7, 222312 2014
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— covagg.nc Appendix C: Applying inequality constraints

NetCDF file of the aggregation errors in units of mixing

ratio squared (e.g. pBh After running FLEXINVERT, a separate code may be run to

apply inequality constraints. The inequality constraint code
— grid_operator.nc is similarly written in Fortran90 and has been tested with
the gfortran compiler and the Linux operating system. To
run the code, the LAPACK and NetCDF libraries for Fortran
must be installed. This code is available from the website:
— grid_coarse.nc http://flexinvert.nilu.no

NetCDF file of the projection operatoF,cg, from the
fine to the coarse grid.

NetCDF file of the projection operatdr, from the fine
to the variable grid.

— emisflex.nc
NetCDF file of the prior emissions converted to the
FLEXPART (i.e. fine) grid in units of kgm3s~1.

— knest_finobs.nc
NetCDF file of the transport operatt®st for the fine
grid and averaged to the observation averaging interval.

— knest_obs.nc
NetCDF file of the transport operatt"®st for the vari-
able grid and averaged to the observation averaging in-
terval.

— knest_trim.nc
NetCDF file of the transport operat®t"®st for the vari-
able grid with rows matching observations.

— kout_obs.nc

NetCDF file of the initial mixing ratio contributions,
Houtyout ‘for the coarse grid and averaged to the obser-
vation averaging interval.
— immr.nc
NetCDF file of the 3-D initial mixing ratios from the
global model (for option bgmethed 2 only) interpo-
lated to the FLEXPART resolution (first time step only).
— area_box.txt
ASCII file containing a vector of the variable grid cell
areas ().
— prior.txt
ASCII file containing the prior state vectar.

— posterior.txt
ASCII file containing the posterior state vecter,

— bgscalars.txt

ASCII file containing the prior and posterior scalars of
the background mixing ratios and their errors with the
format:

PRIOR POST PRIOR_ERROR POST_ERROR
F6.4 F6.4 F6.4 F6.4 F6.4

Geosci. Model Dev., 7, 2223242 2014 www.geosci-model-dev.net/7/2223/2014/
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