Articles | Volume 7, issue 3
https://doi.org/10.5194/gmd-7-1211-2014
https://doi.org/10.5194/gmd-7-1211-2014
Development and technical paper
 | 
27 Jun 2014
Development and technical paper |  | 27 Jun 2014

Uncertainties in estimating regional methane emissions from rice paddies due to data scarcity in the modeling approach

W. Zhang, Q. Zhang, Y. Huang, T. T. Li, J. Y. Bian, and P. F. Han

Related authors

Spatiotemporal variations in atmospheric CH4 concentrations and enhancements in northern China based on a comprehensive dataset: ground-based observations, TROPOMI data, inventory data, and inversions
Pengfei Han, Ning Zeng, Bo Yao, Wen Zhang, Weijun Quan, Pucai Wang, Ting Wang, Minqiang Zhou, Qixiang Cai, Yuzhong Zhang, Ruosi Liang, Wanqi Sun, and Shengxiang Liu
Atmos. Chem. Phys., 25, 4965–4988, https://doi.org/10.5194/acp-25-4965-2025,https://doi.org/10.5194/acp-25-4965-2025, 2025
Short summary
On the magnitude and uncertainties of global and regional soil organic carbon: A comparative analysis using multiple estimates
Ziqi Lin, Yongjiu Dai, Umakant Mishra, Guocheng Wang, Wei Shangguan, Wen Zhang, and Zhangcai Qin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-232,https://doi.org/10.5194/essd-2022-232, 2022
Manuscript not accepted for further review
Short summary
A comparative study of anthropogenic CH4 emissions over China based on the ensembles of bottom-up inventories
Xiaohui Lin, Wen Zhang, Monica Crippa, Shushi Peng, Pengfei Han, Ning Zeng, Lijun Yu, and Guocheng Wang
Earth Syst. Sci. Data, 13, 1073–1088, https://doi.org/10.5194/essd-13-1073-2021,https://doi.org/10.5194/essd-13-1073-2021, 2021
Short summary
Simulating the spatiotemporal variations in aboveground biomass in Inner Mongolian grasslands under environmental changes
Guocheng Wang, Zhongkui Luo, Yao Huang, Wenjuan Sun, Yurong Wei, Liujun Xiao, Xi Deng, Jinhuan Zhu, Tingting Li, and Wen Zhang
Atmos. Chem. Phys., 21, 3059–3071, https://doi.org/10.5194/acp-21-3059-2021,https://doi.org/10.5194/acp-21-3059-2021, 2021
Short summary
Evaluation of CH4MODwetland and Terrestrial Ecosystem Model (TEM) used to estimate global CH4 emissions from natural wetlands
Tingting Li, Yanyu Lu, Lingfei Yu, Wenjuan Sun, Qing Zhang, Wen Zhang, Guocheng Wang, Zhangcai Qin, Lijun Yu, Hailing Li, and Ran Zhang
Geosci. Model Dev., 13, 3769–3788, https://doi.org/10.5194/gmd-13-3769-2020,https://doi.org/10.5194/gmd-13-3769-2020, 2020
Short summary

Related subject area

Biogeosciences
Alquimia v1.0: a generic interface to biogeochemical codes – a tool for interoperable development, prototyping and benchmarking for multiphysics simulators
Sergi Molins, Benjamin J. Andre, Jeffrey N. Johnson, Glenn E. Hammond, Benjamin N. Sulman, Konstantin Lipnikov, Marcus S. Day, James J. Beisman, Daniil Svyatsky, Hang Deng, Peter C. Lichtner, Carl I. Steefel, and J. David Moulton
Geosci. Model Dev., 18, 3241–3263, https://doi.org/10.5194/gmd-18-3241-2025,https://doi.org/10.5194/gmd-18-3241-2025, 2025
Short summary
Soil nitrous oxide emissions from global land ecosystems and their drivers within the LPJ-GUESS model (v4.1)
Jianyong Ma, Almut Arneth, Benjamin Smith, Peter Anthoni, Xu-Ri, Peter Eliasson, David Wårlind, Martin Wittenbrink, and Stefan Olin
Geosci. Model Dev., 18, 3131–3155, https://doi.org/10.5194/gmd-18-3131-2025,https://doi.org/10.5194/gmd-18-3131-2025, 2025
Short summary
Parameterization toolbox for a physical–biogeochemical model compatible with FABM – a case study: the coupled 1D GOTM–ECOSMO E2E for the Sylt–Rømø Bight, North Sea
Hoa Nguyen, Ute Daewel, Neil Banas, and Corinna Schrum
Geosci. Model Dev., 18, 2961–2982, https://doi.org/10.5194/gmd-18-2961-2025,https://doi.org/10.5194/gmd-18-2961-2025, 2025
Short summary
H2MV (v1.0): global physically constrained deep learning water cycle model with vegetation
Zavud Baghirov, Martin Jung, Markus Reichstein, Marco Körner, and Basil Kraft
Geosci. Model Dev., 18, 2921–2943, https://doi.org/10.5194/gmd-18-2921-2025,https://doi.org/10.5194/gmd-18-2921-2025, 2025
Short summary
NN-TOC v1: global prediction of total organic carbon in marine sediments using deep neural networks
Naveenkumar Parameswaran, Everardo González, Ewa Burwicz-Galerne, Malte Braack, and Klaus Wallmann
Geosci. Model Dev., 18, 2521–2544, https://doi.org/10.5194/gmd-18-2521-2025,https://doi.org/10.5194/gmd-18-2521-2025, 2025
Short summary

Cited articles

Aumann, G., Ebner, H., and Tang, L.: Automatic derivation of skeleton lines from digitized contours. J. Photogr. Remote Sens., 46, 259–268, 1991.
Cai, Z. C.: A category for estimate of CH4 emission from rice paddy fields in China, Nutr. Cycl. Agroecosys., 49, 171–179, 1997.
Commission of The First National Pollution Source Census Data Compilation of China (CFPC): Datasets of China Pollution Source Census, China Environmental Science Press, Beijing, China, 2011.
Editorial Board of China Agriculture Yearbook (EBCAY): China Agriculture Yearbook, China Agriculture Press, Beijing, China, 2011.
Frolking, S., Qiu, J., Boles, S., Xiao, X., Liu, J., Zhuang, Y., Li, C., and Qin, X.: Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China, Global Biogeochem. Cy., 16, 1091, https://doi.org/10.1029/2001GB001425, 2002.
Download
Share