Articles | Volume 6, issue 5
https://doi.org/10.5194/gmd-6-1813-2013
https://doi.org/10.5194/gmd-6-1813-2013
Model description paper
 | 
29 Oct 2013
Model description paper |  | 29 Oct 2013

The Subgrid Importance Latin Hypercube Sampler (SILHS): a multivariate subcolumn generator

V. E. Larson and D. P. Schanen

Related authors

QuadTune version 1: A regional tuner for global atmospheric models
Vincent Larson, Zhun Guo, Benjamin Stephens, Colin Zarzycki, Gerhard Dikta, Yun Qian, and Shaocheng Xie
EGUsphere, https://doi.org/10.5194/egusphere-2025-1593,https://doi.org/10.5194/egusphere-2025-1593, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Representing surface heterogeneity in land–atmosphere coupling in E3SMv1 single-column model over ARM SGP during summertime
Meng Huang, Po-Lun Ma, Nathaniel W. Chaney, Dalei Hao, Gautam Bisht, Megan D. Fowler, Vincent E. Larson, and L. Ruby Leung
Geosci. Model Dev., 15, 6371–6384, https://doi.org/10.5194/gmd-15-6371-2022,https://doi.org/10.5194/gmd-15-6371-2022, 2022
Short summary
CondiDiag1.0: a flexible online diagnostic tool for conditional sampling and budget analysis in the E3SM atmosphere model (EAM)
Hui Wan, Kai Zhang, Philip J. Rasch, Vincent E. Larson, Xubin Zeng, Shixuan Zhang, and Ross Dixon
Geosci. Model Dev., 15, 3205–3231, https://doi.org/10.5194/gmd-15-3205-2022,https://doi.org/10.5194/gmd-15-3205-2022, 2022
Short summary
Quantifying and attributing time step sensitivities in present-day climate simulations conducted with EAMv1
Hui Wan, Shixuan Zhang, Philip J. Rasch, Vincent E. Larson, Xubin Zeng, and Huiping Yan
Geosci. Model Dev., 14, 1921–1948, https://doi.org/10.5194/gmd-14-1921-2021,https://doi.org/10.5194/gmd-14-1921-2021, 2021
Short summary
Parameterizing microphysical effects on variances and covariances of moisture and heat content using a multivariate probability density function: a study with CLUBB (tag MVCS)
Brian M. Griffin and Vincent E. Larson
Geosci. Model Dev., 9, 4273–4295, https://doi.org/10.5194/gmd-9-4273-2016,https://doi.org/10.5194/gmd-9-4273-2016, 2016
Short summary

Related subject area

Atmospheric sciences
Development of the CMA-GFS-AERO 4D-Var assimilation system v1.0 – Part 1: System description and preliminary experimental results
Yongzhu Liu, Xiaoye Zhang, Wei Han, Chao Wang, Wenxing Jia, Deying Wang, Zhaorong Zhuang, and Xueshun Shen
Geosci. Model Dev., 18, 4855–4876, https://doi.org/10.5194/gmd-18-4855-2025,https://doi.org/10.5194/gmd-18-4855-2025, 2025
Short summary
Optimized dynamic mode decomposition for reconstruction and forecasting of atmospheric chemistry data
Meghana Velagar, Christoph Keller, and J. Nathan Kutz
Geosci. Model Dev., 18, 4667–4684, https://doi.org/10.5194/gmd-18-4667-2025,https://doi.org/10.5194/gmd-18-4667-2025, 2025
Short summary
Interpolating turbulent heat fluxes missing from a prairie observation on the Tibetan Plateau using artificial intelligence models
Quanzhe Hou, Zhiqiu Gao, Zexia Duan, and Minghui Yu
Geosci. Model Dev., 18, 4625–4641, https://doi.org/10.5194/gmd-18-4625-2025,https://doi.org/10.5194/gmd-18-4625-2025, 2025
Short summary
Carbon dioxide plume dispersion simulated at the hectometer scale using DALES: model formulation and observational evaluation
Arseniy Karagodin-Doyennel, Fredrik Jansson, Bart J. H. van Stratum, Hugo Denier van der Gon, Jordi Vilà-Guerau de Arellano, and Sander Houweling
Geosci. Model Dev., 18, 4571–4599, https://doi.org/10.5194/gmd-18-4571-2025,https://doi.org/10.5194/gmd-18-4571-2025, 2025
Short summary
Low-level jets in the North and Baltic seas: mesoscale model sensitivity and climatology using WRF V4.2.1
Bjarke T. E. Olsen, Andrea N. Hahmann, Nicolas G. Alonso-de-Linaje, Mark Žagar, and Martin Dörenkämper
Geosci. Model Dev., 18, 4499–4533, https://doi.org/10.5194/gmd-18-4499-2025,https://doi.org/10.5194/gmd-18-4499-2025, 2025
Short summary

Cited articles

Barker, H.: Representing cloud overlap with an effective decorrelation length: A}n assessment using {CloudSat and CALIPSO data, J. Geophys. Res., 113, D24205, https://doi.org/10.1029/2008JD010391, 2008.
Barker, H. W., Pincus, R., and Morcrette, J.-J.: The M}onte Carlo Independent Column Approximation: Application within large-scale models, in: Proceedings of the {GCSS workshop, Kananaskis, Alberta, Canada, Amer. Meteor. Soc., 2002.
Barker, H. W., Cole, J. N. S., Morcrette, J.-J., Pincus, R., Räisänen, P., von Salzen, K., and Vaillancourt, P. A.: The Monte Carlo Independent Column Approximation: An Assessment using Several Global Atmospheric Models, Q. J. Roy. Meteor. Soc., 134, 1463–1478, 2008.
Bergman, J. W. and Rasch, P. J.: Parameterizing vertically coherent cloud distributions, J. Atmos. Sci., 59, 2165–2182, 2002.
Berner, J., Doblas-Reyes, F. J., Palmer, T. N., Shutts, G., and Weisheimer, A.: Impact of a quasi-stochastic cellular automaton backscatter scheme on the systematic error and seasonal prediction skill of a global climate model, Phil. Trans. R. Soc. A, 366, 2561–2579, https://doi.org/10.1098/rsta.2008.0033, 2008.
Download
Share