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Abstract. Coarse-resolution climate and weather forecast
models cannot accurately parameterize small-scale, nonlin-
ear processes without accounting for subgrid-scale variabil-
ity. To do so, some models integrate over the subgrid variabil-
ity analytically. Although analytic integration methods are
attractive, they can be used only with physical parameteriza-
tions that have a sufficiently simple functional form. Instead,
this paper introduces a method to integrate subgrid variability
using a type of Monte Carlo integration. The method gener-
ates subcolumns with suitable vertical correlations and feeds
them into a microphysics parameterization. The subcolumn
methodology requires little change to the parameterization
source code and can be used with a wide variety of physical
parameterizations.

Our subcolumn generator is multivariate, which is impor-
tant for physical processes that involve two or more hydrom-
eteor species, such as accretion of cloud droplets by rain
drops. In order to reduce sampling noise in the integrations,
our subcolumn generator employs two variance-reduction
methods, namely importance and stratified (Latin hypercube)
sampling. For this reason, we name the subcolumn generator
the Subgrid Importance Latin Hypercube Sampler (SILHS).

This paper tests SILHS in interactive, single-column sim-
ulations of a marine stratocumulus case and a shallow cu-
mulus case. The paper then compares simulations that use
SILHS with those that use analytic integration. Although the
SILHS solutions exhibit considerable noise from time step
to time step, the noise is greatly damped in most of the time-
averaged profiles.

1 Introduction

Large-scale models of the atmosphere typically parameter-
ize subgrid-scale physical processes, such as microphysics
or radiative transfer. A typical physical parameterization es-
timates the rate of a process at a point in space, whereas a
coarse-resolution model instead needs the process rate av-
eraged over a grid-box scale. Therefore, there is a benefit
to upscaling point process rates to grid-box averages by ac-
counting for subgrid-scale variability. Accurate upscaling is
of potential importance for any process that involves signif-
icant small-scale spatial variability and is highly nonlinear.
For instance, upscaling is expected to benefit nonlinear mi-
crophysical processes such as the autoconversion of cloud
droplets to raindrops and the accretion of liquid cloud water
by falling raindrops.

In many cases, the problem of upscaling reduces to the
problem of performing integrals such as the following:

〈f (x,y)〉 =

∫
P(x,y)f (x,y)dx dy. (1)

Here,x andy are fields that vary over a grid box, such
as liquid cloud water and rain mixing ratios;P(x,y) is the
subgrid probability density function (PDF) that provides the
probability density that particular values ofx and y occur
within a particular grid box and time step; andf (x,y) is a
function representing the process to be integrated, such as
autoconversion or accretion. For illustration, we have written
Eq. (1) as a bivariate function ofx andy, but in principle,
any number of variates could be used.

The functionf (x,y) represents either an analytic function
or a numerical subroutine. Such integrals may be performed
by several alternative quadrature methods. As examples, we
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cite two methods, namely analytic integration and Monte
Carlo integration:

1. Analytic integration.If both the PDF,P(x,y), and
the process rate function,f (x,y), are sufficiently sim-
ple analytic functions, then the integral〈f (x,y)〉 may
be performed analytically. Numerous papers have per-
formed such integrals in order to compute the liquid
cloud fraction using an assumption of instantaneous
saturation adjustment (e.g.,Sommeria and Deardorff,
1977; Mellor, 1977; Smith, 1990; Lewellen and Yoh,
1993; Bony and Emanuel, 2001; Tompkins, 2002).
Other papers have used analytic integration in order to
upscale microphysical process rates (e.g.,Zhang et al.,
2002; Morrison and Gettelman, 2008; Cheng and Xu,
2009; Larson and Griffin, 2013; Griffin and Larson,
2013; Weber and Quaas, 2012).

Advantages of analytic integration include the facts
that the integrals so obtained are exact and entail rela-
tively little computational expense. Disadvantages in-
clude the facts that deriving such integrals is time-
consuming and the facts that complicated process rate
functions, including numerical algorithms, cannot be
integrated analytically.

2. Monte Carlo integration.A second way to perform
the integral in Eq. (1) is to use Monte Carlo integra-
tion. That is, one may draw a sample ofx andy that
is distributed according to the PDFP(x,y), evalu-
ate the process ratef (x,y) at those points, and aver-
age the resulting sample of process rates. Monte Carlo
integration has been applied to radiative transfer pa-
rameterizations by the Monte Carlo independent col-
umn approximation (McICA) (e.g.,Barker et al., 2002;
Pincus et al., 2003; Räisänen et al., 2004; Räisänen
and Barker, 2004; Räisänen et al., 2005; Pincus et al.,
2006). A type of Monte Carlo integration has also been
recommended for use with microphysics (Larson et al.,
2005; Larson, 2007). A similar but deterministic sam-
pling strategy is used in the Tripleclouds parameteri-
zation (Shonk and Hogan, 2008; Shonk et al., 2012).

A disadvantage of Monte Carlo integration is the sam-
pling noise that is inherent in the use of a necessar-
ily limited number of sample points. However, these
sampling errors have been found to be of relatively
little consequence in tests of McICA (Pincus et al.,
2003; Räisänen et al., 2005; Pincus et al., 2006; Räisä-
nen et al., 2007; Barker et al., 2008; Räisänen et al.,
2008). Nevertheless, in order to reduce the sampling
errors, variance-reduction techniques have been intro-
duced for the McICA (Räisänen and Barker, 2004; Hill
et al., 2011). Another method to reduce noise is the use
of stratified sampling, in which sample points are cho-
sen such that they are spread out and do not clump
(Larson et al., 2005).

An advantage of Monte Carlo integration is that it can
be applied quite generally to complicated process rates
f (x,y), including those that are numerical algorithms.
Furthermore, Monte Carlo integration is non-intrusive;
in other words, it allows the integral to be performed
without requiring modification to the computer code
that implements the point process ratef (x,y). This
is possible because Monte Carlo integration separates
and distinguishes the representation of subgrid vari-
ability from the calculation of local physical processes.
Therefore, Monte Carlo integration might be particu-
larly useful for models like the Weather Research and
Forecasting (WRF) model (Skamarock et al., 2005)
that contain many options for physics parameteriza-
tions, and also useful for models whose physics pack-
ages are updated frequently.

Another advantage of some Monte Carlo integrators is
that they allow a variety of assumptions about the cor-
relation of sample points in the vertical, including both
random and maximal overlap of vertical points. Flex-
ibility of the vertical correlations is useful for driving
radiative transfer parameterizations and diagnostic pa-
rameterizations of precipitation.

This paper describes and presents tests of a new Monte
Carlo integration method called the Subgrid Importance
Latin Hypercube Sampler (SILHS). SILHS generates a dis-
tribution of sample points that permits efficient Monte Carlo
integration of integrals such as Eq. (1). The process rate func-
tion f (x,y) must be supplied separately by, for instance,
a microphysics scheme. In addition, the PDFP(x,y) in
Eq. (1) must be provided separately by, for instance, a cloud
and turbulence parameterization such as the Cloud Layers
Unified By Binormals (CLUBB) parameterization (Golaz
et al., 2002; Larson and Golaz, 2005). Unlike previous Monte
Carlo generators, which focused mostly on calculating cloud
overlap and generating profiles of liquid cloud water, SILHS
is used here to generate profiles of rain water and vertical
velocity, along with profiles of liquid cloud water.

A key capability of SILHS is that it generates multivariate
samples, unlike, for instance, the method ofRäisänen et al.
(2004), which does allow two variates to depend diagnosti-
cally on one another, but not to vary independently. The use
of multivariate samples is important for processes such as ac-
cretion, which depends on the correlation of liquid cloud wa-
ter and rain water. If the raindrops fall through cloud water,
they accrete cloud water, whereas if they fall through clear
air, they evaporate. Multivariate samples can also be gener-
ated by the use of copulas (Larson, 2007; Norris et al., 2008).
Copulas are quite flexible and promising, but they do have the
drawback of allowing only the specification of rank correla-
tions among variables within a grid level and not the more
familiar linear correlations.
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SILHS generates vertical profiles of sample points, al-
lowing the integral in Eq. (1) to be computed at each grid
level. SILHS therefore may be called a subcolumn gener-
ator. SILHS uses both importance and stratified sampling
in order to perform variance reduction, that is, to reduce
sampling noise. SILHS provides an option to choose sam-
ple points preferentially within an important region, namely
clouds containing liquid. SILHS also spreads out (i.e., strat-
ifies) the sample points within the cloudy and clear regions
separately using Latin hypercube sampling (McKay et al.,
1979; Press et al., 1992; Owen, 2003; Gentle, 2003; Larson
et al., 2005).

The remainder of this paper is organized as follows. In
Sect.2, we discuss the methodology behind SILHS, includ-
ing the treatment of vertical overlap of clouds, reduction of
noise, and multivariate correlations. In Sect.2 we also briefly
outline two other numerical models we use in conjunction
with SILHS, namely CLUBB and a microphysics scheme
(Khairoutdinov and Kogan, 2000). In Sect.3, we compare
the results of simulations that use Monte Carlo integration
of the microphysics with those that use analytic integration
for both a cumulus and a stratocumulus case. In Sect.4, we
present conclusions and provide a future outlook.

2 Methodology

This section describes the algorithm behind SILHS, first pro-
viding an overview of the role that SILHS plays within a
single-column model, and then providing more detail on how
subcolumns are generated.

The following overview describes the four major steps that
our single-column model undertakes in a single time step:

1. Construct the multivariate PDF of subgrid-scale vari-
ability (performed by CLUBB).In our approach, sam-
ple points are drawn from an underlying PDF. This
PDF is computed separately from SILHS and provided
as input to SILHS. In this paper, the PDF is calculated
by CLUBB, which is described inGolaz et al.(2002)
andLarson and Golaz(2005). In this paper, CLUBB’s
PDF contains the following variates: vertical velocity
w; total water mixing ratio (vapor + liquid)rt; liquid
water potential temperatureθl ; rain mixing ratiorr; and
rain drop number mixing ratioNr. The two rain vari-
ates are distributed according to a single lognormal,
whereas the other variates are distributed according to
a two-component normal mixture. (A two-component
normal mixture is the sum of two normal distributions,
i.e., a double Gaussian PDF. The normal-mixture ter-
minology is widely used in statistics.)

2. Draw a sample of subcolumns from the subgrid PDF
(performed by SILHS).Once the PDF has been cal-
culated by CLUBB, a sample of subcolumns for each

grid column is drawn from it. The generation of sub-
columns is done by SILHS. SILHS is designed so that
in the limit of an infinite number of sample columns
per grid column and time step, the sample statistics
converge to the desired vertical correlations, to the
desired marginal PDF at each grid level, and to the
desired horizontal (i.e., within grid box) correlations
between variates. (The marginal PDF of, for exam-
ple, variatex is the PDF that remains when the full
multivariate PDF is integrated over all variates other
thanx.) Because CLUBB computes a separate multi-
variate PDF at each vertical grid level (rather than a
single grid-column PDF, as inLarson, 2007), CLUBB
does not provide any information about vertical corre-
lations. Instead, the vertical overlap of the variates is
handled by SILHS.

3. Feed subcolumns into microphysics and compute mi-
crophysical tendencies (performed by a microphysics
parameterization).Each subcolumn is fed, one by one,
into a microphysics parameterization, which again
is separate from CLUBB and SILHS. The micro-
physics parameterization remains unaltered and does
not “know” that the profiles being fed to it are from
subcolumns rather than grid-box means. The micro-
physics simply computes local quantities (such as au-
toconversion, accretion, and evaporation) on the as-
sumption that there is no heterogeneity within the sub-
column (i.e., that at each grid level in a subcolumn, all
fields are horizontally uniform). The microphysics cal-
culates a separate set of microphysical tendencies for
each subcolumn.

4. Average microphysical tendencies from each subcol-
umn in order to form a grid-box average.Finally,
the microphysical tendencies from all the subcolumns
within a grid column are averaged together, using a
weighted mean if necessary (described further below).
The resulting grid-box-averaged profile of microphys-
ical tendencies is fed back into the host model (in this
case CLUBB) and used to update the grid-box means.
In this way, the subcolumns provide a means for the
microphysics to interact with the subgrid variability
provided by CLUBB.

Background to the present paper can be found inLarson
et al.(2005), which describes a predecessor to SILHS. In that
paper, Latin hypercube samples were drawn from CLUBB
and fed into a simple autoconversion formula, but the simu-
lations described there did not use a complete microphysics
parameterization and had no feedback from the autoconver-
sion back to CLUBB.

We now discuss further each of the four steps in the afore-
mentioned overview. However, because the focus of this pa-
per is the sampling that is carried out by SILHS, namely step
2, that is the only step that we will describe in detail.
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2.1 Constructing the multivariate PDF of subgrid-scale
variability

In order to compute the subgrid PDF from which SILHS
draws sample points (step 1 in Sect.2 above), this paper uses
CLUBB (Golaz et al., 2002; Larson and Golaz, 2005; Larson
et al., 2012). CLUBB computes the subgrid PDF by prog-
nosing various higher-order central moments and making an
assumption about the shape of the PDF. The prognostic equa-
tions contain much of the physics of the combined CLUBB–
SILHS model. The prognosed higher-order moments include
variances of turbulent and thermodynamic quantities (w, rt,
andθl), covariances of those same quantities, and the third-
order moment of vertical velocity. The framework of the
prognostic equations is derived directly from the governing
equations of fluid flow by forming higher-moment equations
and Reynolds-averaging them. However, many of the indi-
vidual terms within those equations are parameterized. Be-
cause these equations are prognostic, they contain some de-
gree of memory of the state of the flow at a prior time step.
The variances determine the width of the PDF; the covari-
ances are related to the correlations between variates, and the
third-order moment determines whether the PDF is skewed
to low or high values. The moments, along with the assump-
tion that the PDF has a normal-mixture/lognormal functional
form, determine the PDF for each grid box and time step.
We omit further details about CLUBB’s formulation because
it has been described in previous papers (Golaz et al., 2002;
Larson and Golaz, 2005; Larson et al., 2012).

The CLUBB (and SILHS) source code, along with
separate documentation, is freely downloadable for non-
commercial use athttp://clubb.larson-group.com/. CLUBB
and SILHS are written entirely in Fortran 95 and can be
compiled using a number of Fortran compilers on the Linux
operating system. Both CLUBB and SILHS are contained
within a single subversion (svn) code repository. The simu-
lations described and shown in this paper were created with
revision 4895 of the source code. Further documentation and
instructions for running CLUBB and SILHS are contained
in several README files that are included along with the
source code. These files serve collectively as a user manual.
Readers who are interested in details of the algorithm are en-
couraged to peruse the source code. We have strived to write
well-structured code that is annotated generously with code
comments.

2.2 Drawing a sample of subcolumns from the subgrid
PDF

In this subsection, we detail step two in Sect.2, namely, the
method by which sample points are drawn from the PDF
of subgrid variability. In overview, the sampling strategy is
to generate a uniformly distributed sample at a particular
altitude of interest within the domain; then, starting from
that altitude of interest, choose a vertically correlated profile

of sample points; and finally, transform the uniformly dis-
tributed sample points to the PDF at each level calculated by
CLUBB.

In our case, the PDF of interest is a single multivariate
PDF with normal-mixture marginals forw, rt, andθl , and
single lognormal marginals forrr andNr (Larson and Griffin,
2013). A normal-mixture marginalP(x) of a generic variate
x has the following functional form:

P (x) = aP1(x) + (1− a)P2(x), (2)

wherea is the mixture fraction and a normal component is
given by

Pi (x) =
1

(2π)1/2σ
exp

[
−(x − µ)2

2σ 2

]
. (3)

Hereµ andσ 2 are the mean and the variance, respectively, of
x. The mean and variance may differ between components.

A lognormal marginalP(x) of x has the form

P (x) =
1

(2π)1/2σx
exp

[
−(lnx − µ)2

2σ 2

]
. (4)

Hereµ andσ 2 are the mean and the variance, respectively,
of lnx, and lnx is normally distributed. A lognormal shape
was chosen because it contains only positive values, which
is appropriate for hydrometeors. It has plausible tails, and
the mathematics to handle an arbitrary number of correlated
lognormal variates is tractable. A multivariate lognormal is
tractable because a multivariate normal is straightforward
mathematically, and the normal and lognormal distributions
are related by simple exponentiation (Garvey, 2000).

As seen in Eq. (4), a 1-D lognormal functional form is
specified by two parameters, which can be related by a sim-
ple transformation to the lognormal’s mean and variance
(Garvey, 2000, Appendix B). The means ofrr andNr are cal-
culated by the microphysics parameterization in use. SILHS
diagnoses the variances ofrr andNr as being proportional
to the mean squared. For example, we setr ′2

r /rr
2 equal to

a constant everywhere throughout the simulation. The values
of the constants of proportionality that we choose, for the ma-
rine stratocumulus case discussed below, are listed in Table
1 of Larson and Griffin(2013). These values are based on a
large-eddy simulation. In order to improve the results for the

shallow cumulus case discussed below, we increaseN ′2
r /Nr

2

within cloud to 2.2; below cloud, we decreaseN ′2
r /Nr

2
and

r ′2
r /rr

2 to 1. A simple proportionality seems unlikely to be
accurate in all cases, particularly when the mean is large, but
using a proportionality is computationally inexpensive and
has some support from satellite observations (M. Lebsock,
personal communication, 2012).

A multivariate subgrid PDF is associated with subgrid
(within-grid-box or “horizontal”) correlations between the
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variates. In nature, these correlations vary with time and
space. However, in order to maintain simplicity and reduce
computational cost, we have prescribed the horizontal corre-
lations in the present paper (see further details below). The
values of the horizontal correlations that this paper uses are
based loosely on large-eddy simulations. For the marine stra-
tocumulus case discussed below, we use the values of corre-
lations listed in Table 1 ofLarson and Griffin(2013). We use
the same correlation values for the shallow cumulus case dis-
cussed below, except that, to improve the results for cumulus,
the correlation between the extended liquid water,s (Larson
et al., 2005), and the droplet number is set to zero. Prescrib-
ing constant horizontal correlations in the simulations is not
ideal because correlations are not constant in nature (Larson
et al., 2011). In future work, one could attempt to diagnose
the correlations at each time step, using a methodology such
as that described inLarson et al.(2011).

The procedure by which SILHS generates subcolumns can
be divided into the following five tasks:

1. Choose a starting grid level for sampling

As discussed below, we impose vertical correlations
by choosing a sample value at one grid level, mov-
ing to an adjacent vertical level, choosing a new but
similar sample value, and so forth. The starting grid
level can be any grid level (e.g., the lowermost level).
However, if the starting grid level is far from a liq-
uid cloud layer, then, because sample points gradually
de-correlate with vertical distance, we cannot expect
to choose sample points preferentially within liquid
cloud, as we desire.

In order to mitigate this problem partly, we choose the
starting grid level to be the level with the greatest liq-
uid water mixing ratio. This does not help when a grid
column contains, for instance, a large-liquid, stratocu-
mulus layer and a small-liquid cumulus layer. How-
ever, it does help for grid columns that contain, for in-
stance, a single cumulus layer. If no liquid is present
at any level, then we choose the grid level that is half
the maximum grid level. Although our tests seem to in-
dicate that our criterion for choosing the starting grid
level is acceptable, this is an area that is in need of
further experimentation, particularly for grid columns
with multiple, distinct cloud layers. In such cases, one
could choose different starting grid levels for different
subcolumns, thereby sampling preferentially to some
degree within multiple layers.

2. Generate an uncorrelated multivariate sample at the
starting grid level

Once the starting grid level is chosen, SILHS gener-
ates for that level an uncorrelated, multivariate sample.
The distribution lies between (0,1) and is uniform ex-
cept for weightings discussed below. Stated differently,

SILHS generates a vector of independent, uniformly
distributed sample points, each element of which cor-
responds to a separate variate, such asw. Once the
starting grid level is chosen, SILHS generates for that
level an uncorrelated, multivariate sample. (The uncor-
related, uniformly distributed samples are transformed
to correlated, normally distributed ones in task 4 be-
low.)

Care must be taken in sampling the variates that have
two mixture components, namelyw, rt, andθl . In order
to ensure that the two mixture components are sam-
pled in an unbiased way, SILHS assigns each sample
point to one mixture component or the other accord-
ing to the relative weights of the two mixture com-
ponents. For concreteness, suppose that the weight of
the first component is mixt_frac and the weight of the
second is 1-mixt_frac. To assign the sample point to
a component, SILHS generates an extra random vari-
ate,X_u_dp1, that is uniformly distributed between 0
and 1 (see p. 56 ofJohnson, 1987, andLarson et al.,
2005). Then SILHS chooses the first component if
X_u_dp1 < mixt_frac and chooses the second com-
ponent otherwise. All further discussion in this sub-
section pertains to a single mixture component.

Although the points are drawn from a uniform distri-
bution, the sampling procedure of SILHS is compli-
cated slightly by the fact that SILHS uses both impor-
tance sampling and stratified sampling in order to re-
duce noise.

First, if liquid cloud fraction is small at the starting
grid level, then SILHS contains the option to sam-
ple preferentially within an important region, namely
cloud containing some liquid (Räisänen and Barker,
2004); therefore SILHS does importance sampling
(Gentle, 2003). SILHS concentrates sample points
within liquid/mixed-phase cloud because regions with
liquid often contain considerable variability, and much
interesting microphysics occurs there. In particular, if
liquid cloud fraction exceeds 0.5, then SILHS does
not sample preferentially within cloud, but if liquid
cloud fraction lies between 0.001 and 0.5, then SILHS
chooses an equal number of sample points within liq-
uid cloud (i.e., wheres > 0) and outside of liquid
cloud (i.e., wheres < 0) for each mixture component.
Because the samples are drawn preferentially from liq-
uid cloud in grid boxes with low cloud fraction, SILHS
must weight the sample points appropriately by liquid
cloud fraction in order to ensure that grid-box aver-
ages are unbiased. Namely, the weights outside of liq-
uid cloud are given by

1− (cloud fraction at starting grid level)

(number of samples)/2
, (5)
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and the weights within liquid cloud are given by

cloud fraction at starting grid level

(number of samples)/2
. (6)

At this initial step in the algorithm, the sample points
are generated according to a uniform distribution
within liquid cloud and a uniform distribution out-
side of cloud. To generate uniformly distributed points,
SILHS uses the Mersenne twister algorithm (Mat-
sumoto and Nishimura, 1998).

When liquid cloud fraction at the starting grid level
lies between 0.001 and 0.5, SILHS chooses half the
sample points within liquid cloud. If one were inter-
ested only in within-cloud processes, such as auto-
conversion and accretion, one could choose all points
within cloud. However, some interesting processes do
occur outside of cloud, such as evaporation of rain-
drops falling alongside sheared cumulus clouds and
clear-sky radiative transfer. Therefore, SILHS chooses
some sample points outside of cloud.

In a second measure to reduce noise, SILHS employs
stratified sampling. Stratified sampling spreads sam-
ple points in order to avoid the clumping of points that
naturally arises due to statistical chance. In particular,
SILHS uses Latin hypercube sampling separately in
both the cloudy and cloud-free regions. The method-
ology behind Latin hypercube sampling is thoroughly
described in many sources (e.g.,McKay et al., 1979;
Press et al., 1992; Owen, 2003; Gentle, 2003; Larson
et al., 2005). In most applications, Latin hypercube
sampling guarantees that sample points are spread out
(i.e., stratified), but CLUBB–SILHS does not neces-
sarily prohibit clumping of sample points. The reason
is the following. CLUBB uses a two-component mix-
ture for some variates. For those variates, SILHS guar-
antees that the points assigned to particular component
are stratified, but SILHS does not guarantee that the
collection of points from both components, taken to-
gether, are stratified. In other words, SILHS does not
attempt to ensure that, say, a high-percentile sample
value chosen from one component with a low mean ex-
ceeds a low-percentile sample value chosen from the
high-mean component. Nevertheless, SILHS’s Latin
hypercube sampling does usually increase stratifica-
tion of sample points.

3. Generate vertically correlated profiles of sample
points

Cloud parcels at different altitudes within a grid-
column-sized volume are said to be “vertically over-
lapped” if one cloud parcel resides vertically above
the other. The vertical overlap of clouds strongly in-
fluences cloud albedo (e.g.,Morcrette and Fouquart,

1986). Two possible overlap assumptions are maxi-
mum overlap, in which cloud fields are stacked verti-
cally to the greatest extent possible, and random over-
lap. These assumptions have the drawback of intro-
ducing spurious dependence on the vertical grid spac-
ing. In recent years, several authors have assumed
that clouds are overlapped according to a weighted
average of maximum and random overlap (Hogan
and Illingworth, 2000; Bergman and Rasch, 2002;
Räisänen et al., 2004; Pincus et al., 2005; Barker,
2008; Shonk et al., 2010; Oreopoulos et al., 2012).
The weight of the maximum overlap component is
assumed to decrease exponentially with distance be-
tween the layers, with an e-folding length that needs
to be determined. The e-folding length may vary with
hydrometeor type (Pincus et al., 2005), meteorologi-
cal regime (Pincus et al., 2005), and/or latitude (Shonk
et al., 2010; Oreopoulos et al., 2012).

SILHS adopts a related but different approach. SILHS
does not assume that the points are a weighted aver-
age of maximum and random overlap but does choose
sample points that decorrelate exponentially with in-
creasing vertical distance between sample points:

vert_corr= exp(−vert_decorr_coef1z / Lscale) . (7)

Here vert_corr is not the correlation itself between
points in the vertical, but vert_corr does increase with
increasing correlation, as will become clear momen-
tarily. The quantity1z is the distance between grid
levels, Lscale is CLUBB’s turbulent mixing length,
and vert_decorr_coef is a constant number that allows
SILHS to adjust the degree of vertical overlap and is
provisionally set to 0.03 in this paper. Given a uni-
formly distributed random number,X_u(k), between 0
and 1 at grid levelk, SILHS chooses the value at an ad-
jacent grid level (e.g.,X_u(k + 1)) according to a uni-
form distribution that is centered on the valueX_u(k)

and has a half-width of 1− vert_corr. IfX_u(k+1) lies
outside(0,1), then the value is folded back so that it
does lie within(0,1). That is, ifX_u(k + 1) > 1, then
we setX_u(k+1) = 2−X_u(k+1); if X_u(k+1) < 0,
then we setX_u(k + 1) = −X_u(k + 1). Such corre-
lated vertical profiles are built for each variate, includ-
ing the extraX_u_dp1 variate that determines the mix-
ture component. For simplicity, each variate uses the
same value of vert_corr, even though in nature the ver-
tical correlations of all quantities may not necessarily
be equal.

Given that the half-width equals 1− vert_corr,
vert_corr= 1 corresponds to maximum overlap,
vert_corr= 0 to random overlap, and 0< vert_corr<
1 to intermediate overlap. The degree of vertical cor-
relation depends on CLUBB’s buoyant mixing length,
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Lscale (see Eq.7). When Lscale is large, then parcels
are allowed to travel further in the vertical direction
(Golaz et al., 2002), which we assume is indicative of
higher vertical coherence. This link between CLUBB’s
mixing length and the decorrelation length introduces
an approximate but interactive, dynamical aspect into
the diagnosis of vertical overlap.

Ensuring that the samples are drawn from the desired
means, variances, and covariances at each grid level is
accomplished later by the transformation from a uni-
form distribution to a normal-mixture/lognormal dis-
tribution described below. Note that SILHS directly in-
fluences only the vertical correlation of uniformly dis-
tributed points and not the normal-mixture/lognormal
points. Although the vertical correlations of the
normal-mixture/lognormal points are related to those
of uniformly distributed points, they are usually not
equal.

4. Transform uncorrelated, uniformly distributed points
to correlated, normally distributed points

At this point in the algorithm, SILHS has generated
multiple subcolumns of uncorrelated, uniformly dis-
tributed (but weighted) sample points. Furthermore,
SILHS has assigned each sample point to a mixture
component by the aforementionedX_u_dp1 variate.
SILHS now transforms these samples to a normal-
mixture distribution with the desired horizontal corre-
lations. Even the hydrometeor variates, which are ulti-
mately transformed to single lognormal distributions,
are transformed here to a normal-mixture distribution
(with identical means and variances in each mixture
component so that the distribution collapses to a single
normal).

First, SILHS transforms the sample points for each
mixture component from an uncorrelated uniform dis-
tribution to an uncorrelated standard normal distribu-
tion xstnd (i.e., a normal distribution with zero mean
and unit variance). This transformation is accom-
plished by use of the inverse cumulative distribution
function (Johnson, 1987; Larson et al., 2005). Second,
we transformxstnd to a normally distributed sample,
xnonstnd, with the desired subgrid covariance matrix.
The purpose is to take into account the (horizontal)
correlations among variates. The covariance matrix de-
pends on the mixture component to which the sample
point is assigned, but this mixture component is iden-
tified by theX_u_dp1 variate. To transform the sam-
ple points from standard normal to non-standard nor-
mal, we use the commonly adopted formula (Johnson,
1987, pp. 52–54)

xnonstnd= Lcovxstnd+ µ, (8)

whereµ is the vector of means of the normal-mixture
component and the matrixLcov is the Cholesky de-
composition of the matrix of subgrid (horizontal) co-
variances among all variates, includingw, rt, θl , and
all hydrometeors. For the lognormal variates (i.e., the
hydrometeors),µ is not the vector of means of the log-
normal variates but rather the means of lnxnonstnd, such
that whenxnonstndis exponentiated, the desired means
of the lognormal variates are recovered (see Eq.4). To
do so, we use formulas fromGarvey(2000) andLar-
son and Griffin(2013). In a similar fashion, for lognor-
mal variates, the covariances associated withLcov have
been transformed from the lognormal space to a nor-
mal space (Garvey, 2000; Larson and Griffin, 2013).

Computing the Cholesky decomposition of the covari-
ance matrix,Lcov, at each time step and for each grid
box would be excessively expensive. To avoid this
cost and simplify the formulation, we prescribe the
horizontal correlations between hydrometeors as fixed
constants for all grid boxes and time steps. To do so,
given the correlations, we compute the Cholesky de-
composition of the correlation matrix,Lcorr. Because
the correlations are constant,Lcorr needs to be com-
puted only once at the beginning of a simulation. We
transformLcorr to the Cholesky decomposition of the
covariance matrix,Lcov, by row multiplication ofLcorr
by the standard deviation,σ(i) of each variatei:

Lcov(i,j) = σ(i)Lcorr(i,j). (9)

This multiplication does need to occur at each time
step, but the multiplication is much cheaper than per-
forming a Cholesky decomposition.

5. Exponentiate certain hydrometeor variates in order to
transform them to lognormal distributions

CLUBB and SILHS assume that hydrometeor variates
such asrr andNr obey single lognormal distributions.
These variates are transformed from normal to log-
normal distributions by exponentiation of the sample
points. A single, rather than double, lognormal results
because previously we assumed the same mean for
each of the two components of a given hydrometeor
species, and also the same variance.

2.3 Feeding subcolumns into microphysics and
computing microphysical tendencies

The subcolumns can, in principle, be fed into a variety of
physics parameterizations if so desired, thereby driving the
parameterized physical processes with subgrid variability.
However, in this paper, we feed the subcolumns only into
a microphysics parameterization.

In order to compute microphysical process rates (step
3 in Sect.2), this paper uses the drizzle parameterization
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Fig. 1. Time series of rain water path (upper) and liquid water path (lower) from the RICO shallow
cumulus case. Five different integrations of the microphysics are overplotted: analytic (orange dashed),
and SILHS-based sampling with 2 points (light blue solid), 4points (purple dot dashed), 8 points (dark
blue solid), and 64 points (red dashed) per grid box and time step.32

Fig. 1. Time series of rain water path (upper) and liquid water
path (lower) from the RICO shallow cumulus case. Five different
integrations of the microphysics are overplotted: analytic (orange
dashed line), and SILHS-based sampling with 2 points (light blue
solid line), 4 points (purple dot-dashed line), 8 points (dark blue
solid line), and 64 points (red dashed line) per grid box and time
step.

of Khairoutdinov and Kogan(2000). The Khairoutdinov–
Kogan (KK) parameterization was formulated based on a de-
tailed simulation of a shallow marine stratocumulus cloud
and does not contain ice. In our simulations, we prescribe
cloud droplet number mixing ratio. The KK parameteriza-
tion prognoses both rain mixing ratio and rain number mix-
ing ratio. One could compute the sedimentationterm in the
rain budget equation separately for each subcolumn, but for
simplicity, this paper computes the sedimentation term only
once using grid-box mean profiles. However, the grid-mean
sedimentationvelocity, which is used in sedimentation term,
is obtained by averaging sedimentation velocities computed
separately for each subcolumn.

The advantage for this paper of using the KK microphysics
parameterization is that the KK process rates are formulated
in terms of power laws, which can be integrated analyti-
cally over CLUBB’s PDF (Larson and Griffin, 2013; Grif-
fin and Larson, 2013). Simulations that use analytic integra-
tion will provide a reference against which we will compare

Dis
ussionPaper|Dis
ussionPaper|Dis
ussionPaper|Dis
ussionPaper|

100 200 300
0

0.005

0.01

0.015

0.02

0.025

Rain Water Path

Time [min]

rw
p 

[k
g/

m
2 ]

 

 
analytic
silhs_2
silhs_4
silhs_8
silhs_64

100 200 300
0.04

0.06

0.08

0.1

0.12

0.14

0.16
Liquid Water Path

Time [min]

lw
p 

[k
g/

m
2 ]

 

 

analytic
silhs_2
silhs_4
silhs_8
silhs_64

Fig. 2. As in Fig. 1, but for the DYCOMS-II RF02 marine stratocumuluscase. Using more sample points
reduces the noise.
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Fig. 2. As in Fig.1, but for the DYCOMS-II RF02 marine stratocu-
mulus case. Using more sample points reduces the noise.

simulations that use the SILHS Monte Carlo integrations. In
the limit of an infinite number of sample points, the SILHS
integration should converge to the analytic integration.

2.4 Averaging microphysical tendencies from each
subcolumn in order to form a grid-box average

To allow SILHS to be interactive, the subcolumn microphysi-
cal tendencies must be fed back into the grid-box mean equa-
tions of the host model, which, in this case, is CLUBB (see
step 4 in Sect.2). The averaging of the microphysical tenden-
cies from each sample point is a straightforward calculation
that needs to be inserted into the host model. Because sub-
columns are chosen preferentially within cloud, the averages
must be appropriately weighted according to cloud fraction.

3 Results

In order to illustrate features of the solutions obtained by
SILHS, we simulate two cloud cases using a single-column
model that combines CLUBB and SILHS in an interactive
fashion (“CLUBB–SILHS”). One case involves drizzling
shallow cumulus observed during the Rain In Cumulus over
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Fig. 3. Profiles of cloud fraction (upper left), cloud liquid mixingratio (upper right), variance of vertical
velocity (lower left), and rain mixing ratio (lower right) from the RICO shallow cumulus simulation.
Five different integrations of the microphysics are overplotted: analytic (orange dashed), and SILHS-
based sampling with 2 points (light blue solid), 4 points (purple dot dashed), 8 points (dark blue solid),
and 64 points (red dashed) per grid box and time step. Profilesare averaged over the last 12 hours of
the simulation. Averaged over 12 hours, the noise manifested in the time series (Fig. 1) is significantly
smoothed, except in rain mixing ratio itself.
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Fig. 3. Profiles of cloud fraction (upper left), cloud liquid mixing ratio (upper right), variance of vertical velocity (lower left), and rain
mixing ratio (lower right) from the RICO shallow cumulus simulation. Five different integrations of the microphysics are overplotted:
analytic (orange dashed line), and SILHS-based sampling with 2 points (light blue solid line), 4 points (purple dot-dashed line), 8 points
(dark blue solid line), and 64 points (red dashed line) per grid box and time step. Profiles are averaged over the last 12 h of the simulation.
Averaged over 12 h, the noise manifested in the time series (Fig.1) is significantly smoothed, except in rain mixing ratio itself.

the Ocean (RICO) field experiment (Rauber et al., 2007). The
initial profiles, forcings, and surface fluxes of our configura-
tion follow the GEWEX Cloud System Study (GCSS) spec-
ifications for the RICO case (vanZanten et al., 2011). The
other case involves a drizzling marine stratocumulus cloud
observed during Research Flight 2 (RF02) of the Second Dy-
namics and Chemistry of Marine Stratocumulus (DYCOMS-
II) field experiment (Stevens et al., 2003). Our configuration
again follows GCSS specifications (Wyant et al., 2007). As
per GCSS specifications, for the RICO simulation, surface
latent and sensible heat fluxes are computed interactively in
terms of surface wind speed, temperature, and water vapor
mixing ratio, whereas for the DYCOMS-II RF02 simula-
tion, the surface fluxes are prescribed. Both the RICO and
DYCOMS-II RF02 cases were simulated using a 5 min time
step, and both used a stretched vertical grid with 128 levels
and a vertical grid spacing of about 100 m at 1000 m altitude.

Figures1 to 4 display results from 5 single-column simu-
lations that are configured identically, except that one uses 2
sample points per grid box and time step (light blue solid
line), another 4 points (purple dot-dashed line), another 8
points (dark blue solid line), another 64 points (red dashed
line), and the final forgoes SILHS and instead integrates the
microphysics analytically over the PDF (orange dashed line).
The CLUBB simulations with analytic integrations serve as
reference simulations to which the corresponding CLUBB–
SILHS solutions should converge. Comparing the CLUBB–
SILHS simulations to the CLUBB simulations with analytic
integration allows us to isolate the effect of noise in the simu-
lations from unrelated model errors in CLUBB. The analytic
integration methodology is described inLarson and Griffin
(2013) andGriffin and Larson(2013).

The time series of rain simulated by CLUBB–SILHS
shows considerable noise, but the noise is reduced in liq-
uid water path (LWP) (see Figs.1 and 2). Rain exhibits
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Fig. 4. As in Fig. 3, except for the DYCOMS-II RF02 marine stratocumulus simulation. Profiles are
averaged over the full duration of the simulation (6 hours).Averaged over 6 hours, the noise manifested
in the time series (Fig. 2) is considerably smoothed in all fields.

35

Fig. 4. As in Fig. 3, except for the DYCOMS-II RF02 marine stratocumulus simulation. Profiles are averaged over the full duration of the
simulation (6 h). Averaged over 6 h, the noise manifested in the time series (Fig.2) is considerably smoothed in all fields.

substantial noise in part because it is updated directly by
SILHS’s microphysical tendencies, and this injection of
noise at each time step is not overcome by negative feed-
backs and diffusion of rain. Liquid water, on the other hand,
is influenced only indirectly by noise from subcolumns. As
a result, subcolumn noise is felt more strongly by rain than
liquid water. Rain exhibits diminished but still considerable
noise even when 64 sample points per grid box and time step
are used (red dashed line). However, large-eddy simulations
of shallow cumulus clouds with∼5 km× 5 km domains also
exhibit noise in horizontally averaged liquid water path and
rain water path.

Although the time series exhibit considerable noise from
time step to time step, this noise is not evident in most pro-
files when they are averaged over long time periods. Fig-
ure 3 shows profiles from RICO averaged over 12 h, and
Fig. 4 shows profiles from DYCOMS-II RF02 averaged over
6 h. We did not use longer averaging periods because longer
periods would span too much of the diurnal cycle. In both
cases, the noise is greatly reduced in cloud fraction, liq-
uid cloud water mixing ratio (rc), and variance of vertical

velocity (w′2). One exception is profiles of rain water mix-
ing ratio for RICO, which do not match the analytic solution
even when 64 points are used. RICO fields are noisier than
those in DYCOMS-II RF02 because RICO, being a cumu-
lus case, has greater horizontal variability. Nevertheless, the
noise in rain, which is directly updated by the subcolumn mi-
crophysics tendencies, does not infect the long time averages
of cloud and turbulence fields, which are not directly updated
by the subcolumns. Moreover, the plots (and other unshown
tests) show that the SILHS solution gradually approaches the
analytic solution as more sample points are used, which is an
important property. We note that if a simulation uses a time
step longer than 5 min we used, then a longer averaging time
will be necessary to reduce sampling noise.

Does sampling the within-cloud value of liquid water mix-
ing ratio with only 2 sample points improve the results as
compared to using a deterministic average of the within-
cloud liquid water or grid-averaged rain? We have performed
calculations in which liquid is set to the within-cloud aver-
age, rather than being sampled, in a call to the microphysics,
and in which both liquid and rain are averaged determinis-
tically rather than sampled randomly. The result is shown
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Fig. 5. Time series of rain water path from the RICO shallow cumulus simulation (upper panel) and
from the DYCOMS-II RF02 marine stratocumulus simulation (lower panel). Shown are an analytic in-
tegration of the microphysics (orange dashed), SILHS-based sampling with 2 points (light blue solid),
deterministic use of the within-cloud liquid cloud water mixing ratio (green dashed), and deterministic
use of within-cloud liquid and rain mixing ratio (black solid). In the RICO case, treating liquid determin-
istically but not rain still permits sampling noise in the rain; treating both liquid and rain deterministically
leads to an underprediction of rain. 36

Fig. 5. Time series of rain water path from the RICO shallow cu-
mulus simulation (upper panel) and from the DYCOMS-II RF02
marine stratocumulus simulation (lower panel). Shown are an ana-
lytic integration of the microphysics (orange dashed line), SILHS-
based sampling with 2 points (light blue solid line), determinis-
tic use of the within-cloud liquid cloud water mixing ratio (green
dashed line), and deterministic use of within-cloud liquid and rain
mixing ratio (black solid line). In the RICO case, treating liquid de-
terministically but not rain still permits sampling noise in the rain;
treating both liquid and rain deterministically leads to an underpre-
diction of rain.

for RICO and DYCOMS-II RF02 in Fig.5. For DYCOMS-
II RF02, all results are similar, because this cloud is fairly
homogeneous. For RICO, however, calculating liquid deter-
ministically but sampling rain leads to as much noise as sam-
pling both liquid and rain. However, calculating both liquid
and rain deterministically leads to an underprediction of rain.
This indicates that accounting for the non-zero variance of
rain is important in the RICO case because of nonlinearity in
the rain processes.

Examples of the vertical overlapping of profiles produced
by SILHS are shown in Fig.6. This figure shows pro-
files of rain mixing ratio,rr, and rain number mixing ra-
tio, Nr, for RICO. The maximally overlapped profiles (upper
panel), which use vert_corr= 1 in Eq. (7), are smooth be-
cause SILHS attempts to maximize the vertical correlations

while preserving the grid-box means and variances at each
grid level. The randomly overlapped profiles (lower panel)
show no correlation between adjacent vertical grid levels, ex-
cept the correlation that is inherent in following the vertical
trend of the mean profiles. The intermediately overlapped
profiles (middle panel), which use vert_decorr_coef= 0.03
in Eq. (7), show an intermediate degree of vertical correla-
tion. A separate, desirable feature of these profiles is that,
collectively, they preserve the strong positive correlation be-
tweenrr (left figure column) andNr (right figure column)
that has been imposed by Eq. (8). The correlation betweenrr
andNr is depicted by the color coding of the subcolumns, so
that, for instance, the blue lines correspond to therr andNr
variates of the same (multivariate) subcolumn. We see that
for each subcolumn, whenrr is large,Nr tends to be large
as well, as desired for positively correlated variates. Simi-
lar vertical overlap properties are exhibited for DYCOMS-II
RF02 (see Fig.7). For ease of interpretation, in these plots,
SILHS does not preferentially sample within cloud but in-
stead chooses each subcolumn with equal probability, so that
each thin line on the plot has equal weight.

In comparison to the profiles ofrr and Nr, the vertical
overlapping of profiles of vertical velocity,w, has differ-
ent properties owing to the fact thatw is distributed ac-
cording to a two-component normal mixture (see Fig.8 for
RICO and Fig.9 for DYCOMS-II RF02). Namely, the pro-
files with maximal overlap are smooth except for a small
number of discrete jumps. These jumps in the profiles occur
when the mixture component from which the sample point
is drawn switches from one component to the other. The
switch in components occurs because, in a maximally over-
lapped profile, the extra variate that determines the choice of
mixture component,X_u_dp1, is constant with altitude, but
the weight of the first normal component, mixt_frac, varies
with altitude. If the profile of mixt_frac crosses the value of
X_u_dp1, then a jump in the profile will occur. The jumps
are unrealistic but are difficult to avoid if an unbiased distri-
bution and a two-component mixture are to be preserved.

In SILHS’s cheapest available configuration, which gener-
ates two sample points per grid box and time step, the com-
putational cost of SILHS is almost as large as the cost of
CLUBB and nine times larger than the cost of the (inexpen-
sive) Khairoutdinov–Kogan microphysics parameterization.
For comparison, CLUBB occupies roughly 20 % of the total
runtime of atmospheric climate models (Bogenschutz et al.,
2013). The cost of SILHS is large in part because SILHS
assumes that the marginal PDFs are normal-mixture or log-
normal functions. These PDF shapes, while plausible for at-
mospheric applications, require the computation of special
functions such as the exponential function and the inverse
error function. Computing these special functions is expen-
sive. Additional costs are incurred by the computation of the
exponential decay of vertical correlation, the matrix multipli-
cation needed to generate correlated samples, and the gener-
ation of sample points that are stratified. More details on the
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Fig. 6. A sample of eight equally weighted SILHS-generated profiles(thin lines) and the analytic grid-
box mean profile (thick red line) drawn from a single time stepduring the RICO shallow cumulus simu-
lation. (Importance sampling is foregone for the purpose ofillustration in Figs. 6 through 9.) The vertical
correlation within each profile is specified to be maximal (upper panels), intermediate (middle panels),
or random (lower panels). Plotted are the rain mixing ratio (left figure column) and rain number mixing
ratio (right figure column) fields from the same eight profiles. The color coding of the sample profiles
is the same in both figure columns. By comparing lines of the same color in both the right-hand and
left-hand halves of the figure, one may see that the profiles ofrain mixing ratio and number mixing ratio
are highly correlated to each other. This result is expectedbecause high correlation is specified in these
simulations. The degree of vertical overlap in SILHS can be adjusted as desired between maximal and
random.
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Fig. 6. A sample of eight equally weighted SILHS-generated profiles (thin lines) and the analytic grid-box mean profile (thick red line)
drawn from a single time step during the RICO shallow cumulus simulation. (Importance sampling is foregone for the purpose of illustration
in Figs.6 through9.) The vertical correlation within each profile is specified to be maximal (upper panels), intermediate (middle panels), or
random (lower panels). Plotted are the rain mixing ratio (left figure column) and rain number mixing ratio (right figure column) fields from
the same eight profiles. The color coding of the sample profiles is the same in both figure columns. By comparing lines of the same color in
both the right-hand and left-hand halves of the figure, one may see that the profiles of rain mixing ratio and number mixing ratio are highly
correlated to each other. This result is expected because high correlation is specified in these simulations. The degree of vertical overlap in
SILHS can be adjusted as desired between maximal and random.

relative costs of SILHS, CLUBB, and the microphysics are
presented in Table1.

4 Discussion and conclusions

In this paper, we have presented a new method, implemented
in a software package called “SILHS”, that generates sub-
columns for atmospheric models. The subcolumns, once gen-
erated, are fed into a microphysics parameterization, and the
microphysical tendencies so produced are averaged and used
to update the grid-box mean fields. We have tested SILHS in
1-D simulations of a shallow cumulus layer and a stratocu-
mulus layer. In these two simulations, although SILHS does
introduce noise into rain water mixing ratio, this noise does

not significantly degrade the time averages of liquid cloud
water, cloud fraction, or other fields.

SILHS allows users to choose the number of sample points
per grid box and time step. Increasing the number of sam-
ple points reduces statistical noise but increases the compu-
tational cost. We suspect that most users of SILHS with com-
putational constraints will choose to use two sample points
per grid box and time step. Even with only two sample points,
SILHS allows the microphysics to sample both the clear-
sky and within-cloud variability, thereby avoiding errors such
as the systematic biases that result when convex or concave
functions are fed grid-box means (e.g.,Cahalan et al., 1994;
Larson et al., 2001).

SILHS has disadvantages and advantages over other pos-
sible approaches to generating subcolumns, several of which
are listed here:
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Fig. 7. As in Fig. 6, but for the DYCOMS-II RF02 marine stratocumulussimulation. The profiles of rain
mixing ratio and number mixing ratio have only moderate correlation, as specified by the user.
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Fig. 7. As in Fig. 6, but for the DYCOMS-II RF02 marine stratocumulus simulation. The profiles of rain mixing ratio and number mixing
ratio have only moderate correlation, as specified by the user.

Table 1. Relative computational expense of SILHS, CLUBB, and
the KK microphysics. Two sample points per grid box and time step
are drawn. The cost of SILHS is broken into various sub-costs. This
simulation was run on a single processor. The code was compiled
using the SunStudio Fortran compiler under the Linux operating
system, and the timing was performed by Sun Analyzer 7.9.

Code portion % computational expense

CLUBB 50 %
Microphysics 5 %
SILHS 45 %

Stratify sample points 3 %
Compute vertical correlations 3 %
Compute cumulative distribution function 5 %
Multiply Cholesky matrix 5 %
Convert to lognormal means 2 %
Exponentiate lognormal variates 2 %
Miscellaneous SILHS 25 %

Disadvantages:

1. As noted earlier, the computational cost of SILHS is
large.

2. SILHS preferentially samples within liquid clouds but
does not preferentially sample within ice clouds.

Advantages:

1. SILHS is multivariate. That is, SILHS generates sam-
ples that have the desired prescribed correlations be-
tween variates, such as liquid cloud water and rain.
Allowing non-zero correlations is useful for modeling
processes (such as accretion of cloud droplets by rain
drops) that depend on the correlation between two hy-
drometeor species.

2. SILHS contains methods to reduce sampling noise. In
particular, SILHS includes importance sampling be-
cause it samples preferentially within clouds when
cloud fraction is small. SILHS also includes stratified
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Fig. 8. A sample of eight equally weighted SILHS-generated profilesof vertical velocity (thin lines) and
the analytic solution (thick red line) drawn from a single time step during the RICO shallow cumulus
simulation. The vertical correlation within each profile isspecified to be maximal (upper panel), interme-
diate (middle panel), or random (lower panel). In the maximal and intermediate overlap cases, a profile
may sometimes jump suddenly in the vertical if the sampler switches from one normal component to the
other. (For random overlap, even if the component remains the same, jumps can occur due to random
noise.)
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Fig. 8. A sample of eight equally weighted SILHS-generated pro-
files of vertical velocity (thin lines) and the analytic solution (thick
red line) drawn from a single time step during the RICO shallow
cumulus simulation. The vertical correlation within each profile is
specified to be maximal (upper panel), intermediate (middle panel),
or random (lower panel). In the maximal and intermediate overlap
cases, a profile may sometimes jump suddenly in the vertical if the
sampler switches from one normal component to the other. (For ran-
dom overlap, even if the component remains the same, jumps can
occur due to random noise.)

sampling because it uses Latin hypercube sampling to
help spread out the sample points both within cloud
and within clear air.

Inherent in Monte Carlo methods, such as SILHS, is statis-
tical noise due to small sample sizes. Although most aspects
of the two simulations we present are not significantly de-
graded by sampling noise, this conclusion is based solely on
the cases that we tested and has the following caveats:

– This paper presents tests from a cumulus and stratocu-
mulus case that contain weak to moderate drizzle. It
is unclear whether the sampling noise will be tolera-
ble under a wider variety of meteorological conditions,
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Fig. 9. As in Fig. 8, but for the DYCOMS-II RF02 marine stratocumulussimulation.
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Fig. 9. As in Fig.8, but for the DYCOMS-II RF02 marine stratocu-
mulus simulation.

particularly if we use only 2 sample points per grid
box and time step. For instance, sampling noise may
be greater in deep convective cases, which precipitate
more heavily.

– Our tests use a time step of 5 min. If sample points
are generated less frequently, then the time-averaged
sampling noise is expected to be greater.

– The simulations that we present are one-dimensional.
In three-dimensional simulations, however, the sam-
pling noise may conceivably propagate in undesirable
ways. Three-dimensional tests have been performed
for the McICA radiative sampler (Pincus et al., 2003;
Räisänen et al., 2005; Pincus et al., 2006; Räisänen
et al., 2007; Barker et al., 2008; Räisänen et al., 2008),
and the results are encouraging, but radiation is usually
a slower process than microphysics, and McICA uses
dozens or hundreds of subcolumns, instead of the two
that we use.
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In conclusion, we now list several research topics that may
be worth exploring in future work:

1. In our tests, the degree of correlation in the vertical was
chosen somewhat arbitrarily. In the future, the vertical
correlation methodology should be tested and refined
with the aid of observations or fine-resolution 3-D ref-
erence simulations.

2. Although the present paper assumes that the correla-
tions are prescribed and constant, in nature the corre-
lations vary in space and time. In future work, the cor-
relations could be diagnosed using a method such as
that ofLarson et al.(2011).

3. Microphysical processes influence not only the mean
of the PDF but also the higher-order moments. How-
ever, in this first implementation, the microphysical
tendencies from SILHS directly influence only the
grid-box means. In future work, the tendencies from
SILHS could be made to interact with the higher-order
moments.

4. Although SILHS is expensive, its computational bur-
den may be blunted by the use of massively paral-
lel computers. It is true that there is computational
overhead associated with choosing multivariate sam-
ple points, a computation that is not embarrassingly
parallel. However, computing microphysics and other
physical processes in multiple subcolumns may be a
suitable problem for parallelization because, in our for-
mulation, the subcolumns do not communicate infor-
mation with each other. Thus, for calculations whose
dynamics cannot efficiently use all available proces-
sors, the unused processors could be used to compute
physics in subcolumns.

5. In order to produce the most accurate integration
feasible, SILHS attempts toreducesampling noise.
On the other hand, some stochastic sampling tech-
niques deliberatelyadd noise to ensemble weather
forecasts in order to increase the spread of the ensem-
ble (e.g.,Buizza et al., 1999; Teixeira and Reynolds,
2008; Berner et al., 2008; Palmer and Williams, 2008).
Adding noise has been shown to increase the ensemble
spread, especially if the noise is correlated between
grid columns. Other studies have added noise for the
purpose of improving the mean climatology of cli-
mate models (e.g.,Lin and Neelin, 2000; Berner et al.,
2008, 2012). For such applications, accurate forecast-
ing may not require further reduction of the noise
left by SILHS. That being said, there is no reason to
suppose that the noise produced by SILHS represents
model error.

6. Although this paper has focused on the problem of
treating subgrid variability in microphysical calcula-

tions, the subcolumn methodology could, in princi-
ple, be applied more widely. For example, in future
work, one could envision feeding subcolumns into
parameterizations of microphysics, radiative transfer,
aerosol physics, atmospheric chemistry, and possibly
other physical processes. The use of subcolumns or
similar quadrature techniques could help the climate
modeling community transition from the development
of cloud parameterizations, which are limited in scope,
to the development of a more general unified parame-
terization of subgrid variability.
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