Articles | Volume 6, issue 5
https://doi.org/10.5194/gmd-6-1745-2013
https://doi.org/10.5194/gmd-6-1745-2013
Model description paper
 | 
23 Oct 2013
Model description paper |  | 23 Oct 2013

Scheme for calculation of multi-layer cloudiness and precipitation for climate models of intermediate complexity

A. V. Eliseev, D. Coumou, A. V. Chernokulsky, V. Petoukhov, and S. Petri

Related authors

Subsea permafrost and associated methane hydrates: how long will they survive in the future?
Valentina V. Malakhova and Alexey V. Eliseev
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-99,https://doi.org/10.5194/esd-2021-99, 2022
Preprint withdrawn
Short summary
ChAP 1.0: a stationary tropospheric sulfur cycle for Earth system models of intermediate complexity
Alexey V. Eliseev, Rustam D. Gizatullin, and Alexandr V. Timazhev
Geosci. Model Dev., 14, 7725–7747, https://doi.org/10.5194/gmd-14-7725-2021,https://doi.org/10.5194/gmd-14-7725-2021, 2021
Short summary
Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2
Andrew H. MacDougall, Thomas L. Frölicher, Chris D. Jones, Joeri Rogelj, H. Damon Matthews, Kirsten Zickfeld, Vivek K. Arora, Noah J. Barrett, Victor Brovkin, Friedrich A. Burger, Micheal Eby, Alexey V. Eliseev, Tomohiro Hajima, Philip B. Holden, Aurich Jeltsch-Thömmes, Charles Koven, Nadine Mengis, Laurie Menviel, Martine Michou, Igor I. Mokhov, Akira Oka, Jörg Schwinger, Roland Séférian, Gary Shaffer, Andrei Sokolov, Kaoru Tachiiri, Jerry Tjiputra, Andrew Wiltshire, and Tilo Ziehn
Biogeosciences, 17, 2987–3016, https://doi.org/10.5194/bg-17-2987-2020,https://doi.org/10.5194/bg-17-2987-2020, 2020
Short summary
The dynamical core of the Aeolus 1.0 statistical–dynamical atmosphere model: validation and parameter optimization
Sonja Totz, Alexey V. Eliseev, Stefan Petri, Michael Flechsig, Levke Caesar, Vladimir Petoukhov, and Dim Coumou
Geosci. Model Dev., 11, 665–679, https://doi.org/10.5194/gmd-11-665-2018,https://doi.org/10.5194/gmd-11-665-2018, 2018
How sensitive are modeled contemporary subsea permafrost thaw and thickness of the methane clathrates stability zone in Eurasian Arctic to assumptions on Pleistocene glacial cycles?
Valentina V. Malakhova and Alexey V. Eliseev
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-66,https://doi.org/10.5194/cp-2016-66, 2016
Manuscript not accepted for further review

Related subject area

Climate and Earth system modeling
The sea level simulator v1.0: a model for integration of mean sea level change and sea level extremes into a joint probabilistic framework
Magnus Hieronymus
Geosci. Model Dev., 16, 2343–2354, https://doi.org/10.5194/gmd-16-2343-2023,https://doi.org/10.5194/gmd-16-2343-2023, 2023
Short summary
Structural k-means (S k-means) and clustering uncertainty evaluation framework (CUEF) for mining climate data
Quang-Van Doan, Toshiyuki Amagasa, Thanh-Ha Pham, Takuto Sato, Fei Chen, and Hiroyuki Kusaka
Geosci. Model Dev., 16, 2215–2233, https://doi.org/10.5194/gmd-16-2215-2023,https://doi.org/10.5194/gmd-16-2215-2023, 2023
Short summary
The emergence of the Gulf Stream and interior western boundary as key regions to constrain the future North Atlantic carbon uptake
Nadine Goris, Klaus Johannsen, and Jerry Tjiputra
Geosci. Model Dev., 16, 2095–2117, https://doi.org/10.5194/gmd-16-2095-2023,https://doi.org/10.5194/gmd-16-2095-2023, 2023
Short summary
Evaluating wind profiles in a numerical weather prediction model with Doppler lidar
Pyry Pentikäinen, Ewan J. O'Connor, and Pablo Ortiz-Amezcua
Geosci. Model Dev., 16, 2077–2094, https://doi.org/10.5194/gmd-16-2077-2023,https://doi.org/10.5194/gmd-16-2077-2023, 2023
Short summary
Evaluation of bias correction methods for a multivariate drought index: case study of the Upper Jhelum Basin
Rubina Ansari, Ana Casanueva, Muhammad Usman Liaqat, and Giovanna Grossi
Geosci. Model Dev., 16, 2055–2076, https://doi.org/10.5194/gmd-16-2055-2023,https://doi.org/10.5194/gmd-16-2055-2023, 2023
Short summary

Cited articles

Albrecht, B.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989.
Bauer, E., Petoukhov, V., Ganopolski, A., and Eliseev, A.: Climatic response to anthropogenic sulphate aerosols versus well-mixed greenhouse gases from 1850 to 2000 AD in CLIMBER-2, Tellus, 60B, 82–97, https://doi.org/10.1111/j.1600-0889.2007.00318.x, 2008.
Bony, S., Colman, R., Kattsov, V., Allan, R., Bretherton, C., J.-L., D., Hall, A., Hallegatte, S., Holland, M., Ingram, W., Randall, D., Soden, B., Tselioudis, G., and Webb, M.: How well do we understand and evaluate climate change feedback processes?, J. Climate, 19, 3445–3482, https://doi.org/10.1175/JCLI3819.1, 2006.
Cesana, G. and Chepfer, H.: How well do climate models simulate cloud vertical structure? A comparison between CALIPSO}-{GOCCP satellite observations and CMIP5 models, Geophys. Res. Lett., 39, L20803, https://doi.org/10.1029/2012GL053153, 2012.
Charlson, R., Schwartz, S., Hales, J., Cess, R., Coackley, J., Hansen, J., and Hofmann, D.: Climate forcing by anthropogenic aerosols, Science, 255, 423–430, https://doi.org/10.1126/science.255.5043.423, 1992.
Download