Articles | Volume 19, issue 2
https://doi.org/10.5194/gmd-19-1027-2026
https://doi.org/10.5194/gmd-19-1027-2026
Model description paper
 | 
30 Jan 2026
Model description paper |  | 30 Jan 2026

A probabilistic approach to wildfire spread prediction using a denoising diffusion surrogate model

Wenbo Yu, Anirbit Ghosh, Tobias Sebastian Finn, Rossella Arcucci, Marc Bocquet, and Sibo Cheng

Related authors

Elucidating the performance of data assimilation neural networks for chaotic dynamics
Marc Bocquet, Tobias Sebastian Finn, Sibo Cheng, and Alban Farchi
EGUsphere, https://doi.org/10.5194/egusphere-2026-245,https://doi.org/10.5194/egusphere-2026-245, 2026
This preprint is open for discussion and under review for Nonlinear Processes in Geophysics (NPG).
Short summary
Four-dimensional variational data assimilation with a sea-ice thickness emulator
Charlotte Durand, Tobias Sebastian Finn, Alban Farchi, Marc Bocquet, Julien Brajard, and Laurent Bertino
The Cryosphere, 19, 5613–5637, https://doi.org/10.5194/tc-19-5613-2025,https://doi.org/10.5194/tc-19-5613-2025, 2025
Short summary
Predicting spatio-temporal wildfire propagation with dynamic firebreaks
Jiahe Zheng, Zhengsen Xu, Rossella Arcucci, Sandy P. Harrison, Lincoln Linlin Xu, and Sibo Cheng
EGUsphere, https://doi.org/10.5194/egusphere-2025-4007,https://doi.org/10.5194/egusphere-2025-4007, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Mapping the global distribution of lead and its isotopes in seawater with explainable machine learning
Arianna Olivelli, Rossella Arcucci, Mark Rehkämper, and Tina van de Flierdt
Earth Syst. Sci. Data, 17, 3679–3699, https://doi.org/10.5194/essd-17-3679-2025,https://doi.org/10.5194/essd-17-3679-2025, 2025
Short summary
Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev., 18, 3607–3622, https://doi.org/10.5194/gmd-18-3607-2025,https://doi.org/10.5194/gmd-18-3607-2025, 2025
Short summary

Cited articles

Alexandridis, A., Vakalis, D., Siettos, C. I., and Bafas, G. V.: A Cellular Automata Model for Forest Fire Spread Prediction: The Case of the Wildfire That Swept through Spetses Island in 1990, Applied Mathematics and Computation, 204, 191–201, https://doi.org/10.1016/j.amc.2008.06.046, 2008. a, b, c, d, e, f, g, h, i
Ando, K., Onishi, K., Bale, R., Kuroda, A., and Tsubokura, M.: Nonlinear Reduced-Order Modeling for Three-Dimensional Turbulent Flow by Large-Scale Machine Learning, Computers & Fluids, 266, 106047, https://doi.org/10.1016/j.compfluid.2023.106047, 2023. a
Andry, G., Rozet, F., Lewin, S., Rochman, O., Mangeleer, V., Pirlet, M., Faulx, E., Grégoire, M., and Louppe, G.: Appa: Bending Weather Dynamics with Latent Diffusion Models for Global Data Assimilation, arXiv [preprint], https://doi.org/10.48550/arXiv.2504.18720, 2025. a
Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and van den Berg, R.: Structured Denoising Diffusion Models in Discrete State-Spaces, Advances in Neural Information Processing Systems, 34, 17981–17993, 2021. a
Bakhshaii, A. and Johnson, E.: A Review of a New Generation of Wildfire–Atmosphere Modeling, Canadian Journal of Forest Research, 49, 565–574, https://doi.org/10.1139/cjfr-2018-0138, 2019. a
Download
Short summary
We introduce the first denoising diffusion model for wildfire spread prediction, a new kind of generative AI model that learns to simulate fires not just as one fixed outcome, but as a range of possible scenarios. This allows us to capture the inherent uncertainty of wildfire dynamics. Our model produces ensembles of forecasts that reflect physically meaningful distributions of where fire might go next.
Share