Articles | Volume 18, issue 23
https://doi.org/10.5194/gmd-18-9319-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-9319-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Projecting management-relevant change of undeveloped coastal barriers with the Mesoscale Explicit Ecogeomorphic Barrier model (MEEB) v1.0
U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL 33701, USA
Geology and Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
U.S. Geological Survey, Woods Hole Coastal and Marine Science Center, Woods Hole, MA 02543, USA
Andrew D. Ashton
Geology and Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Erika E. Lentz
U.S. Geological Survey, Woods Hole Coastal and Marine Science Center, Woods Hole, MA 02543, USA
Christopher R. Sherwood
U.S. Geological Survey, Woods Hole Coastal and Marine Science Center, Woods Hole, MA 02543, USA
Davina L. Passeri
U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL 33701, USA
Sara L. Zeigler
U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL 33701, USA
Related authors
No articles found.
Rose V. Palermo, J. Taylor Perron, Jason M. Soderblom, Samuel P. D. Birch, Alexander G. Hayes, and Andrew D. Ashton
Geosci. Model Dev., 17, 3433–3445, https://doi.org/10.5194/gmd-17-3433-2024, https://doi.org/10.5194/gmd-17-3433-2024, 2024
Short summary
Short summary
Models of rocky coastal erosion help us understand the controls on coastal morphology and evolution. In this paper, we present a simplified model of coastline erosion driven by either uniform erosion where coastline erosion is constant or wave-driven erosion where coastline erosion is a function of the wave power. This model can be used to evaluate how coastline changes reflect climate, sea-level history, material properties, and the relative influence of different erosional processes.
Rose V. Palermo, Anastasia Piliouras, Travis E. Swanson, Andrew D. Ashton, and David Mohrig
Earth Surf. Dynam., 9, 1111–1123, https://doi.org/10.5194/esurf-9-1111-2021, https://doi.org/10.5194/esurf-9-1111-2021, 2021
Short summary
Short summary
At Sargent Beach, Texas, USA, a rapidly eroding soft-sediment cliff system, we study the planform evolution of the cliff face in response to storms and sediment cover. Through this analysis, we characterize the feedbacks between morphology and retreat rate of a cliff face. We find that after a storm event, the roughness and sinuosity of the cliff face increase, which sustains higher retreat rates for years following.
Cited articles
Anarde, K. A., Moore, L. J., Murray, A. B., and Reeves, I. R. B.: The future of developed barrier systems: 2. Alongshore complexities and emergent climate change dynamics, Earth's Future, 12, e2023EF004200, https://doi.org/10.1029/2023EF004200, 2024a.
Anarde, K. A., Moore, L. J., Murray, A. B., and Reeves, I. R. B.: The future of developed barrier systems: 1. Pathways toward uninhabitability, drowning, and rebound, Earth's Future, 12, e2023EF003672, https://doi.org/10.1029/2023EF003672, 2024b.
Aretxabaleta, A. L., Sherwood, C. R., Blanton, B. O., Over, J.-S. R., Traykovski, P. A., and Sogut, E.: Temporal variability of runup and total water level on Cape Cod sandy beaches, in: The Proceedings of the Coastal Sediments 2023, Coastal Sediments 2023, New Orleans, LA, USA, 267–281, https://doi.org/10.1142/9789811275135_0024, 2023.
Ashton, A. D. and Murray, A. B.: High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits, and capes, Journal of Geophysical Research: Earth Surface, 111, https://doi.org/10.1029/2005JF000422, 2006.
Baas, A. C. W.: Chaos, fractals and self-organization in coastal geomorphology: Simulating dune landscapes in vegetated environments, Geomorphology, 48, 309–328, https://doi.org/10.1016/S0169-555X(02)00187-3, 2002.
Baas, A. C. W. and Nield, J. M.: Modelling vegetated dune landscapes, Geophysical Research Letters, 34, L06405, https://doi.org/10.1029/2006GL029152, 2007.
Bamunawala, J., van der Spek, A., Dastgheib, A., Murray, A. B., and Ranasinghe, R.: An integrated, probabilistic modeling approach to assess the evolution of barrier-island systems over the twenty-first century, Frontiers in Marine Science, 8, 755699, https://doi.org/10.3389/fmars.2021.755699, 2021.
Blanton, B. O., McManus, J. M., and Tilson, J. L.: Accessing the RENCI/NOAA Reanalysis datasets V2.00, Renaissance Computing Institute, https://renci.github.io/edsreanalysisdoc/ (last access: 10 June 2024), 2024.
Bosboom, J. and Reniers, A. J. H. M.: Displacement-based error metrics for morphodynamic models, Adv. Geosci., 39, 37–43, https://doi.org/10.5194/adgeo-39-37-2014, 2014.
Brenner, O. T., Moore, L. J., and Murray, A. B.: The complex influences of back-barrier deposition, substrate slope and underlying stratigraphy in barrier island response to sea-level rise: Insights from the Virginia Barrier Islands, Mid-Atlantic Bight, U.S.A., Geomorphology, 246, 334–350, https://doi.org/10.1016/j.geomorph.2015.06.014, 2015.
Bruun, P.: Sea-level rise as a cause of shore erosion, Journal of the Waterways and Harbors Division, 88, 117–130, https://doi.org/10.1061/JWHEAU.0000252, 1962.
Durán Vinent, O. and Moore, L. J.: Barrier island bistability induced by biophysical interactions, Nature Climate Change, 5, 158–162, https://doi.org/10.1038/nclimate2474, 2015.
Doran, K. S., Long, J. W., Birchler, J. J., Brenner, O. T., Hardy, M. W., Morgan, K. L. M., Stockdon, H. F., and Loubriel Torres, M.: Lidar-derived beach morphology (dune crest, dune toe, and shoreline) for U.S. sandy coastlines, version 5.0, U.S. Geological Survey [data set], https://doi.org/10.5066/F7GF0S0Z, 2017.
FEMA: Guidance for Flood Risk Analysis and Mapping, Coastal Statistical Simulation Methods, Federal Emergency Management Agency, Washington, D.C., 36 pp., https://www.fema.gov/sites/default/files/documents/Coastal_Statistical_Simulation_Methods_Nov_2023.pdf (last access: 12 June 2024), 2023.
Ferguson, R. I. and Church, M.: A Simple Universal Equation for Grain Settling Velocity, Journal of Sedimentary Research, 74, 933–937, https://doi.org/10.1306/051204740933, 2004.
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B., Slangen, A. B. A., and Yu, Y.: Ocean, cryosphere and sea level change, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1211–1362, https://doi.org/10.1017/9781009157896.011, 2021.
French, J., Payo, A., Murray, B., Orford, J., Eliot, M., and Cowell, P.: Appropriate complexity for the prediction of coastal and estuarine geomorphic behaviour at decadal to centennial scales, Geomorphology, 256, 3–16, https://doi.org/10.1016/j.geomorph.2015.10.005, 2016.
Galiforni Silva, F., Wijnberg, K. M., de Groot, A. V., and Hulscher, S. J. M. H.: The influence of groundwater depth on coastal dune development at sand flats close to inlets, Ocean Dynamics, 68, 885–897, https://doi.org/10.1007/s10236-018-1162-8, 2018.
Garner, G. G., Hermans, T., Kopp, R. E., Slangen, A. B. A., Edwards, T. L., Levermann, A., Nowicki, S., Palmer, M. D., Smith, C., Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Krinner, G., Mix, A., Notz, D., Nurhati, I. S., Ruiz, L., Sallée, J-B., Yu, Y., Hua, L., Palmer, T., and Pearson, B.: IPCC AR6 sea level projections, version 20210809, Zenodo [data set], https://doi.org/10.5281/zenodo.5914709, 2021.
Goldstein, E. B., Mullins, E. V., Moore, L. J., Biel, R. G., Brown, J. K., Hacker, S. D., Jay, K. R., Mostow, R. S., Ruggiero, P., and Zinnert, J. C.: Literature-based latitudinal distribution and possible range shifts of two US east coast dune grass species (Uniola paniculata and Ammophila breviligulata), PeerJ, 6, e4932, https://doi.org/10.7717/peerj.4932, 2018.
Hallermeier, R. J.: A profile zonation for seasonal sand beaches from wave climate, Coastal Engineering, 4, 253–277, https://doi.org/10.1016/0378-3839(80)90022-8, 1981.
Hoagland, S. W. H., Jeffries, C. R., Irish, J. L., Weiss, R., Mandli, K., Vitousek, S., Johnson, C. M., and Cialone, M. A.: Advances in morphodynamic modeling of coastal barriers: A review, Journal of Waterway, Port, Coastal, and Ocean Engineering, 149, 03123001, https://doi.org/10.1061/JWPED5.WWENG-1825, 2023.
Hovenga, P. A., Ruggiero, P., Goldstein, E. B., Hacker, S. D., and Moore, L. J.: The relative role of constructive and destructive processes in dune evolution on Cape Lookout National Seashore, North Carolina, USA, Earth Surface Processes and Landforms, 46, 2824–2840, https://doi.org/10.1002/esp.5210, 2021.
Hovenga, P. A., Ruggiero, P., Itzkin, M., Jay, K. R., Moore, L., and Hacker, S. D.: Quantifying the relative influence of coastal foredune growth factors on the U.S. Mid-Atlantic Coast using field observations and the process-based numerical model Windsurf, Coastal Engineering, 181, 104272, https://doi.org/10.1016/j.coastaleng.2022.104272, 2023.
Itzkin, M., Moore, L. J., Ruggiero, P., and Hacker, S. D.: The effect of sand fencing on the morphology of natural dune systems, Geomorphology, 352, 106995, https://doi.org/10.1016/j.geomorph.2019.106995, 2020.
Itzkin, M., Moore, L. J., Ruggiero, P., Hovenga, P. A., and Hacker, S. D.: Combining process-based and data-driven approaches to forecast beach and dune change, Environmental Modelling & Software, 153, 105404, https://doi.org/10.1016/j.envsoft.2022.105404, 2022.
Jackson, D. W. T., Costas, S., González-Villanueva, R., and Cooper, A.: A global “greening” of coastal dunes: An integrated consequence of climate change?, Global and Planetary Change, 182, 103026, https://doi.org/10.1016/j.gloplacha.2019.103026, 2019.
Jay, K. R., Hacker, S. D., Hovenga, P. A., Moore, L. J., and Ruggiero, P.: Sand supply and dune grass species density affect foredune shape along the US Central Atlantic Coast, Ecosphere, 13, e4256, https://doi.org/10.1002/ecs2.4256, 2022.
Keijsers, J. G. S., De Groot, A. V., and Riksen, M. J. P. M.: Modeling the biogeomorphic evolution of coastal dunes in response to climate change, Journal of Geophysical Research: Earth Surface, 121, 1161–1181, https://doi.org/10.1002/2015JF003815, 2016.
Knutson, T., Camargo, S. J., Chan, J. C. L., Emanuel, K., Ho, C.-H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., and Wu, L.: Tropical cyclones and climate change assessment: Part II: Projected response to anthropogenic warming, Bulletin of the American Meteorological Society, 101, E303–E322, https://doi.org/10.1175/BAMS-D-18-0194.1, 2020.
Larsen, A., Nardin, W., van de Lageweg, W. I., and Bätz, N.: Biogeomorphology, quo vadis? On processes, time, and space in biogeomorphology, Earth Surface Processes and Landforms, 46, 12–23, https://doi.org/10.1002/esp.5016, 2021.
Larson, M., Kubota, S., and Erikson, L.: Swash-zone sediment transport and foreshore evolution: Field experiments and mathematical modeling, Marine Geology, 212, 61–79, https://doi.org/10.1016/j.margeo.2004.08.004, 2004a.
Larson, M., Wise, R. A., and Kraus, N. C.: Coastal overwash: Part 2, upgrade to SBEACH, US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS, Coastal and Hydraulics Engineering Technical Note ERDC/CHL CHETN-XIV-14, 21 pp., https://apps.dtic.mil/sti/tr/pdf/ADA603348.pdf (last access: 10 June 2024), 2004b.
Leatherman, S. P.: Migration of Assateague Island, Maryland, by inlet and overwash processes, Geology, 7, 104, https://doi.org/10.1130/0091-7613(1979)7<104:MOAIMB>2.0.CO;2, 1979.
Lentz, E. E., Thieler, E. R., Plant, N. G., Stippa, S. R., Horton, R. M., and Gesch, D. B.: Evaluation of dynamic coastal response to sea-level rise modifies inundation likelihood, Nature Climate Change, 6, 696–700, https://doi.org/10.1038/nclimate2957, 2016.
Lesser, G. R., Roelvink, J. A., van Kester, J. A. T. M., and Stelling, G. S.: Development and validation of a three-dimensional morphological model, Coastal Engineering, 51, 883–915, https://doi.org/10.1016/j.coastaleng.2004.07.014, 2004.
Li, F., van Gelder, P. H. A. J. M., Vrijling, J. K., Callaghan, D. P., Jongejan, R. B., and Ranasinghe, R.: Probabilistic estimation of coastal dune erosion and recession by statistical simulation of storm events, Applied Ocean Research, 47, 53–62, https://doi.org/10.1016/j.apor.2014.01.002, 2014.
Lorenzo-Trueba, J. and Ashton, A. D.: Rollover, drowning, and discontinuous retreat: Distinct modes of barrier response to sea-level rise arising from a simple morphodynamic model, Journal of Geophysical Research: Earth Surface, 119, 779–801, https://doi.org/10.1002/2013JF002941, 2014.
Lucas, K. L. and Carter, G. A.: Decadal changes in habitat-type coverage on Horn Island, Mississippi, U.S.A., Journal of Coastal Research, 26, 1142–1148, https://doi.org/10.2112/JCOASTRES-D-09-00018.1, 2010.
Marani, M., D'Alpaos, A., Lanzoni, S., Carniello, L., and Rinaldo, A.: Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon, Geophysical Research Letters, 34, 2007GL030178, https://doi.org/10.1029/2007GL030178, 2007.
Mariotti, G.: Self-organization of coastal barrier systems during the Holocene, Journal of Geophysical Research: Earth Surface, 126, e2020JF005867, https://doi.org/10.1029/2020JF005867, 2021.
Martin, J., Richardson, M., Passeri, D., Enwright, N., Yurek, S., Flocks, J., Eaton, M., Zeigler, S., Charkhgard, H., Udell, B., and Irwin, E.: Decision science as a framework for combining geomorphological and ecological modeling for the management of coastal systems, Ecology & Society, 28, 50, https://doi.org/10.5751/ES-13696-280150, 2023.
Masetti, R., Fagherazzi, S., and Montanari, A.: Application of a barrier island translation model to the millennial-scale evolution of Sand Key, Florida, Continental Shelf Research, 28, 1116–1126, https://doi.org/10.1016/j.csr.2008.02.021, 2008.
McNamara, D. E. and Lazarus, E. D.: Barrier islands as coupled human–landscape systems, in: Barrier Dynamics and Response to Changing Climate, edited by: Moore, L. J. and Murray, A. B., Springer International Publishing, Cham, 363–383, https://doi.org/10.1007/978-3-319-68086-6_12, 2018.
Morris, M. D.: Factorial sampling plans for preliminary computational experiments, Technometrics, 33, 161–174, https://doi.org/10.1080/00401706.1991.10484804, 1991.
Mull, J. and Ruggiero, P.: Estimating storm-induced dune erosion and overtopping along U.S. west coast beaches, Journal of Coastal Research, 298, 1173–1187, https://doi.org/10.2112/JCOASTRES-D-13-00178.1, 2014.
Murray, A. B.: Contrasting the goals, strategies, and predictions associated with simplified numerical models and detailed simulations, in: Prediction in Geomorphology, American Geophysical Union, Washington, D.C., https://doi.org/10.1029/135GM11, 2003.
Murray, A. B.: Reducing model complexity for explanation and prediction, Geomorphology, 90, 178–191, https://doi.org/10.1016/j.geomorph.2006.10.020, 2007.
Murray, A. B. and Paola, C.: Properties of a cellular braided-stream model, Earth Surface Processes and Landforms, 22, 1001–1025, https://doi.org/10.1002/(SICI)1096-9837(199711)22:11<1001::AID-ESP798>3.0.CO;2-O, 1997.
National Geodetic Survey: 2014 NOAA Ortho-rectified Mosaic of Hurricane Sandy Coastal Impact Area, NOAA National Centers for Environmental Information [data set], https://www.fisheries.noaa.gov/inport/item/48588 (last access: 12 March 2024), 2024.
NCFMP: North Carolina Statewide Lidar DEM 2014 Phase 1., NOAA National Centers for Environmental Information [data set], https://www.fisheries.noaa.gov/inport/item/49411 (last access: 12 March 2024), 2018.
Nield, J. M. and Baas, A. C. W.: Investigating parabolic and nebkha dune formation using a cellular automaton modelling approach, Earth Surface Processes and Landforms, 33, 724–740, https://doi.org/10.1002/esp.1571, 2008a.
Nield, J. M. and Baas, A. C. W.: The influence of different environmental and climatic conditions on vegetated aeolian dune landscape development and response, Global and Planetary Change, 64, 76–92, https://doi.org/10.1016/j.gloplacha.2008.10.002, 2008b.
Nienhuis, J. H. and Lorenzo-Trueba, J.: Simulating barrier island response to sea level rise with the barrier island and inlet environment (BRIE) model v1.0, Geosci. Model Dev., 12, 4013–4030, https://doi.org/10.5194/gmd-12-4013-2019, 2019a.
Nienhuis, J. H. and Lorenzo-Trueba, J.: Can barrier islands survive sea-level rise? Quantifying the relative role of tidal inlets and overwash deposition, Geophysical Research Letters, 46, 14613–14621, https://doi.org/10.1029/2019GL085524, 2019b.
Nienhuis, J. H., Ashton, A. D., and Giosan, L.: What makes a delta wave-dominated?, Geology, 43, 511–514, https://doi.org/10.1130/G36518.1, 2015.
NOAA Tides and Currents: Sea Level Trends, Station 8656483, National Oceanic and Atmospheric Administration [data set], https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=8656483, last access: 3 June 2024.
Passeri, D. L., Long, J. W., Plant, N. G., Bilskie, M. V., and Hagen, S. C.: The influence of bed friction variability due to land cover on storm-driven barrier island morphodynamics, Coastal Engineering, 132, 82–94, https://doi.org/10.1016/j.coastaleng.2017.11.005, 2018.
Passeri, D. L., Dalyander, P. S., Long, J. W., Mickey, R. C., Jenkins, R. L., Thompson, D. M., Plant, N. G., Godsey, E. S., and Gonzalez, V. M.: The roles of storminess and sea level rise in decadal barrier island evolution, Geophysical Research Letters, 47, https://doi.org/10.1029/2020GL089370, 2020.
Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., and Wagener, T.: Sensitivity analysis of environmental models: A systematic review with practical workflow, Environmental Modelling & Software, 79, 214–232, https://doi.org/10.1016/j.envsoft.2016.02.008, 2016.
Piercy, C. D., Charbonneau, B. R., Russ, E. R., and Swannack, T. M.: Examining the commonalities and knowledge gaps in coastal zone vegetation simulation models, Earth Surface Processes and Landforms, 49, 24–48, https://doi.org/10.1002/esp.5565, 2023.
Rastetter, E. B.: A spatially explicit model of vegetation-habitat interactions on barrier islands, in: Quantitative Methods in Landscape Ecology, edited by: Turner, M. G. and Gardiner, R. H., Springer-Verlag, New York, 353–378, ISBN 9780387942414, 1991.
Reeves, I. R. B.: Mesoscale Explicit Ecogeomorphic Barrier Model (MEEB) v1.0, U.S. Geological Survey software release [code], https://doi.org/10.5066/P13N6RHA, 2025a.
Reeves, I. R. B.: Mesoscale Explicit Ecogeomorphic Barrier Model (MEEB) v1.0, Zenodo [code], https://doi.org/10.5281/zenodo.15014191, 2025b.
Reeves, I. R. B., Moore, L. J., Goldstein, E. B., Murray, A. B., Carr, J. A., and Kirwan, M. L.: Impacts of seagrass dynamics on the coupled long-term evolution of barrier-marsh-bay systems, Journal of Geophysical Research: Biogeosciences, 125, e2019JG005416, https://doi.org/10.1029/2019JG005416, 2020.
Reeves, I. R. B., Moore, L. J., Murray, A. B., Anarde, K. A., and Goldstein, E. B.: Dune dynamics drive discontinuous barrier retreat, Geophysical Research Letters, 48, e2021GL092958, https://doi.org/10.1029/2021GL092958, 2021.
Reeves, I. R. B., Goldstein, E. B., Moore, L. J., and Zinnert, J. C.: Exploring the impacts of shrub-overwash feedbacks in coastal barrier systems with an ecological-morphological model, Journal of Geophysical Research: Earth Surface, 127, e2021JF006397, https://doi.org/10.1029/2021JF006397, 2022.
Ritchie, A. C., Over, J. R., Kranenburg, C. J., Brown, J. A., Buscombe, D., Sherwood, C. R., Warrick, J. A., and Wernette, P. A.: Aerial photogrammetry data and products of the North Carolina coast: 2018-10-06 to 2018-10-08, post-Hurricane Florence, U.S Geological Survey [data set], https://doi.org/10.5066/P9CA3D8P, 2021.
Robson, G., Schoen, E., Chan, D. M., Ogrosky, H. R., Shrestha, K., and Zinnert, J. C.: Modeling the interaction of vegetation and sea level rise on barrier island evolution, PLoS ONE, 19, e0302395, https://doi.org/10.1371/journal.pone.0302395, 2024.
Rodriguez, A. B., Fegley, S. R., Ridge, J. T., VanDusen, B. M., and Anderson, N.: Contribution of aeolian sand to backbarrier marsh sedimentation, Estuarine, Coastal and Shelf Science, 117, 248–259, https://doi.org/10.1016/j.ecss.2012.12.001, 2013.
Roelvink, D., Reniers, A., van Dongeren, A., van Thiel de Vries, J., McCall, R., and Lescinski, J.: Modelling storm impacts on beaches, dunes and barrier islands, Coastal Engineering, 56, 1133–1152, https://doi.org/10.1016/j.coastaleng.2009.08.006, 2009.
Schwartz, R. K.: Bedform and stratification characteristics of some modern small-scale washover sand bodies, Sedimentology, 29, 835–849, https://doi.org/10.1111/j.1365-3091.1982.tb00087.x, 1982.
Shaw, J., You, Y., Mohrig, D., and Kocurek, G.: Tracking hurricane-generated storm surge with washover fan stratigraphy, Geology, 43, 127–130, https://doi.org/10.1130/G36460.1, 2015.
Sherwood, C. R., van Dongeren, A., Doyle, J., Hegermiller, C. A., Hsu, T.-J., Kalra, T. S., Olabarrieta, M., Penko, A. M., Rafati, Y., Roelvink, D., van der Lugt, M., Veeramony, J., and Warner, J. C.: Modeling the morphodynamics of coastal responses to extreme events: What shape are we in?, Annual Review of Marine Science, 14, 457–492, https://doi.org/10.1146/annurev-marine-032221-090215, 2022.
Sherwood, C. R., Ritchie, A. C., Over, J. R., Kranenburg, C. J., Warrick, J. A., Brown, J. A., Wright, C. W., Aretxabaleta, A. L., Zeigler, S. L., Wernette, P. A., Buscombe, D. D., and Hegermiller, C. A.: Sound-side inundation and seaward erosion of a barrier island during hurricane landfall, Journal of Geophysical Research: Earth Surface, 128, https://doi.org/10.1029/2022JF006934, 2023.
Stockdon, H. F., Holman, R. A., Howd, P. A., and Sallenger, A. H.: Empirical parameterization of setup, swash, and runup, Coastal Engineering, 53, 573–588, https://doi.org/10.1016/j.coastaleng.2005.12.005, 2006.
Stolper, D., List, J. H., and Thieler, E. R.: Simulating the evolution of coastal morphology and stratigraphy with a new morphological-behaviour model (GEOMBEST), Marine Geology, 218, 17–36, https://doi.org/10.1016/j.margeo.2005.02.019, 2005.
Sturdivant, E. J., Zeigler, S. L., Gutierrez, B. T., and Weber, K. M.: Barrier island geomorphology and shorebird habitat metrics: Sixteen sites on the U.S. Atlantic Coast, 2013–2014, U.S. Geological Survey [data set], https://doi.org/10.5066/P9V7F6UX, 2019.
Sutherland, J., Peet, A. H., and Soulsby, R. L.: Evaluating the performance of morphological models, Coastal Engineering, 51, 917–939, https://doi.org/10.1016/j.coastaleng.2004.07.015, 2004.
Sweet, W. V., Hamlington, B. D., Kopp, R. E., Weaver, C. P., Barnard, P. L., Bekaert, B., Brooks, W., Craghan, M., Dusek, G., Frederikse, T., Garner, G., Genz, A. S., Krasting, J. P., Larour, E., Marcy, D., Marra, J. J., Obeysekera, J., Osler, M., Pendleton, M., Roman, D., Schmied, L., Veatch, W., White, K. D., and Zuzak, C.: Global and regional sea level rise scenarios for the United States: Updated mean projections and extreme water level probabilities along U.S. coastlines, National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, MD, 111 pp., NOAA Technical Report NOS 01, https://oceanservice.noaa.gov/hazards/sealevelrise/noaa-nos-techrpt01-global-regional-SLR-scenarios-US.pdf (last access: 12 March 2024), 2022.
Teixeira, M., Horstman, E. M., and Wijnberg, K. M.: Conceptualizing aeolian sediment transport in a cellular automata model to simulate the bio-geomorphological evolution of beach–dune systems, Journal of Marine Science and Engineering, 11, 1278, https://doi.org/10.3390/jmse11071278, 2023.
Thornhill, G., French, J., and Burningham, H.: ESTEEM – a new “hybrid complexity” model for simulating estuary morphological evolution at decadal to centennial scales, in: The Proceedings of the Coastal Sediments 2015, Coastal Sediments 2015, San Diego, USA, https://doi.org/10.1142/9789814689977_0229, 2015.
USACE NCMP: 2017 Topobathy Lidar DEM: East Coast (NY, NJ, DE, MD, VA, NC, SC, GA), NOAA National Centers for Environmental Information [data set], https://www.fisheries.noaa.gov/inport/item/52446 (last access: 12 March 2024), 2024.
USDA Farm Service Agency: 2018 North Carolina NAIP Digital Ortho Photo Imagery, NOAA National Centers for Environmental Information [data set], https://www.fisheries.noaa.gov/inport/item/58387 (last access: 12 March 2024), 2019.
van der Lugt, M. A., Quataert, E., van Dongeren, A., van Ormondt, M., and Sherwood, C. R.: Morphodynamic modeling of the response of two barrier islands to Atlantic hurricane forcing, Estuarine, Coastal and Shelf Science, 229, 106404, https://doi.org/10.1016/j.ecss.2019.106404, 2019.
van Maanen, B., Nicholls, R. J., French, J. R., Barkwith, A., Bonaldo, D., Burningham, H., Brad Murray, A., Payo, A., Sutherland, J., Thornhill, G., Townend, I. H., van der Wegen, M., and Walkden, M. J. A.: Simulating mesoscale coastal evolution for decadal coastal management: A new framework integrating multiple, complementary modelling approaches, Geomorphology, 256, 68–80, https://doi.org/10.1016/j.geomorph.2015.10.026, 2016.
Wahl, T., Plant, N. G., and Long, J. W.: Probabilistic assessment of erosion and flooding risk in the northern Gulf of Mexico, Journal of Geophysical Research: Oceans, 121, 3029–3043, https://doi.org/10.1002/2015JC011482, 2016.
Wainwright, D. J., Ranasinghe, R., Callaghan, D. P., Woodroffe, C. D., Jongejan, R., Dougherty, A. J., Rogers, K., and Cowell, P. J.: Moving from deterministic towards probabilistic coastal hazard and risk assessment: Development of a modelling framework and application to Narrabeen Beach, New South Wales, Australia, Coastal Engineering, 96, 92–99, https://doi.org/10.1016/j.coastaleng.2014.11.009, 2015.
Warner, J. C., Sherwood, C. R., Signell, R. P., Harris, C. K., and Arango, H. G.: Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model, Computers & Geosciences, 34, 1284–1306, https://doi.org/10.1016/j.cageo.2008.02.012, 2008.
Werner, B. T.: Eolian dunes: Computer simulations and attractor interpretation, Geol, 23, 1107, https://doi.org/10.1130/0091-7613(1995)023<1107:EDCSAA>2.3.CO;2, 1995.
Woodroffe, C. D. and Murray-Wallace, C. V.: Sea-level rise and coastal change: The past as a guide to the future, Quaternary Science Reviews, 54, 4–11, https://doi.org/10.1016/j.quascirev.2012.05.009, 2012.
Zarnetske, P. L., Hacker, S. D., Seabloom, E. W., Ruggiero, P., Killian, J. R., Maddux, T. B., and Cox, D.: Biophysical feedback mediates effects of invasive grasses on coastal dune shape, Ecology, 93, 1439–1450, https://doi.org/10.1890/11-1112.1, 2012.
Zinnert, J. C., Shiflett, S. A., Via, S., Bissett, S., Dows, B., Manley, P., and Young, D. R.: Spatial–temporal dynamics in barrier island upland vegetation: The overlooked coastal landscape, Ecosystems, 19, 685–697, https://doi.org/10.1007/s10021-016-9961-6, 2016.
Zinnert, J. C., Via, S. M., Nettleton, B. P., Tuley, P. A., Moore, L. J., and Stallins, J. A.: Connectivity in coastal systems: Barrier island vegetation influences upland migration in a changing climate, Global Change Biology, 25, 2419–2430, https://doi.org/10.1111/gcb.14635, 2019.
Short summary
We describe a new model of coastal barrier ecogeomorphic change that operates over spatiotemporal scales congruous with effective management practices, incorporates key ecogeomorphic feedbacks, and provides probabilistic projections. The model skillfully captures important barrier dynamics through robust data integration and calibration of relatively simple model parameterizations, and can be used to understand and predict when, where, and how barriers evolve to inform decision-making processes.
We describe a new model of coastal barrier ecogeomorphic change that operates over...