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Abstract. Models of coastal barrier geomorphic and eco-
logic change are valuable tools for understanding and pre-
dicting when, where, and how barriers evolve and transi-
tion between ecogeomorphic states. Few existing models of
barrier systems are designed to operate over spatiotemporal
scales congruous with effective management practices (i.e.,
decades/kilometers, referred to herein as “mesoscales”), in-
corporate important ecogeomorphic feedbacks, and provide
probabilistic projections of future change. Here, we present
a new numerical model designed to address these gaps by
explicitly yet efficiently simulating coupled aeolian, ma-
rine, vegetation, and shoreline components of barrier evolu-
tion over spatiotemporal scales relevant to management. The
Mesoscale Explicit Ecogeomorphic Barrier model (MEEB)
simulates subaerial ecomorphologic change of undeveloped
barrier systems over kilometers and decades using meter-
scale spatial resolution and weekly time steps. MEEB applies
simplified parameterizations to represent and couple key eco-
geomorphic processes: dune growth, vegetation expansion
and mortality, beach and foredune erosion, barrier overwash,
and shoreline and shoreface change. The model is parameter-
ized and calibrated with observed elevation, vegetation, and
water level data for a case study site of North Core Banks,
NC, USA. Simulated ecogeomorphic change in model hind-
casts agrees well with observations, demonstrating both fa-
vorable skill scores and qualitatively correct behavior. We
also describe an additional model framework for produc-
ing probabilistic projections that account for uncertainties re-
lated to future forcing conditions and intrinsic stochastic dy-

namics and demonstrate the probabilistic framework’s utility
with example forecast simulations. As a mesoscale model,
MEEB is designed to investigate questions about future bar-
rier ecogeomorphic change of moderate complexity, offering
semi-qualitative predictions and semi-quantitative explana-
tions. For example, MEEB can be used to investigate how
climate-induced shifts in ecological composition may alter
the likelihood of morphologic impacts or to generate proba-
bilistic projections of ecogeomorphic state change.

1 Introduction

Coastal barrier environments are of critical economic, eco-
logic, and cultural importance, but, as low-lying collections
of mobile sediment, are constantly evolving under drivers
of both chronic and event-based change. In the face of ris-
ing atmospheric temperatures, projected accelerated relative
sea-level rise (RSLR; Sweet et al., 2022), and anticipated
changes in tropical storm activity (e.g., Knutson et al., 2020),
future barrier evolution remains uncertain. This uncertainty
is further complicated by transformations in ecological as-
semblages related to global climate warming, which have be-
come increasingly apparent within barrier systems in recent
decades (e.g., Goldstein et al., 2018; Zinnert et al., 2016) and
have the potential to fundamentally alter the morphology and
behavior of coastal barriers (e.g., Reeves et al., 2022; Zinnert
et al., 2019). An understanding of when, where, and how
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ecogeomorphic change in barrier systems is most likely to
occur remains of paramount importance to coastal commu-
nities looking to prepare for and adapt to future change. Fur-
thermore, the ability to capture future changes to barrier sys-
tems can help inform broader understanding of both the func-
tional transformations we may anticipate across the broader
coastal landscape, as well as whether protections coastal bar-
riers provide to mainland settings will persist in the future.

Numerical models capable of simulating across a range
of scenarios and conditions offer possibly the best oppor-
tunity to predict and understand coastal change and behav-
ior. Prediction of historically unprecedented behavior will
be important given uncertainties in future forcing conditions
(e.g., RSLR, storm intensity) coupled with inherently com-
plex nonlinear interactions (e.g., feedbacks, multistability)
and stochasticity (e.g., storm occurrence, seed dispersal). Nu-
merical models can inform active planning and management
strategies for “undeveloped” barrier systems (i.e., those with-
out sustained residential and/or commercial infrastructure
and activity) that are typically intended to preserve and pro-
tect ecosystems, infrastructure, and natural resources; pro-
vide for human use; mitigate hazards; and inform public ex-
pectations.

Coastal management practices usually consider timescales
of several decades into the future – often with regard to
milestones of 2050 and 2100 CE defined by climate change
science – over multiple kilometers of coastline. Amongst
coastal managers and decision-makers, there is increas-
ing demand for model projections that both explicitly take
into account these spatiotemporal horizons and at the same
time provide reliable and sufficiently quantitative predic-
tions (French et al., 2016; Martin et al., 2023). Many mod-
els of barrier geomorphology and ecology exist as power-
ful tools for predicting event-based change or understand-
ing fundamental behaviors and processes (Hoagland et al.,
2023; Piercy et al., 2023). While these models provide
useful insight to planning and decision-making processes,
they tend to lack important features and components that
are particularly relevant to the typical goals of manage-
ment endeavors: management-relevant spatiotemporal scales
(decades and kilometers) and resolutions (meters and weeks),
feedbacks between key ecologic and geomorphic processes,
and the ability to provide probabilistic projections of future
change.

Numerical models of barrier evolution can be arranged
along a continuum between micro and macro scales
(Hoagland et al., 2023; Murray, 2003). What we herein con-
sider microscale models (e.g., XBeach, Roelvink et al., 2009;
Delft3D, Lesser et al., 2004; COAWST, Warner et al., 2008),
also commonly referred to as event-based or simulation mod-
els, typically simulate coastal change over hours to years and
up to hundreds of meters. These models tend to be built upon
highly realistic expressions of the underlying physics and in-
corporate as many system processes as practical while striv-
ing to simulate a particular place or set of conditions with

as much quantitative accuracy (predictive skill) as possible
(Murray, 2003; Sherwood et al., 2022). As such, microscale
models typically require relatively large computational re-
sources, observational or experimental data for model ini-
tialization and testing, and careful calibration of important
model coefficients (e.g., Windsurf, Itzkin et al., 2022). In
contrast, macroscale models (e.g., CoastMorpho2D, Mari-
otti, 2021; Barrier3D, Reeves et al., 2021; BIT, Masetti et
al., 2008; BRIE, Nienhuis and Lorenzo-Trueba, 2019a), of-
ten referred to as exploratory or reduced-complexity mod-
els, operate over temporal scales of decades to millennia and
over spatial scales up to thousands of meters, typically with
coarse spatial resolutions ≥ 10 m. Macroscale models sim-
plify systems to focus on essential, emergent processes, often
with the goal of exploring and explaining large-scale behav-
ior (Murray, 2003). As such, larger-scale models tend to use
synthesized representations of natural phenomena that aver-
age over ecogeomorphic processes and features occurring at
much smaller spatiotemporal scales, providing the most di-
rect explanations and likely the most reliable predictions of
larger-scale phenomena (Murray, 2007). Macroscale models
also tend to use idealized (e.g., LTA14, Lorenzo-Trueba and
Ashton, 2014) or equilibrium (e.g., GEOMBEST, Stolper et
al., 2005) morphologies meant to represent generalized con-
ditions or behaviors rather than specific real-world locations.

There is a dearth, however, of mesoscale models that oc-
cupy the continuum between micro- and macroscale end-
members. Few models or model frameworks of coastal bar-
rier environments are designed to simulate over years to
decades and hundreds to thousands of meters and with
meter-scale spatial resolution. Notable exceptions include
DUBEVEG (Keijsers et al., 2016) and the Coastal Dune
Model (Durán Vinent and Moore, 2015), which simulate
decadal ecologic and geomorphic evolution of beach and
dune environments, and ISLAND (Rastetter, 1991) and
the model of Robson et al. (2024), which model decadal
vegetation-habitat interactions across a barrier; however,
these models lack full representation of the entire barrier sys-
tem and/or key processes (e.g., overwash) needed for holis-
tic assessments and relevant mesoscale projections of barrier
evolution. The polarity of spatiotemporal scales among exist-
ing coastal barrier models likely exists because of contrasting
goals, assumptions, and modeling techniques of micro- and
macroscale models (Murray, 2003); the sheer number of pro-
cesses that could be important for driving coastal change (van
Maanen et al., 2016); a lack of decadal observational data
needed to develop mesoscale parameterizations and evalu-
ate mesoscale models (French et al., 2016; Hoagland et al.,
2023); and nascent theory on model up-scaling and down-
scaling, with up-scaling approaches (i.e., using microscale
models in meso- or macroscale applications) particularly
limited by high computational costs and the potential for
imperfections in reductionist microscale parameterizations
compounding over much larger scales, thereby preventing re-
liable quantitative results (Murray, 2007; French et al., 2016).
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However, coastal management practices typically consider
timescales on the order of several decades into the future,
stemming largely from the well-established climate and sea-
level rise horizons of 2050 and 2100 CE. Additionally, con-
tinuous, spatially explicit coverage of an area of interest in
both the cross-shore and alongshore dimensions, as well as
weekly to annual (temporal) and meter to decameter (spa-
tial) resolutions, are needed to inform comprehensive man-
agement scenarios (e.g., Martin et al., 2023). As such, barrier
models operating at mesoscales are perhaps most promis-
ing for addressing the needs of strategic coastal planning
and decision-making (French et al., 2016; van Maanen et al.,
2016; Woodroffe and Murray-Wallace, 2012).

Incorporation of ecological dynamics and their feedbacks
with geomorphic processes is also underrepresented in mod-
els of coastal barrier evolution (Hoagland et al., 2023; Piercy
et al., 2023). Bidirectional physical-ecological feedbacks
within coastal barrier environments are especially relevant
at mesoscales, where vital ecogeomorphic behaviors tend to
emerge. At much smaller scales (i.e., years and 101 m, or
smaller), spatiotemporal change in the size, location, or type
of herbaceous and woody vegetation found in coastal bar-
rier environments tends to be prohibitively small for gen-
erating dynamic ecogeomorphic interactions and feedbacks;
at much larger spatiotemporal scales (i.e., centuries or mil-
lennia and 101 km, or larger), the influence of vegetation
on geomorphic processes tends to become increasingly dif-
ficult to recognize (Larsen et al., 2021). It is well docu-
mented that ecogeomorphic interactions and feedbacks are
fundamental to coastal barrier systems, from the stimula-
tion of dune-growing grasses in response to sand deposition
(e.g., Zarnetske et al., 2012) to woody shrubs obstructing
overwash flow (Reeves et al., 2022; Zinnert et al., 2019),
yet these interactions are often neglected in barrier mod-
els. Modeling approaches that implicitly incorporate the ef-
fects of vegetation through static parameterizations, such as
landcover roughness coefficients (e.g., Passeri et al., 2018),
are typically not appropriate for addressing questions re-
lated to meso- or macroscale evolution where the configu-
ration of vegetation is expected to change across space and
time. However, some models of barrier systems have begun
to include physical-biological feedbacks by explicitly sim-
ulating the spatiotemporal variation of vegetation commu-
nities across coastal barrier landscapes and their couplings
with physical processes (e.g., ISLAND, Rastetter, 1991; Bar-
rier3D, Reeves et al., 2022; DUBEVEG, Keijsers et al.,
2016; Coastal Dune Model, Durán Vinent and Moore, 2015;
GEOMBEST++Seagrass, Reeves et al., 2020). Given the
sensitivity of coastal ecosystems to changes in climatic forc-
ings and potential ecological transformations arising from
global climate change (e.g., Goldstein et al., 2018; Jackson
et al., 2019; Zinnert et al., 2016; Lucas and Carter, 2010),
ecogeomorphic interactions are likely to play an increasingly
prominent role over the next century. Including dynamic eco-
geomorphic couplings within coastal barrier models there-

fore improves the performance of mesoscale projections and
confidence in their findings.

Most barrier-evolution models provide only deterministic
projections, despite often considerable uncertainty in projec-
tions of macroscale drivers of coastal change (e.g., sea-level
rise, storminess, atmospheric temperature) and the inher-
ent randomness of natural phenomena (e.g., storm timing).
Significant uncertainties also arise from future human ac-
tivities and decision-making (e.g., McNamara and Lazarus,
2018), but coupled human–natural considerations are beyond
the present scope of this model. While deterministic mod-
els inherit the uncertainties of model input forcings, model
approaches that account for the probabilistic nature of the
drivers of barrier evolution (e.g., Lentz et al., 2016; Bamu-
nawala et al., 2021; Wainwright et al., 2015) can potentially
provide a more holistic assessment of future change to better
inform management activities (e.g., van der Lugt, 2019).

Here we present the Mesoscale Explicit Ecogeomorphic
Barrier model (MEEB), which simulates the spatially explicit
ecogeomorphic change of undeveloped barrier systems over
several decades and kilometers. MEEB tackles the separa-
tion of scales among pre-existing barrier models by explic-
itly yet efficiently simulating aeolian, marine, shoreline, and
vegetation components of a coastal barrier segment. Addi-
tionally, the model incorporates uncertainties related to fu-
ture drivers and the inherent stochasticity of natural pro-
cesses to produce probabilistic projections of future change
across space and time. The goal of MEEB is to balance man-
agement needs for spatially explicit, quantitative predictions
with mesoscale (multi-decadal and multi-kilometer) projec-
tions and related uncertainties while accounting for real feed-
backs between ecosystems, geomorphology, and hydrody-
namic processes. To accomplish this, we use a hybrid model
architecture that incorporates certain model parameteriza-
tions of higher mechanistic complexity, only as far as to pro-
duce mesoscale behaviors anticipated to be important, with
more simplified, larger-scale parameterizations that most re-
liably capture the collective effects of many processes hap-
pening at much smaller scales (Thornhill et al., 2015; French
et al., 2016; Murray, 2007). As an important part of our hy-
brid approach, we also explicitly and robustly test and cali-
brate the relatively simple model parametrizations with ob-
servational data. MEEB is not suitable for predicting subtle
shifts in elevation or vegetation, nor for explaining the recon-
figuration of a landscape or its behaviors. Rather, MEEB is
designed to answer questions of moderate complexity regard-
ing when, where, and how ecogeomorphic change is likely to
occur, with correspondingly moderate levels of both predic-
tive (quantitative) and explanatory (qualitative) power. In the
sections that follow, we provide a description of the model
processes and parameterizations; detail data integration and
calibration procedures; and assess and discuss model perfor-
mance, parameter sensitivities, and appropriate use.
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2 MEEB

The Mesoscale Explicit Ecogeomorphic Barrier model
(MEEB; Reeves, 2025a) resolves cross-shore and alongshore
variations in topography and ecology to simulate the ecoge-
omorphic evolution of an undeveloped barrier or barrier seg-
ment (Fig. 1). MEEB operates with a planform grid resolu-
tion on the order of meters and 0.02 years (7.3 d) timesteps,
and can run for years to decades over 100–102 km of bar-
rier shoreline. We use a grid resolution of 1 m as herbaceous
species in barrier ecosystems typically grow in clusters on
the order of 1 m2 in size, though the model produces qualita-
tively similar output with resolutions up to 2 m (resolutions
outside this range have not been tested). Spatial resolution
of the model is dictated in large part by the typical size of
the vegetation growth pattern, as the vegetation imposes a
characteristic length scale on the resultant aeolian morphol-
ogy (Nield and Baas, 2008a). Therefore, we do not suggest
adopting a grid resolution outside the 1 to 2 m range. The
model is written in Python and can be run on PC, Macintosh,
and Linux operating systems. The typical runtime for a 10-
year simulation of a 1 km-long barrier segment with 1 m grid
resolution is approximately 40 to 80 min, or approximately
10 to 20 min with a grid resolution of 2 m. Memory usage
depends strongly on domain size, grid resolution, and the fre-
quency and type of saved model output. An individual deter-
ministic simulation in MEEB is run on an individual core,
while our probabilistic framework runs batches of determin-
istic simulations in parallel across multiple cores (as many as
allocated); a high-performance computing cluster is recom-
mended for probabilistic simulations spanning > 10 km of
shoreline. The relative balance between spatiotemporal reso-
lution, spatiotemporal extent, and efficiency makes the model
ideal for studying mesoscale barrier evolution.

The model tracks changes in elevation and vegetation den-
sity and type through space and time across separate ele-
vation and vegetation domains. Ecogeomorphic evolution in
MEEB is limited to areas above the mean high water (MHW)
elevation; intertidal and subaqueous environments are there-
fore not explicitly modeled. The MHW elevation changes
each model iteration according to the RSLR rate, which is
constant through time (given that RSLR projections up to
the year 2050 can be closely approximated as linear). A
groundwater lens is modeled as a function of the subaerial
topography and may intersect depressions in the land sur-
face as ponds. Due to complexities in modeling inlet dynam-
ics, MEEB is not capable of simulating portions of a bar-
rier chain with or directly influenced by active tidal inlets or
shoals from recently abandoned inlets. Additionally, MEEB
assumes the barrier system is composed entirely of uncon-
solidated sand. MEEB is initialized with elevation, vegeta-
tion cover, and high-water event climatology data, which we
discuss in Sect. 3 below. All model parameters and depen-
dent variables, along with their units and values, are listed in
Appendix A.

2.1 Model Framework and Time-stepping

Four components comprise the MEEB framework: Aeolian,
Marine, Shoreline, and Vegetation. These four components
operate in succession within a model timestep but act at dif-
ferent timescales, so not all components are involved in each
model iteration (Fig. 2). A model year begins with the Aeo-
lian component, which occurs every model timestep (1ta =
0.02 years or ∼ 7.3 d). The Aeolian component determines
the entrainment, transport, and deposition of sand across the
barrier surface resulting from wind and dependent on the
vegetation cover and topography. This Aeolian process re-
peats itself twice, updating the elevation domain each itera-
tion, and is then followed by the Marine component, which
occurs every second model timestep (1tm = 0.04 years or
∼ 14.6 d) to correspond to a spring–neap tidal cycle and be-
cause storm systems can potentially last more than 7 d. The
Marine component determines how sediment is transported
across the beach, dune, and barrier interior from swash, col-
lision, and overwash processes during a high-water event
(HWE), defined as an event in which the total water level
(TWL; the sum of tide, surge, and wave runup) exceeds
MHW. These HWE-induced processes are influenced by the
topography, vegetation cover, and HWE water elevation and
duration. In addition to updating the elevation domain, the
Marine component also updates the vegetation domain by
converting previously vegetated cells to bare wherever in-
undated. The Shoreline component, which also occurs ev-
ery second model timestep (1ts = 0.04 years or ∼ 14.6 d),
directly follows the Marine component. The Shoreline com-
ponent determines the position of the MHW ocean shoreline
according to RSLR and cross-shore and alongshore sediment
transport, and adjusts the shoreline by adding (accretion) or
removing (erosion) elevation. This sequence of two Aeolian
iterations, one Marine iteration, and one Shoreline iteration
repeats for a total of 25 times in the model year. Thereafter,
the full model year is completed with execution of the Veg-
etation component, which occurs every 50 model timesteps
(1tv = 1.0 year or 365 d). The Vegetation component deter-
mines the expansion of plants into previously bare cells and
changes in vegetation density (growth or decay), the latter of
which is dependent upon the net erosion/deposition over the
course of the preceding year. The cycle then restarts with the
updated elevation and vegetation domains for the next model
year (Fig. 2).

2.2 Aeolian

MEEB uses a cellular model of aeolian morphologic devel-
opment in which slabs of sand are probabilistically entrained,
transported, and deposited based on a set of rules that capture
the effects of real-world aeolian processes. Our Aeolian com-
ponent stems from the aeolian side of the DUBEVEG model
(Dune, BEach, and VEGetation; Keijsers et al., 2016), which
itself builds upon earlier cellular slab-based dune models
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Figure 1. MEEB model configuration. (a) Example model elevation domain, annotated with the foredune crestline (red) and ocean shoreline
(purple), and (b) corresponding vegetation density domain. (c) Schematic diagram of sand slab transport in the Aeolian component of MEEB,
wherein slabs are stochastically entrained, transported downwind, and either deposited or transported further; each of these processes is
affected by vegetation, shadow zones, and the water table. (d) Probabilities of slab erosion and deposition as a function of vegetation density.
(e) Annual vegetation growth for burial-tolerant and burial-intolerant species types as a function of the annual net sedimentation balance.

(Baas, 2002; Baas and Nield, 2007; Werner, 1995). The Ae-
olian component in MEEB updates the topography 50 times
a year (time step 1ta = 0.02 years or ∼ 7.3 d).

During each Aeolian iteration, every cell in the domain is
polled once for entrainment based on a probability of ero-
sion (Pe) ranging from zero to one, as discussed below. If
entrainment in a cell is probabilistically determined to occur,
a slab of sand with a fixed height (Hs) is removed from the
entrainment site and transported downwind according to the
saltation length (Ls). A probability of deposition (Pd) at the
receiving cell determines whether the slab will deposit or be
transported downwind again (Fig. 1c). As a proxy for weekly
time-varying wind speeds, we stochastically vary Ls each
Aeolian iteration by drawing from a simple uniform distribu-
tion centered around a mean (here, 5± 2 m). As a proxy for
the longer-term (annual- or decadal-scale) average strength
of the wind climate, the maximum potential aeolian trans-

port volume flux (qa,max) can be calculated following Nield
and Baas (2008a) as:

qa,max =HsLs
Pe

Pd

1
1ta

. (1)

Changing the values Pe and Pd, as well as Hs and Ls , there-
fore captures the effects of stronger or weaker wind cli-
mates. Wind direction – onshore, alongshore down, offshore,
or alongshore up across the gridded domain – is determined
by weighted random choice for each Aeolian iteration, with
the probability of each of the 4 directions (PWD) summing
to 1. The collective effects of oblique winds are roughly cap-
tured with asymmetric multidirectional transport directions
(cf. Nield and Baas, 2008a). At the end of each Aeolian iter-
ation, angles of repose for bare and vegetated cells are main-
tained by avalanching slabs in the direction of steepest de-
scent. The Aeolian component uses open boundary condi-
tions wherein slabs of sediment can be transported out of the
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Figure 2. Flow diagram and schematic illustrations of model process domains across one model year in MEEB.

lateral edges of the model domain (sediment can be imported
into the domain within the Marine component of the model,
as described below).

Probabilities of erosion and deposition vary across the
landscape as a function of ecological and physical factors.
Wind shadow zones, wherein Pe = 0 and Pd = 1, extend
from the lee side of topographic peaks as determined by the
shadow angle η (Fig. 1c). Where elevation is below MHW
or the elevation of a groundwater lens, Pe = 0 and Pd = 1.
Assuming that the groundwater surface typically resembles a
subdued reflection of the topography, the groundwater sur-

face in MEEB is determined as a proportion of the topo-
graphic surface height above MHW (Fig. 1c; Galiforni Silva
et al., 2018) that has been smoothed by a Gaussian filter (with
a standard deviation for the Gaussian kernel, σ , of 12 m).
Groundwater can intersect topographic depressions as sur-
face ponds (MEEB does not flatten the water surface in ponds
given that Pe = 0 and Pd = 1 regardless). Additionally, the
presence of vegetation cover reduces the probability that a
slab will be eroded and increases the probability that a slab
will be deposited in proportion to the vegetation density (ρ)
of each cell (Fig. 1d). Pe decreases linearly from its maxi-

Geosci. Model Dev., 18, 9319–9348, 2025 https://doi.org/10.5194/gmd-18-9319-2025
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mum (Pe,0) when ρ = 0 to 0 when ρ = ρq0, the vegetation
density at which entrainment of sand becomes effectively
negligible. Where vegetation is present in cells between the
entrainment site and receiving site along the transport path,
entrained slabs are polled for deposition at each intermediary
vegetated cell if ρ is greater than a threshold value ρv (Teix-
eira et al., 2023). To account for the effects of vegetated cells
on the local wind field of neighboring unvegetated cells, the
Aeolian component of MEEB uses a copy of the current veg-
etation density domain that has been lightly smoothed with a
Gaussian filter (σ = 3 m).

2.3 Marine

High-water events (HWEs) occur intermittently in MEEB,
causing changes to the subaerial morphology and ecology.
We define HWEs as all events in which the total water level
exceeds MHW. As discussed below, MEEB uses separate –
but coupled – model formulations seaward and landward of
the dynamic foredune crestline (described in Sect. 2.3.1 be-
low) to simulate ecogeomorphic change from HWEs. The
model can run hindcast simulations using time series of ob-
served HWEs as input or run forecast simulations with a
stochastic HWE environment developed from the time se-
ries of observed HWEs. Our methodology for the observa-
tional HWE time series and stochastic HWE environment is
described in Sect. 3.3, below.

Every 25−1 years (1tm = 0.04 years or ∼ 14.6 d), MEEB
determines whether a HWE occurs depending on the ob-
served time series (for hindcasts) or a probability of occur-
rence dependent on the time of year (for forecasts). If no
HWE is determined to occur for a Marine iteration, no ma-
rine processes take place (i.e., the landscape remains unal-
tered) and MEEB proceeds directly to the Shoreline com-
ponent of the model. If a HWE is determined to occur for
a Marine iteration, the HWE is described by a total water
level (TWL), which can vary alongshore according to the lo-
cal beach slope, and a duration (in hours). In the stochastic
HWE environment, the conditions of each event are chosen
randomly from a list of synthetic HWEs; the probability of
occurrence and average intensity (TWL and duration) of the
list of synthetic HWEs, however, remain constant over the
course of each simulation. For simplicity, and because our
identification of HWEs tend to lump multiple tidal cycles of
an event together, MEEB allows a maximum of one HWE to
occur during each 0.04 years (14.6 d) interval.

2.3.1 Dune crest location

MEEB uses separate formulations for HWE-driven morpho-
logic change landward and seaward of the foredune crest,
therefore requiring the alongshore-continuous location of the
foredune ridge. MEEB identifies the cross-shore locations of
the foredune crest (xD) for every dy alongshore – the fore-
dune crestline – using a multi-step process that considers

the general trend of the foredune crest location to identify
gaps in the crestline where the dune would be most likely to
(re)form. First, the algorithm finds the cross-shore locations
of the elevation maximum for an elevation domain that has
been smoothed in the alongshore dimension using a large-
window (150 m) moving average. This maximum elevation
crestline is smoothed again with a Savitzky-Golay filter (win-
dow length= 75 m), resulting in a demarcation that gives the
broad, general trend of where the foredune crest is or would
tend to be (in the case of gaps in the foredune) located within
the barrier domain. Next, using the original non-smoothed
elevation domain, the algorithm finds the cross-shore loca-
tion of the dune-crest peaks within a 25 m buffer of this
broad crest trendline. Dune-crest peaks are selected as the
most-seaward peak of a profile with a minimum backshore
drop of 0.6 m (Itzkin et al., 2020; Mull and Ruggiero, 2014).
If no peak is found within a profile, the algorithm selects
the location from the nearest neighboring peak and the loca-
tion alongshore is considered a gap in the foredune crestline.
Lastly, a Savitzky-Golay filter is applied again with a smaller
window length (11 m) to produce the continuous foredune
crestline.

2.3.2 Ocean shoreline to foredune crest

MEEB uses an equation for cross-shore net sediment trans-
port between the surf-swash boundary and the foredune crest
to simulate HWE processes seaward of the foredune crest.
Based on Durán Vinent and Moore (2015) and, by extension,
Larson et al. (2004a), the deposited volume of sediment at
cross-shore location x, qx , each iteration is equal to

qx =
(
βeq−βx

)
(Ztwl−Zx)

2T −1
e , (2)

with βeq the representative equilibrium slope of the beach,
βx the local slope at the cross-shore location x, Ztwl the
TWL elevation, Zx the elevation at the cross-shore location
x, and Te a calibration coefficient for the erosive timescale
(see Appendix A for a list of model parameters and depen-
dent variables, their units, and values used herein). Sediment
transport for each HWE iteration is calculated from the ocean
shoreline up to either the first cross-shore location at which
Zx exceeds Ztwl, beyond which qx = 0, or the crestline, be-
yond which sediment flux follows the overwash flow routing
scheme described in Sect. 2.3.3. Transport depends on devia-
tion from the equilibrium beach slope, as these local interac-
tions nudge the beach volume towards a linear equilibrium
configuration over time. As Eq. (2) calculates only cross-
shore sediment fluxes, sediment flux in the alongshore di-
mension is not incorporated. Change in elevation (1Zx/1t)
is calculated as the divergence of qx in the cross-shore di-
mension:

1Zx

1t
=
−1qx

1x
. (3)
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2.3.3 Foredune crest to back-barrier shoreline

To simulate HWE processes landward of the foredune crest,
MEEB utilizes a version of the overwash flow routing for-
mulation from Barrier3D (Reeves et al., 2021). Water intro-
duced at overtopped dune cells is transported landward cell-
by-cell, carrying sediment with it. After water and sediment
have been routed across the barrier interior, the elevation of
the barrier interior is updated according to the sediment flux
into and out of each cell. This process occurs iteratively with
hourly time steps for the duration of the HWE.

Water discharge is introduced at each overtopped dune
crest cell (Qdc) according to

Qdc = U (Ztwl−ZD) , (4)

with ZD the dune-crest elevation, g gravitational accelera-
tion, and U the velocity of the water overtopping the dune
crest based on simple ballistics theory for the wave bore (Lar-
son et al., 2004b):

U =
√

2g (Ztwl−ZD) . (5)

where g = 9.81 m s−2 is gravitational acceleration. Water is
distributed to the three neighboring cells in the next landward
row of the domain in proportion to the local slope. If any
of the slopes to the 3 landward neighbors are downhill, the
neighbor with the steepest downhill slope will receive the
most water:

Qi =
(Q0−Rd)S

n
i∑

Sni
, (6)

where Q0 is the discharge at the distributing cell, Qi is the
discharge and Si the directional slope from the distributing
cell to the landward neighbor i,Rd is a parameter to represent
infiltration and drag, and n is a constant equal to 0.5 (derived
from the equation for motion of uniform flow; Murray and
Paola, 1997). If all of the slopes to the three landward neigh-
bors are uphill, the neighbor with the least steep uphill slope
receives the most discharge, and the total discharge from Q0
to Qi is reduced linearly with increasing uphill steepness to
the extent of the uphill slope limit (SQlim):

Qi =

{
(Q0−Rd)|Si |

−n∑
|Si |
−n

(
1− |Si |

SQlim

)
, Si < SQlim

0, Si ≥ SQlim
. (7)

Neighboring cells with adverse slopes steeper than SQlim will
therefore receive no discharge.

The depositional volume of sediment transported each it-
eration (i.e., the volumetric sediment flux) from the distribut-
ing cell to landward neighbor i, qsi , depends on the discharge
and local slope (i.e., the stream power index, QS; Murray and
Paola, 1997):

qsi =Kow[Qi (Si +Cs)]m, (8)

where Kow is a dimensional sediment-transport coefficient,
Cs is a non-dimensional constant roughly representing the ef-
fect of flow momentum (on the order of several times the av-
erage slope of the barrier interior), andm is a constant greater
than or equal to 1. In contrast to the formulation in Bar-
rier3D, MEEB allows upslope sediment transport and does
not distinguish between different overwash regimes (i.e., run-
up versus inundation) when determining parameter values
and transport equations.

Where overwash reaches the back-barrier shoreline, the
sediment load into the subaqueous back-barrier environment
is distributed in an exponentially decaying fashion, with the
landward neighbor with the most discharge receiving the
most sediment, which produces steeply dipping delta-like
foreset deposits typically observed when overwash flows into
standing bodies of water (Schwartz, 1982; Shaw et al., 2015):

qsi =
(qs0Cbb)Qi∑

Qi

, (9)

with qs0 the flux of sediment transported into the distributing
cell, and Cbb the decay coefficient. MEEB assumes that the
bottom of the back-barrier bay is flat and that depositional
and erosional processes can maintain a constant equilibrium
back-barrier depth (Dbb) relative to MHW over the course
of the simulation (Marani et al., 2007). This assumption ex-
cludes the potential for back-barrier depth to change over
space and time, for example via complex tidal bathymetry
or the expansion of subtidal and/or intertidal landforms, but
these dynamics are outside the present scope of the model.

2.3.4 Temporal discretization

To avoid instabilities, we compute each hourly storm itera-
tion with a finer substep, smaller than some upper bound, for
both the landward (ts_l) and seaward (ts_s) formulations of
the Marine component. Our method involves simply dividing
the resulting elevation change at each substep by the num-
ber of substeps within the hour. Smaller substeps maximize
model skill (up to a point), while larger substeps (still small
enough to avoid instabilities) maximize model speed. The
size of substeps chosen for simulations herein (ts_l = 0.02 h
and ts_s = 0.04 h) tends more towards model skill than effi-
ciency, though significant improvements in model speed are
likely possible with larger substeps while sacrificing compar-
atively little model skill.

2.3.5 Coupling Marine formulations across the
foredune crest boundary

Although MEEB uses separate formulations for HWE-driven
morphologic change landward and seaward of the foredune
crest, the formulations are coupled to produce a smooth tran-
sition across this boundary. This coupling is accomplished
by sequentially exchanging sediment fluxes and elevations
at the foredune crest boundary each hourly timestep as the
HWE progresses:
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1. The current location of the foredune crestline is deter-
mined (Sect. 2.2.1).

2. Morphologic change landward of the foredune crest oc-
curs (Sect. 2.2.3).

3. Morphologic change seaward of the foredune crest oc-
curs (Sect. 2.2.2).

4. Sediment fluxes out of and into the dune crest cells
(from steps 2 and 3, respectively) determine the change
in elevation at the dune crest boundary.

5. The next hour of the HWE event begins with the up-
dated elevation domain.

2.4 Shoreline

In MEEB, change in the cross-shore position of the ocean
shoreline (1xs) is the sum of cross-shore (1xs,c) and along-
shore (1xs,a) shoreline change components:

1xs

1ts
=
1xs,c

1ts
+
1xs,a

1ts
. (10)

Ocean shoreline change is applied following every Marine
iteration (1ts = 0.04 years or ∼ 14.6 d) to sections of the
shoreline with a predetermined alongshore length 1ya (typ-
ically 25 m), and the shoreline position within each along-
shore section is held uniform (Fig. 1a). The initial ocean
shoreline position is taken as the intersection of the ini-
tial MHW with initial topography averaged in increments
of 1ya alongshore. To implement shoreline erosion (land-
ward change in xs) topographically, previous beach cells are
set to subaqueous elevations that follow a linear shoreface
drawn between the new shoreline position at MHW and the
shoreface toe, as described further in Sect. 2.4.1. MEEB
implements shoreline accretion (seaward change) by setting
new beach cells to an elevation equal to the average elevation
of the previous five most seaward beach cells plus the RSLR
for that Shoreline iteration.

2.4.1 Cross-shore shoreline change

MEEB follows the equations from the model of Lorenzo-
Trueba and Ashton (2014) governing the cross-shore location
of the ocean shoreline (xs) and the shoreface toe (xt), which
together determine the slope of the active shoreface (Ssf):

Ssf =
Dsf

xs− xt
, (11)

where Dsf is the shoreface depth. The shoreface slope is al-
lowed to deviate from its equilibrium slope (Ssf,eq) in re-
sponse to perturbations. When the shoreface steepens past its
equilibrium configuration (e.g., as a result of RSLR; Bruun,
1962), shoreface fluxes are directed offshore; if the shoreface
shallows past its equilibrium (which can occur when over-
wash and aeolian processes remove sediment from the upper

shoreface), shoreface fluxes are directed onshore. Shoreface
flux (qsf) therefore depends on the deviations of the shoreface
slope from its equilibrium:

qsf = ksf
(
Ssf− Ssf,eq

)
, (12)

with ksf a dimensional shoreface flux rate coefficient,
wherein a larger (smaller) ksf results in faster (slower) ad-
justment of the shoreline back towards its equilibrium con-
figuration.

Following Lorenzo-Trueba and Ashton (2014), the cross-
shore locations of the ocean shoreline and shoreface toe
evolve as a function of RSLR, the cumulative volume of
sediment added to or removed from the upper shoreface,
and the net sediment exchange between the upper and lower
shoreface:

1xs,c =
2(qow+ qbd)

Dsf
−

4qsf

Dsf
(13)

1xt =
4qsf

Dsf
+

2(RSLR)
Ssf

, (14)

where qow and qbd are the cumulative volumes of sediment
per unit of alongshore length imported to or exported from
the barrier interior as overwash (landward of the foredune
crest) and beach and dune system (seaward of the foredune
crest), respectively, during HWEs as determined by compar-
ing pre- and post-event topography. The cross-shore loca-
tions of xs,c and xt will therefore change at relatively similar
(dissimilar) rates with a larger (smaller) shoreface flux coef-
ficient ksf. Unlike Lorenzo-Trueba and Ashton (2014), we do
not extend the effective shoreface above MHW to include the
subaerial barrier height in our formulations for the shoreface
mass balance given that MEEB explicitly simulates subaerial
morphologic evolution.

MEEB allows the user to optionally estimate Dsf, Ssf,eq,
and ksf as a function of wave climate and sediment character-
istics following the method of Nienhuis and Lorenzo-Trueba
(2019a). From Hallermeier (1981),

Dsf = 0.018HsT

√
g

RD50
, (15)

where Hs and T are the average deepwater wave height
and period, R the submerged specific gravity of sediment,
and D50 the median sediment grain size. The equilibrium
shoreface slope can be estimated as

Ssf,eq =
3ws

4
√
gDsf

(
5+

3T 2g

4π2Dsf

)
, (16)

where ws is the settling velocity according to Ferguson and
Church (2004):

ws =
RgD2

50

18× 10−6
+

√
3
4RgD

3
50

. (17)
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The shoreface response rate can be estimated as

ksf = (3600 · 24 · 365) ·
escsg

11
4 H 5

s T
5
2

960Rπ
7
2w2

s

·

1(
11
4

)
z

11
4

0

−
1(

11
4

)
D

11
4
T

DT − z0
, (18)

with z0 the breaking wave depth (Hs/0.4), es the suspended-
sediment transport efficiency factor, and cs the friction factor
(Nienhuis and Lorenzo-Trueba, 2019a).

2.4.2 Alongshore shoreline change

MEEB uses a nonlinear, wave-climate-averaged alongshore
diffusion equation for deepwater wave conditions and non-
complex coastlines from Nienhuis and Lorenzo-Trueba
(2019a), based upon the formulations of Ashton and Murray
(2006). Shoreline change from alongshore diffusion (1xs,a)
is computed using an implicit Crank-Nicholson scheme as:

xs,a
t+1
j − xs,a

t
j

1ts
=

Dj

2

(
xs
t+1
j+1− 2xs

t+1
j + xs

t+1
j−1

)
+

(
xs
t
j+1− 2xs

t
j + xs

t
j−1

)
1y2

a
, (19)

where t and j denote relative time and location of each
alongshore section, respectively. D is the shoreline diffusiv-
ity computed as a function of wave climate:

D(θ)=
kd

Dsf
H

12
5

s T
1
5 [E(φ0) ·9 (φ0− θ)] , (20)

where θ is the angle of the coastline, which varies in space;
φ0 is the offshore wave angle; and kd is an alongshore
sediment–transport constant set equal to ∼ 0.06 m3/5 s−6/5

from Nienhuis et al. (2015). 9 sets the dependence of the
diffusivity to the wave angle, equal to:

9 (φ0− θ)= cos
1
5 (φ0− θ)

[
cos2 (φ0− θ)

−
6
5

sin2 (φ0− θ)

]
, (21)

which, averaging over a long-term interannual wave climate,
can be convolved with the normalized angular distribution of
wave energy E(φ0),

E(φ0)=


a ·h, −

1
2π < φ0 <−

1
4π

a (1−h), −
1
4π < φ0 < 0

(1− a)(1−h), 0< φ0 <
1
4π

(1− a)h, 1
4π < φ0 <

1
2π

, (22)

where a is the proportion of waves approaching from the left
when looking offshore relative to the regional shoreline trend

(i.e., wave climate asymmetry), and h is the proportion of
waves with an approach angle greater than 45° (i.e., propor-
tion of high-angle waves), resulting in the long-term, aver-
aged ocean shoreline diffusivity for each section j along-
shore. MEEB uses single representative values of a and h
for the entire shoreline, which, along with Hs and T , are de-
rived from hindcast offshore wave conditions (described in
Sect. 3.4). The nonlinear dependence of shoreline diffusion
on wave angle mostly affects the overall magnitude of shore-
line diffusivity, with a secondary dependence on shoreline
angle θ , as demonstrated in calculations of the wave-climate
averaged shoreline diffusivity for NCB (Fig. 4c).

For simplicity, MEEB assumes zero-diffusivity bound-
ary conditions, which in effect holds shoreline positions at
the edges of the model domain in place within the along-
shore component of shoreline change, 1xs,a (the shore-
line positions at the edges of the domain, however, can
still change within the cross-shore component of shoreline
change,1xs,c). Therefore, the alongshore diffusion will tend
to smooth the ocean shoreline towards a linear shape between
the two endpoints of the domain over time, while alongshore
variability in cross-shore sediment transport (e.g., overwash)
counteracts this tendency by creating or sustaining pertur-
bations in shoreline shape over time and can also move the
endpoints in the cross-shore direction.

2.5 Vegetation

Vegetation dynamics in MEEB follow the vegetation mod-
ule in DUBEVEG (Keijsers et al., 2016), with the vegetation
updating once every year (1tv = 1 year or 365 d). Each cell
in the model domain is described by a vegetation density ρ
ranging from 0 (bare) to 1 (fully vegetated); this measure of
density is taken as a proxy for the “effectiveness” of the vege-
tation in its ecogeomorphic interactions (Baas, 2002). In the
model, multiple species types with varying ecogeomorphic
behaviors can be used concurrently across the domain and
may occupy the same cell at any given time. We determine
initial vegetation density from remotely sensed imagery (de-
scribed in Sect. 3.2.2, below).

The establishment of vegetation into previously bare cells
occurs via two mechanisms, either dispersal of seeds and
rhizome fragments randomly across the domain or via lat-
eral expansion from neighboring vegetated cells. During
each annual iteration, vegetation establishment in previ-
ously bare cells is stochastically determined based on the
probability of successful germination from seeds or rhi-
zome fragments (Pgerm). For subaqueous cells or cells be-
low a species-specific minimum elevation relative to MHW
(Vz,min), Pgerm = 0 (MEEB does not simulate the growth and
morphodynamics of marsh vegetation). Lateral expansion, or
the establishment of vegetation within previously bare cells
that neighbor previously vegetated cells (8-cell neighbor-
hood), is stochastically determined based on the probability
of lateral expansion (Plat).
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Growth of established vegetation is modeled as a function
of the depositional balance of each vegetated cell (Fig. 1e),
capturing a key ecogeomorphic coupling of coastal dune sys-
tems. The growth functions vary according to the species
type. Here, we model a “burial-tolerant” species type repre-
sentative of typical dune-building grasses (e.g., Ammophila
spp., Uniola paniculata) that are stimulated by moderate
rates of net accretion (Fig. 1e). This positive feedback be-
tween plant growth and deposition can give rise to lo-
gistic growth behavior of vegetation density in the model
(Nield and Baas, 2008b). We also model a “burial-intolerant”
species type that is representative of woody vegetation (e.g.,
Morella spp.), which are most productive in the absence
of net erosion or accretion and grow more slowly than the
burial-tolerant species type (Fig. 1e). Growth functions are
defined by the x-coordinates of their five vertices (Vx,a−e) as
well as the peak growth of the middle vertex (Vy,c; Fig. 1e).
Negative growth (i.e., decay) can ultimately result in plant
mortality. Vegetation mortality also occurs directly follow-
ing HWEs wherever vegetated cells are inundated. These
present mortality rules are a broad simplification in the model
due to complexities in determining vegetation response to
overwash disturbances, which depends on species-specific
threshold levels of exposure to moisture, salinity, sediment
deposition/erosion, and wave action; they also do not distin-
guish between dead and buried vegetation, which may allow
vegetation in overwashed areas to reestablish more quickly.
After an individual plant’s density ρ reaches 0, represent-
ing mortality, no memory of the plant is preserved; this is a
particularly suitable assumption for herbaceous species types
which are easily decomposed and/or carried away by wind
or water after death, but less so for woody species types that
can remain in place and potentially impact barrier ecomor-
phodynamics years following mortality (Reeves et al., 2022).
Nevertheless, plant mortality in the model captures the fun-
damental response of vegetation to important environmental
stressors.

The presence of vegetation in MEEB influences not only
aeolian sediment transport but also overwash sediment trans-
port. Following Barrier3D (Reeves et al., 2022), the effective
discharge leaving vegetated cells (Qi,eff) is reduced accord-
ing to the species-specific flow reduction coefficient, 3, and
vegetation density ρ:

Qi,eff =Qi (1−3ρ) (23)

whereQi is the calculated discharge leaving neighboring cell
i in the absence of vegetation. As such, discharge through
vegetated cells is reduced relative to unvegetated cells, with
denser vegetation causing more reduction, which in turn
tends to cause greater net deposition of sediment within
the cell. Future work could upgrade the Vegetation compo-
nent to incorporate the effects of seasonality, climate forcing,
and more robust representations of environmental filters and
plant mortality.

2.6 Probabilistic framework

MEEB optionally can be used with a simple probabilistic
framework to account for uncertainties related to external and
intrinsic stochastic dynamics (Fig. 3). External stochasticity
can arise from uncertainty in future forcing conditions, such
as RSLR, storm frequency, or mean storm intensity, and is in-
corporated by running the model across discrete probability
distributions of external drivers, i.e., simulating across a set
of values for a particular external forcing variable, each with
a specific probability of occurrence that collectively sum to
1. Intrinsic stochasticity within the model simulations arises
from inherent randomness of natural phenomena – namely,
the probabilistic nature of the storm sequence (timing, water
level, duration) and the Aeolian and Vegetation model formu-
lations – and is incorporated with a Monte Carlo method that
runs multiple duplicate simulations for each bin of the ex-
ternal forcing probability distribution. Duplicate simulations
use the same exact model inputs, yet differ in their ecogeo-
morphic evolution because of the internal model stochastic-
ity. The larger the number of duplicate simulations (nP ), the
more accurately the sampled distribution represents the theo-
retical distribution; in our examples below, nP = 32. Uncer-
tainties of multiple external forcing parameters (e.g., RSLR
and storm intensity) can be considered together by deter-
mining the joint probability of occurrence for scenarios that
encompass all possible parameter value combinations, akin
to the basic Joint Probability Method (JPM) commonly em-
ployed in storm and flood impact analyses (e.g., FEMA,
2023). In the probabilistic framework used herein, RSLR is
the only external forcing parameter considered, and we uti-
lize a discrete probability distribution for RSLR by the year
2050 CE (Fig. 3a) according to the Intergovernmental Panel
on Climate Change Shared Socioeconomic Pathway SSP5-
8.5 (Fox-Kemper et al., 2021); see Sect. 3.5 for details.

For each bin of the external forcing probability distribu-
tion, the probabilistic framework in MEEB runs a batch of
nP duplicate simulations and determines the class (in this
case, the range of elevation change) for each cell in the do-
main at every timestep for all nP simulations (Fig. 3c). These
data are then used to form relative frequency distributions
of class type across space and time for the intrinsic stochas-
tic elements. Next, these distributions are weighted (multi-
plied) by the probability of their external forcing bin. The
weighted probability distributions are then summed elemen-
twise to produce a joint external-intrinsic probability distri-
bution of class type for each cell of the model domain across
all timesteps (Fig. 3c).

In this work, we use the likelihood of elevation change
(relative to the simulation start) as an example of an outcome
that can be explored with MEEB. Elevation change is catego-
rized into classes of major deposition, minor deposition, neg-
ligible change, minor erosion, and major erosion (Fig. 3b).
Other outcomes and categorizations can be developed to suit
the goals of the modeling investigation, such as the presence
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Figure 3. Probabilistic model framework. (a) Discrete probability distribution for the rate of RSLR between 2020 and 2050 for North Core
Banks, NC, USA, under IPCC SSP5-8.5. (b) Classification scheme for net elevation change used in probabilistic framework examples.
(c) Annotated flowchart of the probabilistic framework in MEEB.

of vegetation or flooding (simple), or ecosystem state (more
complex).

3 Data integration and calibration

Data integration and parameter calibration allows the user
to explicitly explore the evolution of a particular setting
through time within MEEB. To ensure MEEB best repre-
sents a real-world system of interest, thorough data integra-
tion and calibration specific to each study location is critical.
MEEB integrates empirical data to set initial model condi-
tions and determine the characteristics of the forcing environ-
ment. Furthermore, given the myriad process domains, many
of which employ poorly constrained parameters, comparison
of simulated output to observations is used to both evalu-
ate model performance and, importantly, calibrate process
parameter values; similar calibration procedures are typical
of microscale models. Scripts for calibrating model param-
eters and comparing simulated results with observations are

included with the model. Data integration and calibration is,
of course, dependent on the availability of data, which varies
significantly depending upon location and timeframe. There-
fore, sources or forms of data different than those described
herein can be used as necessary, so long as they are processed
to satisfy the same requirements detailed below.

3.1 Case study location

MEEB can theoretically be applied to any sandy barrier sys-
tem that satisfies the minimal data requirements as described
in the following subsections. As a case study, we parame-
terized and calibrated MEEB for North Core Banks, NC,
USA using data from 2014–2018 (National Geodetic Sur-
vey, 2024; NCFMP, 2018; USACE NCMP, 2024; USDA
Farm Service Agency, 2019; Ritchie et al., 2021; Sturdivant
et al., 2019). North Core Banks is a sandy, wave-dominated
barrier island 36 km in length, expressing a broad spectrum
of ecogeomorphic states from tall, well-developed foredune
fields (∼ 5 m above MHW) to frequently inundated over-
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wash flats (Hovenga et al., 2021). Part of the Cape Lookout
National Seashore, the barrier is minimally developed and
managed to preserve endemic coastal ecosystems and nat-
ural ecogeomorphic processes. The regional rate of RSLR
from 1994–2024 was approximately 6.3 mm yr−1 (NOAA
Tides and Currents, 2024) and dune vegetation is dominated
by Ammophila breviligulata, a burial-tolerant dune-building
species (Jay et al., 2022).

3.2 Initial conditions

MEEB requires a digital elevation model (DEM) as initial el-
evation input, paired with contemporaneous spatial rasters of
initial vegetation density and species type (Fig. 1a, b). Suf-
ficiently concurrent datasets (< 0.5 years apart) ensure that
initial vegetation conditions are representative of initial el-
evation conditions, and vice versa. All elevation and vege-
tation input raster datasets were resampled to the adopted
model grid resolution (here, 1 m) if necessary, clipped to a
specified bounding box that defines the spatial domain, and
rotated such that the domain axes are parallel with the ap-
proximate trend of the barrier shoreline. In order to calibrate
model parameter values, a minimum of two sets of observed
elevation and vegetation cover datasets are needed to serve as
the pre-hindcast initial conditions and the post-hindcast ob-
servations for comparison with simulation results. Our meth-
ods for satisfying these general data requirements in this case
study are described in the following subsections.

3.2.1 Elevation

Initial topobathymetric DEMs were developed from three
high-resolution lidar datasets for 2014 (NCFMP, 2018), 2017
(USACE NCMP, 2024), and 2018 (Ritchie et al., 2021). In
the absence of bathymetry, and to conform with the model
assumption of a linear shoreface geometry, we processed the
DEMs by adding the shoreface slope by linearly increasing
depth in the cross-shore dimension for all cells seaward of
the ocean MHW shoreline according to Ssf,eq. A small back-
barrier slope (0.05) was also added by setting the first 30 m
landward of the back-barrier MHW shoreline (in the cross-
shore dimension) to increase linearly in depth from MHW to
Dbb. The back-barrier cells beyond the back-barrier slope are
set uniformly to Dbb.

3.2.2 Vegetation

We derived rasters of initial species type from supervised
landcover classification datasets for 2014 (Sturdivant et al.,
2019) and 2018 (Sara Zeigler and Alexandra Evans, U.S. Ge-
ological Survey, unpublished data), generated from orthoim-
agery captured within the same months as their correspond-
ing elevation datasets. The original landcover datasets were
reclassified into three landcover classes: herbaceous vege-
tation, woody vegetation, and no vegetation. Using the or-
thoimagery from January to April 2014 (National Geode-

tic Survey, 2024) and October 2018 (USDA Farm Service
Agency, 2019), rough approximations of initial vegetation
density for the vegetated classes were derived via the Nor-
malized Difference Vegetation Index, with thresholds set
qualitatively for four classes corresponding to ρ values of
0.4, 0.6, 0.8, and 1.0 with random noise perturbations of
±0.1. In qualitatively setting NDVI thresholds, we were able
to roughly control for the effect of image seasonality on the
NDVI values.

3.3 High-water event climatology

MEEB uses a time series of modeled HWE total water level,
duration, and timing for simulation hindcasts. For simulation
forecasts, the observed HWE time series serves as the basis
for a stochastic HWE environment, which consists of a list
of synthetic storms and a probability distribution of storm
occurrence based on the time of year, as described in the fol-
lowing.

3.3.1 Hindcast HWE time series

A modeled HWE time series (Fig. 4a) was created using
hindcast hourly wave and water level conditions offshore of
North Core Banks from 1979 to 2022 (Aretxabaleta et al.,
2023), which include significant wave height (Hs), wave pe-
riod (Tp), water level, and direction. The TWL (i.e., the repre-
sentative highest elevation of the landward margin of runup)
was calculated for each hour as the sum of the maximum 2 %
exceedance of wave runup, following Stockdon et al. (2006),
and the contemporaneous water-level elevation, which in-
cludes tides, storm surge, and other low-frequency fluctua-
tions. Following Wahl et al. (2016) and Reeves et al. (2021),
we extracted HWEs from the wave and water-level time se-
ries by conditioning upon Hs: HWEs were identified as peri-
ods of 8 or more consecutive hours with Hs > 2.05 m, which
is the minimum monthly averaged wave height for periods in
which water levels exceeded the 25th percentile of dune toe
elevations (1.78 m NAVD88) at North Core Banks measured
from 2005 to 2018 (Doran et al., 2017). If two (or more)
periods of 8 or more consecutive hours withHs > 2.05 m oc-
curred less than 24 h apart, the two periods were considered
part of the same large-scale weather system and therefore
lumped together as single HWE; new HWEs were identi-
fied afterHs remained below the 2.05 m threshold for 24 h or
longer (Li et al., 2014). Each HWE from the hindcast record
is described by its maximum TWL; Hs and Tp concurrent
with the maximum TWL; duration; and beginning and end-
ing date/time.
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Figure 4. Hindcast high water event (HWE) climatology for model input and shoreline diffusivity. (a) Total water level timeseries of HWEs
(blue dots) off North Core Banks (NCB), NC, USA from 1979 to 2022; vertical orange bars indicate the dates of capture for the lidar datasets
used in this study. Total water level is the sum of tide, surge, and wave runup. (b) Historic (1979–2022) probability of HWE occurrence by
time of year; bins are sized according to the Marine component timestep (1tm = 0.04 years). (c) Wave-climate-averaged shoreline diffusivity
as a function of shoreline angle θ calculated for a given a, h, Hs, and T representative of NCB; vertical orange bar indicates the range of
shoreline angles from the initial 2024 NCB shoreline.

3.3.2 Stochastic HWE environment

The timing and characteristics (TWL and duration) of HWEs
are determined stochastically in model forecasts. For each
Marine iteration in the model (1tm = 0.04 years), a HWE
may occur based upon the historical probability of HWE
occurrence for each iteration in the observed HWE record,
which was calculated as the number of years in which one
or more HWEs occurred during each Marine timestep di-
vided by the total length (in years) of the observational record
(Fig. 4b). If a HWE is determined to occur, the TWL and du-
ration is chosen from a list of 10 000 synthetic HWEs gen-
erated using the copula-based, multivariate sea-storm model
from Wahl et al. (2016), which identifies interdependencies
among relevant sea-storm parameters (water level, Hs, Tp,
and duration) using the observed HWE record as required
input. MEEB assumes that the probability of HWE occur-
rence for each iteration, as well as the characteristics of the
synthetic HWEs (i.e., the average TWL and duration of the
10 000 synthetic HWEs), remain constant over the course of
a simulation.

3.4 Wave climatology

MEEB requires estimates for long-term (multidecadal) aver-
aged wave climate characteristics to drive alongshore shore-
line diffusion, as described in Sect. 2.4.2. We used the same
hindcast hourly wave and water-level conditions offshore of
North Core Banks from 1979 to 2022 (Aretxabaleta et al.,

2023) to derive the mean offshore significant wave height,
mean wave period, and the wave climate asymmetry and pro-
portion of high-angle waves (relative to the barrier shoreline
trend) for the time period, which allows for computation of
multidecadal shoreline change.

3.5 Probabilistic distribution of future RSLR

We developed a probabilistic distribution of RSLR for the
year 2050 (Fig. 3a) from the IPCC AR6 SSP5-8.5 sea-level
projections (Fox-Kemper et al., 2021; data available from
Garner et al., 2021) for the grid tile encompassing North
Core Banks at 34° N 77° W. Following others (Wainwright
et al., 2015; Bamunawala et al., 2021), a triangular proba-
bility distribution of RSLR was created using the 5, 50, and
95 quantiles of the projected RSLR for the year 2050 under
SSP5-8.5. This triangular distribution was then transformed
into a discrete probability distribution with three bins.

SSP5-8.5 represents a “very high” greenhouse gas emis-
sions pathway, and the accompanying sea-level rise projec-
tion follows a trajectory most similar to the NOAA “Inter-
mediate” scenario from Sweet et al. (2022). Users can run
the same probabilistic model framework with different RSLR
probability distributions representative of other SSPs, and
the results of multiple pathways can thereby be compared.
For example, users can select and make projections for two
pathways that correspond to “most likely” and “worst case”
scenarios. For the year 2050, however, there is relatively lit-
tle difference in projected sea levels between the highest and
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lowest IPCC SSPs, with considerable overlap of ranges. The
relative convergence of RSLR to greenhouse gas emissions
over the next three decades suggests a single SSP for a “very
high” emissions pathway (i.e., SSP5-8.5) is sufficient for
probabilistic projections up to the year 2050, in alignment
with findings from the 2022 NOAA Interagency Technical
Report for sea-level rise (Sweet et al., 2022).

3.6 Skill assessment and parameter optimization

We define model performance primarily through the direct
cell-by-cell comparison of simulated and observed elevation
with the Brier Skill Score (BSS), which measures how much
the simulated change improves a prediction relative to the
baseline of predicting no change at all:

BSS=

1
J

J∑
j=1

(
simj − obsj

)2
1
J

J∑
j=1

(
bj − obsj

)2 (24)

where J is the total number of cells in the skill determina-
tion, simj is the simulated final elevation at cell j , obsj is
the observed final elevation at cell j , and bj is the base-
line prediction equal to the initial elevation at cell j (i.e.,
assumes no change). When specifically assessing the aeolian
performance of the model, we also determined the BSS of
the change in foredune crest elevation. While our skill assess-
ment used a conventional cell-by-cell, point-based approach,
future model calibration may benefit from alternative met-
rics that capture more qualitative behaviors or states (French
et al., 2016; Murray, 2003).

We used particle swarm optimization (PSO) to calibrate
15 free parameters to maximize model skill. PSO is a meta-
heuristic computational method to search iteratively for the
global optimum within a given parameter space. PSO seeds
the parameter space with particles (i.e., specific sets of pa-
rameter values) that make up a swarm (i.e., a population
of candidate solutions). The movement of each particle is
guided both by its own local best-known position within the
parameter space as well as the best-known position of the en-
tire swarm. Over many iterations, the swarm tends to descend
upon the global optimum set of parameter values that max-
imizes the model skill, while tending to avoid local optima.
A minimum and maximum value for each parameter defines
the calibration space; see Table A1 in the Appendix for the
range of values used for each calibrated free parameter.

We optimized Aeolian and Marine parameters separately
to reduce the number of free parameters calibrated at once
and improve potential calibration. First, Marine parameters
alone were optimized using only the Marine component of
MEEB over a single HWE event: Hurricane Florence, which
made landfall as a Category 1 hurricane in September 2018
south of Wrightsville Beach, NC, USA, was used for Ma-
rine calibration because of extensive overwash on North Core

Banks and the availability of lidar captured 3 weeks after
the event (Ritchie et al., 2021). We used a skill score for
change in elevation that was designed to be representative
of the barrier as a whole, calculated as the average BSS of
elevation change across five ecogeomorphologically diverse,
300 m-long training sites characterized by a small and large
overwash fan, a small and large overwash flat, and a tall con-
tinuous dune ridge (Figs. 5, 6). To best ensure that the ob-
served change is representative of HWE impacts, determina-
tion of skill was limited to subaerial cells that fall seaward
of the dune crest or within either the simulated or observed
overwash extent. Observed overwash extent was digitized by
hand with pre- (June to September 2017; USACE NCMP,
2024) and post-Florence (October 2018; Ritchie et al., 2021)
imagery and lidar as reference.

Next, Aeolian parameters were optimized by running the
model over a period of relatively limited HWE activity (16
April 2014 to 16 September 2017), thereby controlling for
the effects of marine processes on the Aeolian calibration.
Results from the preceding Marine parameter calibration
were used to set the Marine parameter values for the Aeo-
lian calibration, and all components of MEEB (Aeolian, Ma-
rine, Shoreline, and Vegetation) were utilized and active. The
RSLR rate was set to 6 mm yr−1 for these hindcasts, repre-
sentative of historical conditions. We used a multi-objective
skill score calculated as the average of the BSS for cell-
by-cell elevation change and the BSS for dune crest height
change. Including dune height as part of the multi-objective
skill score helps prioritize accurate representation of verti-
cal foredune growth over other characteristics, particularly
as foredune height has a large impact on barrier response to
HWEs. To focus calibration on foredune growth and to ex-
clude interior areas with error in the lidar DEMs associated
with reflectance off the vegetation surface, determination of
skill was also limited to cells within a specified foredune
field (Fig. 6). This multi-objective score was averaged again
across three diverse, 200 m-long training sites to produce a
single score representative for North Core Banks as a whole.
To calibrate the four wind-direction probabilities (PWD) that
collectively sum to 1, we used three parameters that can be
tuned independently from each other: (1) the wind axis ra-
tio, which is the ratio of wind directed cross-shore relative to
alongshore; (2) the onshore wind ratio, which is the ratio of
cross-shore wind directed onshore relative to offshore; and
(3) the down-shore wind ratio, which is the ratio of along-
shore wind directed down the coastline relative to up. The
four values of PWD were calculated from the three result-
ing calibrated wind parameters. While historical wind direc-
tion data from North Core Banks is available for input into
MEEB, we found calibrating the wind direction probabilities
directly produced significantly better agreement with obser-
vations. This may be because the dominant historical wind
directions at North Core Banks run oblique to the shoreline
and therefore our model grid orientation, coupled with the
fact that aeolian transport in the model is constricted to di-
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Figure 5. Hindcast simulations testing performance of the MEEB Marine component with calibrated Marine parameters. (a–d) Observed
and simulated post-Florence elevation and pre- to post-Florence elevation change at 4 test locations across North Core Banks, NC, USA.
Locations of each marine testing site, as well as each marine training site used in calibration, are indicated in the top map. The Brier Skill
Score for each hindcast (a–d) is given in the gray boxes and Table 1.

rections directly parallel with model gridlines (i.e., not di-
agonal), suggesting limitations to the relatively simple aeo-
lian algorithm employed in MEEB (see also Nield and Baas,
2008a). Future research into incorporating wind direction ob-
servations, particularly with oblique wind directions, could
prove fruitful.

Due to challenges in generating effective skill scores for
hindcasts of vegetation cover, we did not calibrate Vegeta-
tion free parameters; instead, Vegetation parameter values
roughly follow those of Nield and Baas (2008a) and Keijsers
et al. (2016). Shoreline parameters, with perhaps the excep-

tion of the alongshore sediment transport constant kd, can be
directly estimated and therefore do not necessitate optimiza-
tion.

3.7 Sensitivity analyses

We investigated the global sensitivity of model output to in-
put parameter variations for the purpose of ranking variables
according to their relative contribution to output variabil-
ity and screening variables that have minimal effect on out-
put variability. We used the Method of Morris test (Morris,
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Figure 6. Hindcast simulations (for the period of April 2014 to September 2017) testing MEEB performance with calibrated Aeolian param-
eters. (a–d) Observed and simulated post-simulation elevation and pre- to post-simulation elevation change at 4 test locations across North
Core Banks, NC, USA. Locations of each aeolian testing site, as well as each aeolian training site used in calibration, are indicated in the top
map. The Brier Skill Score for each hindcast (a–d) is given in the gray boxes and Table 1. Skill determination is confined to the area between
the dashed lines at each location to focus calibration on foredune growth and exclude error in the lidar DEMs associated with reflectance
off the vegetation surface. Areas of apparent significant accretion landward of the foredune field in (a)–(d) are artefacts of the post-Florence
lidar capturing the shrub canopy elevations versus the true surface elevation in the pre-Florence lidar.

1991), also known as the Elementary Effects Test, which is
well-suited for models like MEEB with numerous input vari-
ables and/or relatively long run times (Pianosi et al., 2016).
The Method of Morris determines both the overall impor-
tance of a parameter (µ∗; the mean of the absolute value
of the elementary effects) and its degree of interaction with
other input parameters (σ ∗; the standard deviation of the ab-
solute value of the elementary effects). As in the calibration

workflow, we performed sensitivity analyses on the Aeolian
and Marine components of the model separately, and used
the same experimental setup, skill scores, and input param-
eter ranges. Because the Method of Morris depends on the
range of input parameter values and because several param-
eters in MEEB are poorly constrained and abstract, conclu-
sions drawn from our sensitivity analyses are relevant only
with regards to the estimated ranges of parameter values used
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herein (Table A1). Our sampling strategy used six grid levels
(which controls the sampling grid and variation sizes; Mor-
ris, 1991; Pianosi et al., 2016), with 75 aeolian and 115 ma-
rine trajectories resulting in 900 and 1150 combinations of
parameter values evaluated for the Aeolian and Marine com-
ponents of the model, respectively.

4 Example simulations and results

4.1 Parameter sensitivity analyses

Our parameter sensitivity analyses suggest that the Ma-
rine component of MEEB is most sensitive to the erosive
timescale calibration coefficient (Te) and equilibrium beach
slope (βeq), followed by the overwash infiltration and drag
parameter (Rd) and sediment transport coefficients (Kow, m;
Fig. 7a). These parameters also display the highest degree
of interaction with each other (Fig. 7a). The Marine compo-
nent in MEEB is insensitive to the vegetation flow-reduction
coefficient (3), which controls the degree to which vegeta-
tion impacts the overwash flow, for both types of vegetation;
we therefore did not include these parameters in our final
calibration. Perhaps unsurprisingly, marine evolution in the
model is particularly sensitive to poorly constrained coeffi-
cients (Te, Kow, m) that have limited relevance to real-world
measurements or observations. That overwash in the model
is particularly sensitive to infiltration and drag of the flow
across the barrier interior (Rd) suggests continued study and
measurement of these factors across the barrier landscape
could be especially beneficial.

The Aeolian component of MEEB is most sensitive, by far,
to the probabilities of deposition (Pd,0) and erosion (Pe,0) in
the absence of vegetation (Fig. 7b). These parameters also
display the highest degree of interaction with other param-
eters. The model is insensitive to both the unvegetated and
vegetated angles of repose (θr,u, θr,v), and we therefore ex-
clude them from the model optimization. Overall, aeolian
evolution in the model is most sensitive to parameters con-
trolling the volumetric sediment flux, as opposed to the ex-
act specifications of the way in which vegetation density and
type alter this flux.

4.2 Hindcasts: comparisons to observations

To assess model skill, we ran hindcast simulations using the
calibrated parameter values and the same simulation set-up
as in calibration except at testing sites that differ from the
training sites (Figs. 5, 6). Simulation results were compared
to observed elevation change and the resulting model skill
scores are given in Table 1. Our testing sites each span 0.5 km
in length alongshore to demonstrate the variability of model
performance in different geomorphic settings; with increas-
ingly larger model domain extents, the skill scores would
tend to approach the mean score of the entire barrier.

Table 1. Model skill scores for elevation change from MEEB
hindcast simulations. BSS= cell-by-cell Brier Skill Score;
BSS_Seaward=BSS of all cells seaward of the post-storm fore-
dune crest; BSS_Landward=BSS of all cells landward of the
post-storm foredune crest; BSS_DuneElev=BSS of change in
elevation of all foredune crest cells; Multi_Obj_BSS= average of
BSS and BSS_DuneElev. Brier Skill Score qualitative classification
follows Sutherland et al. (2004).

Marine

Location Classification BSS BSS_Seaward BSS_Landward

Fig. 5a Excellent 0.65 0.69 0.46
Fig. 5b Excellent 0.64 0.64 0.40
Fig. 5c Good 0.22 0.19 0.20
Fig. 5d Excellent 0.79 0.79 0.56

Aeolian

Location Classification BSS BSS_DuneElev Multi_Obj_BSS

Fig. 6a Good 0.24 0.04 0.14
Fig. 6b Poor 0.03 0.03 0.03
Fig. 6c Good 0.23 0.22 0.23
Fig. 6d Good 0.23 −0.03 0.10

Hindcast simulations of Hurricane Florence using cali-
brated Marine parameters produce good to excellent agree-
ment with observations (following the BSS categorization
from Sutherland et al., 2004) for pre- to post-storm elevation
change at four test sites across North Core Banks (Fig. 5;
Table 1). Good to excellent agreement is also found when
considering elevation change landward of the foredune crest
in isolation, as well as fair to excellent agreement seaward of
the foredune crest (Table 1). MEEB does particularly well in
capturing overwash deposition patterns and washover thick-
nesses. Naturally, the model is more skillful at some test
sites across the barrier than others. In particular, the model
tends to overestimate dune scarping in certain areas, partic-
ularly where overwash flows through gaps in the foredune
line (Fig. 5a, c). MEEB also tends to underestimate lateral
spreading of overwash flow in areas with confined or chan-
nelized topography (Fig. 5b), a direct consequence of the
simplified flow-routing algorithm that directs flow only to the
three landward neighboring cells.

Testing the skill of calibrated Aeolian parameters, hind-
cast simulations from April 2014 to September 2017 (a pe-
riod of minimal storm activity) at four test sites across North
Core Banks result in good to poor agreement with observed
topographic change (Fig. 6; Table 1). As in calibration, the
skill assessment was applied only to cells within the prede-
termined dune field (Fig. 6). While beach change is predicted
poorly in some of the hindcasts (Fig. 6b, c), it is beyond the
intent of the model to predict fluctuations in beach state on
a monthly or seasonal timescale. Importantly, the model ap-
pears to do qualitatively well in capturing the location and/or
pattern of dune growth. This includes the one hindcast with a
poor (0.04) BSS (Fig. 6b), suggesting that our simple multi-
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Figure 7. Sensitivity analyses of model parameters for the (a) Marine and (b) Aeolian model components. Marine and Aeolian parameters
are analyzed separately following the same design and parameter ranges as the parameter calibration simulations. Unitless values for the
overall importance of a parameter (µ∗) and its degree of interaction with other parameters (σ∗) are given in orange and blue, respectively.
Black lines represent the 95 % confidence interval.

objective BSS could be improved to better identify and prior-
itize important qualitatively correct behaviors (French et al.,
2016) and better align with subjective judgements of simi-
larity (Bosboom and Reniers, 2014). In our tests, the model
tends to underestimate the vertical extent of dune growth.
Additionally, aeolian reworking of the barrier interior (land-
ward of the foredune crest) is overestimated in some areas
(Fig. 6a, d), suggesting that the model is sensitive to the ini-
tial vegetation conditions.

4.3 Forecasts: probability of future change

MEEB was developed to provide useful projections at spa-
tiotemporal scales relevant to coastal management. Here, the
model is exercised in a predictive application using the prob-
abilistic framework described in Sect. 2.6 and the RSLR
probability distribution described in Sect. 3.5. We run ex-
ample probabilistic projections of elevation change for the
year 2050 at an initially overwash-prone site and an initially
overwash-resistant site on North Core Banks. While these
sites span only 0.5 km in length alongshore for the purpose of
providing a clear and concise demonstration of model output,
MEEB can handle model domains up to tens of kilometers in
alongshore length. Figure 8 plots the most likely range of
net elevation change across the model domain from 2018 to
2050 for these projections. At the initially overwash-prone
site (Fig. 8a–c), the model projection suggests that major de-
position is most likely at the proximal parts of the overwash
fans with minor deposition most likely on the more distal
portions (Fig. 8b). Repeated overwash events will tend to pre-

vent vegetation from recolonizing the overwash fans over the
course of the simulation. Consequentially, aeolian deflation
of the sparsely vegetated overwash fans, and resulting minor
deposition along the landward vegetated fringes of the fans
(cf. Rodriguez et al., 2013), is also predicted to be likely.
The model also predicts the high likelihood of major accre-
tion around the seaward slope and toe of the present fore-
dunes, reflecting the steeping of the beach profile with net
seaward growth of the foredune system and likely net sea-
ward expansion of vegetation cover. This probabilistic pro-
jection suggests that the areas encompassing the washover
fans are likely to remain vulnerable to persistent overwash
through the year 2050, while foredune areas are likely to not
only be stable but expand.

At the initially overwash-resistant site (Fig. 8d–f), the
probabilistic projection suggests that major lateral dune ero-
sion via scarping is likely to occur but that the foredune ridge
will most likely persist (Fig. 8e). Aeolian deposition near the
initial foredune crest is likely to offset some of the height
and volume lost from dune scarping. As a result of this per-
sistent and resistant topography, dense vegetation will tend
to cover the barrier interior and prevent aeolian reworking
landward of the dune crest. Although the model predicts neg-
ligible elevation change is most likely landward of the fore-
dune crest, uncertainty in this prediction – particularly near
the left (Southwest) edge of the model domain – reflects the
small but very real possibility of minor to major overwash
deposition in the event of foredune overtopping and/or loss
(Fig. 8f). Overall, this projection indicates that vulnerabil-
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Figure 8. Example probabilistic projections of elevation change for the year 2050, at two sites on North Core Banks, NC, USA: (a–c) an
initially overwash-prone site and (d–f) an initially overwash-resistant site. Locations of both sites are indicated in the top map. (a, d) Initial
2018 topography for the overwash-prone and overwash-resistant sites, respectively. (b, e) Most likely net change in elevation between 2018
and 2050 classified into five elevation ranges. (c, f) Certainty in most likely elevation change predictions, taken as the proportion of all model
runs resulting in the most likely class of elevation change.

ity to HWE-driven change is low through 2050 landward
of the initial 2018 foredune crest, though the high probabil-
ity of major dune width loss in this period suggests that the
likelihood of a shift in morphologic regime from overwash-
resistant to overwash-prone may increase rapidly in the sub-
sequent decades. Potential increases in future HWE intensity
(e.g., Knutson et al., 2020) could also enhance the likelihood
of more fundamental morphological and ecological regime

changes by 2050 – such fundamental changes would also be
likely to occur by the end of the century.

5 Discussion and conclusions

MEEB was developed to simulate spatially explicit, eco-
geomorphic, probabilistic evolution of coastal barrier sys-
tems over spatiotemporal scales of greatest interest to
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coastal managers and decision-makers. The goal of the
model is to reconcile management needs for projections that
are both quantitative/place-specific and multi-decadal/multi-
kilometer (i.e., mesoscale) while accounting for ecogeomor-
phic feedbacks and uncertainties in the forces driving future
change. In our approach for modeling mesoscale barrier eco-
geomorphic evolution, we (a) integrated model parameteri-
zations of varying mechanistic complexity, representing cer-
tain processes or interactions with relatively higher complex-
ity (only as far as needed to produce mesoscale behaviors
anticipated to be important) within an otherwise synthesist
framework, and (b) thoroughly tested and calibrated these
parameterizations with observational data. Because many of
these relatively simple and heuristic algorithms involve cali-
bration coefficients and poorly constrained independent vari-
ables, we have made a substantial effort to determine which
of these parameters are most influential to model outcomes
and assign values that provide the best model agreement with
observations, as evaluated by our multi-objective skill scores
for hindcasts on North Core Banks. While the model has yet
to be applied to other sites, North Core Banks is an ideal
case study location given its relative lack of human influ-
ence, multiple ecosystem types and barrier states, history
of ecogeomorphic change, and availability of high-quality
data, and therefore may be representative of other undevel-
oped barrier environments. Given the demonstrated skill of
our hindcasts of North Core Banks, as well as our holistic
and simplistic model representations of ecogeomorphic pro-
cesses and interactions, we expect MEEB to be widely adapt-
able to most minimally-engineered barrier systems along the
U.S. East and Gulf coasts. The model may be less applicable
to barrier environments strongly influenced by tidal inlet dy-
namics, complex shoreline change, or human management,
though in the future a human management module could be
added to MEEB (e.g., Anarde et al., 2024a, b) to explore
the ecogeomorphic effects of coupled human–natural inter-
actions.

As with any numerical model, appropriate interpretation of
the results depends on the scale and complexity of the model
parameterizations. As a mesoscale model, MEEB is not suit-
able for investigations with the goal of predicting subtle
changes in elevation or vegetation cover; nor is it an appro-
priate tool for explaining the large-scale behaviors of land-
scape configuration, such as the drowning of a barrier chain.
Instead, MEEB is designed to answer questions about barrier
ecogeomorphic change of moderate complexity by offering
semi-qualitative predictions and semi-quantitative explana-
tions. For example, MEEB can be used to investigate the ef-
fects of climate-induced shifts in ecological composition by
adjusting Vegetation parameters over time to represent tran-
sitions in vegetation assemblages. Such transitions could af-
fect the likelihood of coastal hazard impacts by altering aeo-
lian growth rates and/or patterns and therefore landscape vul-
nerability to HWEs. As another example application, MEEB
could be used to predict where and when overwash along a

barrier is most likely to occur by generating probabilistic pro-
jections of overwash inundation through time and identifying
ecogeomorphic indicators of overwash vulnerability. Future
work could compare MEEB simulations with micro- (e.g.,
XBeach, Roelvink et al., 2009) or macro-scale (e.g. LTA14,
Lorenzo-Trueba and Ashton, 2014) models to explicitly de-
termine when, where, and how the trajectories of the models
overlap in their respective utility.

To simulate spatially explicit ecological and geomorpho-
logical processes across an entire subaerial barrier land-
scape over several decades, MEEB employs many synthe-
sized parameterizations and simplifying assumptions. In-
evitably, MEEB bears several important limitations arising
from this modeling approach. For example, MEEB assumes
the barrier system is composed entirely of unconsolidated
sand, whereas grain sizes and characteristics can vary over
meters to kilometers in ways that affect dune growth (e.g.,
Hovenga et al., 2023) and barrier transgression (e.g., Bren-
ner et al., 2015). Tidal inlet and breaching processes, in-
cluding outwash events (Sherwood et al., 2023), are ne-
glected in MEEB, despite the significant ecomorphodynamic
changes associated with these processes and their importance
to long-term transgressive sediment flux (e.g., Nienhuis and
Lorenzo-Trueba, 2019b; Leatherman, 1979; Passeri et al.,
2020; Sherwood et al., 2023). Therefore, we exclude por-
tions of a barrier within several hundred meters of active tidal
inlets and breaches from the model domain, rendering the
model less relevant to tide-dominated barrier systems where
barriers are frequently segmented by inlet channels. Further,
MEEB models the long-term, wave-climate-averaged shore-
line diffusivity by assuming the diffusive wave climate does
not change over the course of a simulation, which may av-
erage over variability in shoreline diffusion that could po-
tentially feedback with coupled ecogeomorphic processes
(e.g., dune erosion). MEEB also presently assumes that no
shoreline changes resulting from alongshore transport gradi-
ents occur at the domain boundaries (i.e., shoreline change
at these cells only occurs from cross-shore processes). As
such, if the MEEB model domain were part of a curved
coastline eroding or accreting due to persistent alongshore
transport gradients (Ashton and Murray, 2006), local shore-
line change rates would be underpredicted. Lastly, the Veg-
etation component presently lacks finer temporal resolution
needed to capture seasonal variations in vegetation density
and growth, which could play an important role in how a
barrier responds to and recovers from HWEs. Additionally,
the simplified Vegetation component lacks many of the envi-
ronmental filters (e.g., temperature, groundwater depth, ele-
vation, salinity) that could affect the zonation and density of
vegetation, with implications for aeolian and overwash sedi-
ment transport and thereby projections of future change. To
improve the utility of MEEB for addressing the ecogeomor-
phic effects of climate-induced shifts in ecology, the model
would require the addition of seasonality and species zona-
tion dynamics.
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Despite these limitations, comparisons of MEEB hind-
cast simulations to observations demonstrate that our rela-
tively simple set of parameterizations for coupled aeolian,
marine, vegetation, and shoreline processes can skillfully
capture important mesoscale dynamics of barrier systems.
This is achieved in large part through thorough calibration
of the most sensitive free parameters, with integration of to-
pographic, ecologic, and storm climatology data to set ini-
tial conditions and assess model performance. A single set
of calibrated parameter values performs well at ecogeomor-
phologically diverse test sites spread across the nearly 30 km
domain and in hindcast simulations spanning multiple con-
tinuous years, leading to confidence in model projections of
future mesoscale change.

Appendix A: Model parameters and dependent
variables

Table A1. MEEB parameters and their definitions.

Parameter Units Value Calibration and
Sensitivity Analysis
Range

Description

1ta years 0.02 Aeolian iteration duration

1tm years 0.04 Marine iteration duration

1ts years 0.04 Shoreline iteration duration

1tv years 1 Vegetation iteration duration

RSLR m yr−1 0.006 (hindcasts),
0.0068 to 0.0124
(projections)

Relative sea-level rise

MHW m NAVD88 0.39 Initial mean high water

Aeolian

Pe,0 – 0.10 0.02 to 0.5 Maximum probability of erosion in the complete
absence of vegetation cover (ρ = 0)

Pd,0 – 0.22 0.02 to 0.5 Probability of deposition in the complete absence of
vegetation cover (ρ = 0)

Pd,1 – 0.54 0.05 to 0.5 Probability of deposition with full effective vegetation
cover (ρ = 1)

η degree 12 8 to 18 Shadow angle

ρq0 – 0.10 0.05 to 0.55 Vegetation density at which entrainment of sand
becomes effectively negligible

ρv – 0.35 0.05 to 0.4 Threshold vegetation density at which cells are
considered vegetated

θr,u degree 20 15 to 30 Angle of repose for unvegetated cells (ρ < ρv)

θr,v degree 30 20 to 40 Angle of repose for vegetated cells (ρ ≥ ρv)

Geosci. Model Dev., 18, 9319–9348, 2025 https://doi.org/10.5194/gmd-18-9319-2025



I. R. B. Reeves et al.: Mesoscale Explicit Ecogeomorphic Barrier model (MEEB) v1.0 9341

Table A1. Continued.

Parameter Units Value Calibration and
Sensitivity Analysis
Range

Description

Aeolian

PWD – (0.81, 0.04, 0.06,
0.09)

0.5 to 1
(wind axis ratio);
0.5 to 1
(onshore wind ratio);
0 to 1
(down-shore wind
ratio)

Wind direction probability (onshore, alongshore down,
offshore, alongshore up)

Hs m 0.02 Aeolian slab height

Ls m 5 Saltation length

Dgw – 0.4 Proportion of the smoothed topography above MHW
for determining elevation of the freshwater lens

Marine

βeq – 0.022 0.01 to 0.04 Equilibrium beach slope

Te – 0.68 0.33 to 1.0 Erosive timescale calibration coefficient for sediment
flux seaward of the foredune crest

Rd m3 h−1 249 50 to 280 Parameter representing infiltration and drag of
overwash flow

SQlim – 1.5 0.5 to 2.0 Maximum slope water can flow uphill

Kow – 0.0001684 0.00005 to 0.01 Overwash sediment transport coefficient

Cs – 0.0283 0.01 to 0.04 Constant representing momentum of the overwash flow

m – 1.04 1.01 to 1.12 Constant for nonlinear relationship between sediment
flux and discharge

g m s−2 9.81 Gravitational acceleration

n – 0.5 Constant for flow routing

Cbb – 0.7 Coefficient for exponential decay of sediment load
entering subaqueous back-barrier environment

Dbb m 1.5 Equilibrium depth of back-barrier basin

ts_l h 0.0016 Time-substep for computing an hourly iteration of
Marine HWE morphological change landward of the
dune crest

ts_s h 0.04 Time-substep for computing an hourly iteration of
Marine HWE morphological change seaward of the
dune crest
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Table A1. Continued.

Parameter Units Value Calibration and
Sensitivity Analysis
Range

Description

Vegetation

3 – 0.02
(burial-tolerant);
0.05
(burial-intolerant)

0.02 to 0.4
(burial-tolerant);
0.05 to 0.5
(burial-intolerant)

Vegetation-overwash flow reduction coefficient

Pgerm – 0.05 Probability of vegetation establishment via
germination from seeds or rhizome fragments

Plat – 0.2 Probability of vegetation establishment via lateral
expansion from neighboring vegetated cells

Vz,min m MHW 0.25
(burial-tolerant);
0.25
(burial-intolerant)

Minimum elevation (relative to MHW) for vegetation

Vx,a−e m yr−1 [−1.5, −0.05, 0.5,
1.5, 2.2]
(burial-tolerant);
[−1.6, −0.7, 0,
0.2, 2.1]
(burial-intolerant)

x-coordinates of the 5 growth function vertices a− e

Vy,c yr−1 0.2
(burial-tolerant);
0.05
(burial-intolerant)

Peak growth of the growth function middle vertex c

Shoreline

Dsf m 20.07 Shoreface depth

Ssf,eq – 0.00822 Equilibrium shoreface slope

ksf m3 m−1 yr−1 5926 Shoreface flux rate coefficient

ya m 25 Alongshore length of shoreline sections

Hs m 0.98 Average deepwater wave height

T s 6.6 Average deepwater wave period

R – 1.65 Submerged specific gravity of shoreface sediment

D50 m 2× 10−4 Median grain size of shoreface sediment

es – 0.01 Shoreface suspended sediment transport efficiency
factor

cs – 0.01 Shoreface friction factor

kd m3/5 s−6/5 0.06 Shoreline diffusivity constant

a – 0.6 Wave climate asymmetry, i.e., proportion of waves
approaching from the left when looking offshore of the
regional shoreline trend

h – 0.39 Proportion of high-angle waves, i.e., waves with an
approach angle greater than 45°
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Table A2. MEEB dependent variables and their definitions.

Variable Units Description

Aeolian

Pe – Probability of erosion

Pd – Probability of deposition

qa,max m3 m−11t−1
a Maximum potential aeolian transport flux

ρ – Vegetation density

Marine

Ztwl m NAVD88 Total water level elevation of high-water event

Zx m NAVD88 Elevation at cross-shore location x

xD m Cross-shore location of the foredune crest

qx m3 s−1 Flux of sediment at cross-shore location x seaward of the foredune crest

βx – Local slope

Qdc m3 h−1 Discharge over the foredune crest

ZD m NAVD88 Foredune crest elevation

U m h−1 Velocity of water at the dune crest

Q0 m3 h−1 Overwash discharge at distributing cell

Qi m3 h−1 Overwash discharge at receiving cell i

Si – Local directional slope from distributing cell to receiving cell i

qsi m3 h−1 Overwash sediment volumetric flux from distributing cell to receiving cell i

Vegetation

Qi,eff m3 h−1 Effective discharge leaving vegetated cells

Shoreline

xs m Cross-shore position of the ocean shoreline

xt m Cross-shore position of the shoreface toe

Ssf – Slope of the active shoreface

qsf m3 m−11t−1
s Shoreface sediment flux

qow m3 m−11t−1
s Cumulative volume of overwash deposition deposited on and behind the barrier interior for 1 Shoreline

iteration

qbd m3 m−11t−1
s Cumulative volume of sediment imported from or exported to the beach and dune system during

HWEs for 1 Shoreline iteration

ws m s−1 Settling velocity of shoreface sediment

z0 m Breaking wave depth

D m2 s−1 Shoreline diffusivity

θ – Shoreline angle relative to the regional shoreline trend

φ0 – Wave angle relative to the regional shoreline trend

9 – Dependence of the diffusivity to the wave angle

E – Normalized angular distribution of wave energy
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Code and data availability. MEEB v1.0 source code and doc-
umentation are available at https://doi.org/10.5066/P13N6RHA
(Reeves, 2025a), the official USGS software release, under
a CC0 1.0 Universal license. A public copy of the MEEB
v1.0 code and documentation is also archived on Zenodo at
https://doi.org/10.5281/zenodo.15014191 (Reeves, 2025b). All el-
evation and vegetation input files used in the calibration proce-
dures and simulations presented in this work are stored within the
archived MEEB v1.0 software release (Reeves, 2025a, b) at /MEE-
B/Input. Hindcast hourly wave and water level conditions offshore
of North Core Banks from 1979 to 2022, used to develop the ob-
served HWE timeseries and stochastic HWE environment, are avail-
able from the Renaissance Computing Institute (https://renci.github.
io/edsreanalysisdoc/, Blanton et al., 2024) and stored within the
MEEB v1.0 software release at /MEEB/Data/NorthCoreBanks.
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